
Programming in Natural Language:
Building Algorithms from Human Descriptions

Alexander Wachtel, Felix Eurich, Walter F. Tichy

Karlsruhe Institute of Technology
Chair for Programming Systems Prof. Walter F. Tichy

Am Fasanengarten 5, 76131 Karlsruhe, Germany
Email: alexander.wachtel@kit.edu, felix.eurich@student.kit.edu, walter.tichy@kit.edu

Abstract—Our work is where the Software Engineering meets the
Human Computer Interaction and the End User Programming
to aim for a major breakthrough by making machines pro-
grammable in ordinary and unrestricted language. In this paper,
we provide a solution on how new algorithms can be recognized
and learned from human descriptions. Our focus is to improve
the interaction between humans and machines and enable the end
user to instruct programmable devices, without having to learn a
programming language. In a test-driven development, we created
a platform that allows users to manipulate spreadsheet data by
using natural language. Therefore, the system (i) enables end
users to give instructions step-by-step, to avoid the complexity
in full descriptions and give directly feedback of success (ii)
creates an abstract meta model for user input during the linguistic
analysis and (iii) independently interprets the meta model to
code sequences that contain loops, conditionals, and statements.
The context then places the recognized program component
in the history. In this way, an algorithm is generated in an
interactive process. One of the result can be the code sequence
for algorithm, like well-known selection sort. We present a
series of ontology structures for matching instructions to declare
variables, loop, make decisions, etc. Furthermore, our system
asks clarification questions when the human user is ambiguous.
During the evaluation, 11 undergraduate students were asked to
solve tasks by using natural language, and describe algorithms
in three classes of complexity. Overall, the system was able to
transform 60% of the user statements into code. Far from perfect,
this research might lead to fundamental changes in computer
use. Rather than merely consuming software, end users of the
ever-increasing variety of digital devices could develop their own
programs, potentially leading to novel, highly personalized, and
plentiful solutions.

Keywords–Natural Language Processing; End User Program-
ming; Natural Language Interfaces; Human Computer Interaction;
Programming In Natural Language; Dialog Systems.

I. INTRODUCTION

Since their invention, digital computers have been pro-
grammed using specialized, artificial notations, called pro-
gramming languages. Programming requires years of training.
However, only a tiny fraction of human computer users can
actually work with those notations. With natural language and
end-user development methods, programming would become
available to everyone and enable end-users to program their
systems or extend them without any knowledge of program-
ming languages. Programming languages assist with repetitive
tasks that involve use of loops and conditionals. This is what
is often challenging for users. Our vision should enable users
to describe algorithms in their natural language and provides

a valid output by the dialog system for a given description,
e.g., selection sort of a set (See Algorithm 1). This vision
forms the basis for our natural language user interface [1].
Already in 1987, Tichy discussed that Artificial Intelligence
(AI) techniques are useful for software engineering, pointing
out the potential of natural language processing [2] and natural-
language help systems [3].

According to Liberman [4], the main question in the End
User Development area of research is, how to allow non-
programming users who have no access to source code, to
program a computer system or extend the functionality of
an existing system. In our prototype, we decided to address
spreadsheets for several reasons:

• a lot of open data available, e.g. Eurostat [5] provides
statistics for European Union that allow comparisons.

• well-known and well-distributed: Microsoft [6] an-
nounced the distribution of Office with 1.2 billion
users worldwide. Furthermore, for humans the data in
a table is easy to understand, complete and manipulate.

In general, spreadsheets have been used for at least 7000
years [7]. Myers [8] and Scaffidi [9] compared the number of
end users and professional programmers in the United States.
Nearly 90 million people use computers at work and 50 million
of them use spreadsheets. In a self-assessment, 12 million
considered themselves as programmers, but only 3 million
people are professional programmers. The created spreadsheets
are not only the traditional tabular representation of relational
data that convey information space efficiently, but also allow a
continuous revision and formula-based data manipulation. It is
estimated that each year hundreds of millions of spreadsheets
are created [10]. Our system consists of two main components:
a user interface that gets natural language expressions from the
user and a linguistic analysis framework. These components
are explained below. This paper is structured as follows.
Section II gives the overview of the current research and
describes our goals. This is followed by the Section III, which
presents the linguistic analysis that generates the meta model
for given descriptions. In Section IV, the interpreter transforms
the meta model to the control flows, conditional and loop
statements. Section V evaluates the prototype and describes
the setup and the results of a user study. Section VI presents
related work in the research areas of programming in natural
language, End User Programming and natural language dialog
systems. Finally, Section VII presents a conclusion of our topic
and future work.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

Figure 1. End user instructions of an algorithm are transformed to the code sequences and executed on a given set of numbers

II. CURRENT WORK AND RESEARCH GOALS

Our work is based on a dialog component implemented
by [11] in 2015. It enables users to interact with our system
and manipulate spreadsheet data via natural language. In
early 2016, the system has been extended with an active
ontology [1][12]. The idea of active ontology was first pre-
sented by Guzzoni [13]. In general, an ontology is a formal
representation of knowledge. By adding a rule evaluation
system, a fact store and sensor nodes to an ontology it
becomes an execution environment rather than just a formal
representation of knowledge. In late 2016, the natural language
dialog system has been extended with a machine learning
component, called Interactive Spreadsheet Processing Module
(ISPM) [14]. It is an active dialog management system that
uses machine learning techniques for context interpretation
within spreadsheets and connects natural language to the data
in the spreadsheets. First, the rows of a spreadsheet are divided
into different classes and the table’s schema is made searchable
for the dialog system. In the case of a user input, it searches
for headers, data values from the table and key phrases for
operations. Implicit cell references like ”people of age 18” are
then resolved to explicit references using the schema. Using the
ISPM, end users are able to search for values in the schema of
the table and to address the data in spreadsheets implicitly, e.g.,
What is the average age of people in group A?. Furthermore,
it enables them to select and sort the spreadsheet data by
using natural language for end user software engineering, to
overcome the present bottleneck of professional developers. In
December 2017, we presented an overview about our current
work in [15]. Therefore, we provided more details for the
achieved design and implementation steps of our prototype.

In our current work, users describe algorithms (cf. [16])
in their natural language and get a valid output by the dialog

system for a given description, e.g., selection sort of a set
(See Figure 1). The functionality is aimed at users with
no programming knowledge, as the system enables simple
routines to be programmed without prior knowledge. This
makes it easier for users to get started with programming.
The system also illustrates the relationship between a natural
statement and its code representation (See Figure 1), so it can
also help to understand and learn a programming language.

Task : To sort a sequence of n numbers (a1, ..., an)

↓
User Input: the result is a vector. Initially it is empty. Find
the minimal element of the set and append it to the vector.
Remove the element form the set. Then, repeatedly find the
minimum of the remaining elements and move them to the
result in order, until there are no more elements in the set.

↓

Algorithm 1 Pseudo code of selection sort.

1: procedure SELECTIONSORT(input as a set of numbers)
2: result← empty set
3: while input IsNotEmpty do
4: n← length (input) - 1
5: tmpMin← 0
6: for i← 0→ n do
7: if input[i] < input[tmpMin] then
8: tmpMin← i

9: Add input[tmpMin] at the end of result.
10: Remove element at index tmpMin from input.

↓
Output : A permutation (b1, b2, ..., bn) with b1 ≤ ... ≤ bn

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

III. LINGUISTIC ANALYSIS

In early 2017, we have done first steps on loops and
conditionals [1]. In this work, we extend these active on-
tologies [1] that represent knowledge about the structure of
natural language in the context of programming instructions
and implementing a meta model layer, our system recognizes
various programming concepts in user input and converts them
into a meta language. The result of the analysis is a tree
structure consisting of objects, whereby an object represents a
recognized concept. These trees are built during the analysis
from bottom up. The object structure contains three parts:
whileIndicator, loopAction, and condition. The following sec-
tions describe the different steps on how our system creates
shown WhileLoop object. Overall, it identifies the routines of
the supported concepts, like statements, conditionals and loops,
and provides functional overview of the linguistic analysis.

A. Reference Detection
The first step of the analysis is reference resolution. End

users can provide the reference to variable as an individual
pseudonym like the word ”minimum” in use 5 as minimum.
Furthermore, an implicit reference can be used such as initial-
ize it with 5 (See Figure 2). Dotted lines indicate sensor nodes
which react if one of the attached word or word class [17]
was detected in the input. A red mark around a node points
to a key node which occurrence is essential for the parent
node to trigger. The two inner node types: collect and select
nodes, are marked with ”C” and ”S”, respectively. The different
types of nodes have different prerequisites for triggering.
Leaf nodes unleash when a particular word is found in the
input. Collecting nodes trigger when all required child nodes
have been triggered and selection nodes trigger as soon as at
least one child node triggers. When triggered, the recognized
concept is passed on to the parent node as a new object [1].

variableReference (S)

implicitDefinedName

noun, verb, adjectiv

explicitDefinedName (C) implicitReference

{it, its, …}

nameIndicator

{called, named}

name

all words

Figure 2. Ontology structure for variable references.

Detecting references to a quantity builds on the previ-
ous structure. Decisive for the recognition are descriptions
of characteristics (setIndicator) which are linked to a
variable reference. The simplest indicator is the occurrence
of a size reference like the word length. In connection with
a variable reference the presence of a reference to a quantity
can be assumed. Another indicator is the detection of index
referral. It’s based on the identification of the explicit index as
a constant number or reference (See Figure 3).

setReference

setIndicator

indexNameConnector = „of“

variableReference

indexReference

firstElement

firstWord = „first“

valueIndicator = „value“

implicitDefinedName = „input“

Figure 3. Result of ”set the first element of the input to 0”.

B. Statements
Built on the of reference recognition, declarations and

actions are recognized by the linguistic analysis.
1) Declarations: In general, a new variable is defined

explicitly by its name and a type. It is important to know that
the type is not describing the data type, but the type of the
variable, i.e., whether it’s a simple variable or a set. In order
to deal with formulations of the form ”create a new set”, the
specification of a name is optional. If no name is found for
the new variable, the system assigns one.

2) Actions: The current version of the system supports
three types of actions, namely assignments, remove and add
operations. All actions have the commonality that they have a
direction. This is determined by the preposition and the verb
used. On the basis of this information, the analysis can indicate
which reference is the target and which is the parameter of the
action. The set-up is the same for all actions and should be
displayed on the basis of the assignment A possible entry for
an assignment is the following ”take the first value from the
input as minimum”. By the preposition ”as” in combination
with the verb ”take” the analysis assumes that the target of the
allocation is on the right side of the preposition. Therefore, the
tree in Figure 4 is the output of the analysis. The other actions
are also recognized according to this procedure.

allocation

lestAsRightIndicator = „take“

lestToRightDirection = „as“

assignedValue

allocationTarget

variableReference

implicitDefinedName = „minimum“

setReference

indicatorNameConnector = „from“

variableReference

implicitDefinedName = „input“

setIndicator

indexReference

firstElement

firstWord = „first“

valueIndicator = „value“

Figure 4. Result of the node allocation after the analysis of the entry
”take the first value from the input as minimum”.

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

C. Conditionals
Control structures such as looping and branching are essen-

tial elements of algorithms. By considering such concepts in
the linguistic analysis, more complex algorithms like selection
sort can be implemented with the system. As some control
structures require the recognition of conditions, the logic used
for this purpose should be briefly presented here. In general,
a condition defies a property of a reference. Depending on
the type of reference, different conditions can be set. In
this work, a condition can be set for a simple value, a
quantity of values and a quantity reference. Figure 5 shows
the classification of the conditions. In a first subdivision,
a distinction is made between conditions which relate to a
single reference (singleValueCondition) and the com-
posite condition (multipleValueCondition) which is
the combination of several conditions by a conjunction such
as ”and” in ”x is less than 3 and y is equal to 5”. Furthermore,
the individual conditions differentiate between statements that
assign a condition to a value (singleCondition) and
those with several premises for a value (conditionChain).
The child nodes of singleCondition represent the three
supported types of a condition. limitedValueCondition
recognizes statements that compare two values. Conditions
which relate to a quantity, e.g., ”If the result is empty” are
identified by setConstrain. setCondition recognizes
the requirements of a property for certain elements of a set,
such as ”if all elements of the result are greater than 4”.

condition (S)

multipleValueCondition (C) singleValueCondition (S)

conditionConnector (S)

singleValueCondition (S) singleCondition (S) conditionChain (C)

setConstrain (C) limitedValueCondition (C)setCondition (C)

Figure 5. Ontology structure for the different conditions.

1) Single Value Condition: Assuming the input is ”check
if the result is less than 5”. It is obvious that the user
wants to check whether the value of the field ”result” is
less than the constant value 5. Analogously, it would also
be conceivable to require equivalence or greater than 5. Of
course, negated expressions such as ”when the result at least
3 is not equal to minimum” must be recognized. For this
purpose, a negative prefix, like ”not”, is searched for in the
input. The constantValueOrReference node is repre-
sented a all previously discussed ways to reference a single
value or a variable. Because of its identical structure, the
containRelation is also part of this type of condition.
The only difference is that a keyword such as ”contain” is
searched instead of the requested comparison operator.

2) Quantifier Condition: With these kind of conditions,
formulations such as ”check if all elements in the input
are greater than 5” or ”if any element of the input is
smaller than 0” are correctly recognized Since the set ref-
erence to be checked is identified by the setCondition
node, only the value has to be found in the subtree of

singleValueConditionWithoutLoop instead of the
value and the reference to be checked for the comparison.
The already known structure of possibleRelation and
valueLimit remains unchanged.

3) Constraint Condition: Entries such as ”if the input
contains any element” are handled by the setConstrain
node. It is thus possible to check whether a quantity reference
contains elements or not.

4) Condition Chain: The condition chain is a special
compound condition, which requires several properties from
a single reference. The decisive factor here is that only the
first requirement has an explicit reference to the field to be
examined. A possible input would be ”if x is less than 5 or
equal to 10”. Instead of whole conditions, operators can also
be linked. An example of this is the input ”if x is smaller or
equal to 4”. In contrast to the linking of several conditions,
only the last operator has an explicit reference to the limit.

D. Loops
In order to repeat an action, the user can link it to a

condition or specify that it should be executed for each element
of a set. Hence the analysis detects both for and while
loops. The result of the ontology for a recognized for loop
can be seen in Figure 6. Similarly, the result for the input
”repeat all steps until the input is empty” will be computed.

forLoop

iteratingField

forLoopIndicator

foreach

prefix = „visit“

eachWord = „all“

explicit

valuesIndicator = „elements“

prefixReferenceConnection = „from“

variableReference = „input“

Figure 6. Result of the node forLoop after the analysis of the entry ”visit
all elements from the input”.

E. Branches
Analogous to the branching in programming, the input is

checked for conditional actions and possible alternatives. In
fact, the system is able to trace and identify such user input
like ”if there is a value less than the minimum in the input use
it as minimum”.

F. Temporal Actions
Temporal actions are actions with an individual desired

location. Both explicit position data and the definition of a
temporal relationship to another action are taken into account
during the analysis. As an explicit position, the start and
end of the description is currently supported such as ”at the
beginning initialize the output with 0”. The assignment of a

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

temporal relationship requires, in addition to the action to be
placed (action), the specification of a conjunction (after,
while, before) and an anchor point (anchor). As an action or
anchor point, the analysis allows both action descriptions, as
well as concrete actions or references to earlier instructions.
To identify the described component, the analysis looks for
matching verbs and adds the corresponding section in the input
as a description. It does not matter which action is already
present in the program sequence and which is to be rearranged.
This task is done by the interpreter. A possible entry for a
temporal action would be ”add minimum to the result after
removing it from the input”.

IV. INTERPRETER

In the following, the further processing of the object struc-
ture outputted by the ontology will be presented. The abstract
process is shown in Figure 7. The successive processing steps
are now to be considered in more detail.

Objectstucture from AO

Assign to a service

Resolve references

Create a new object from the type
of the detected programming action

Insert into program flow

Figure 7. Abstract process in the Interpreter.

A. Interpreter Services
The transformation of the recognized concept was imple-

mented with a micro service architecture. Every recognized
programming concept has its own service, which knows what
information is necessary for the transformation. In Figure 7, the
result of the ontology is passed to the appropriate service on the
basis of the detected action. The purpose of the services is to
transform the existing information into an executable action.
Regardless of the recognized statement, the main task is to
resolve the specified references. After that they have to be
linked to the action. For this purpose, a new object of the type
of the action is generated and the resolved references are used
(Section IV-D).

B. Reference Resolving
Similar to the organization of the detected actions, the

references are also assigned to a service according to the
recognized type. From the description of the linguistic analysis,
three types are possible: constants, quantity references, and
simple variable references. When searching for references,
different information can be provided. Basically, the name of
the reference or the indication that it is an implicit reference
and the allowed field type must be given. Optionally, the
required data type can be transferred. This is determined by
the datatype of the first resolved reference. In the event of a
directed action, this takes the assigned value. In addition to

the data type, information can also be given as to whether
the target is an action. All information is then processed by
the context. This searches all currently available variables in
the program code and returns the most likely reference. The
distance to the current position in the code is taken into account
as an additional quality criterion if the name is not explicitly
mentioned. In these cases, if no existing reference can be
assigned, it creates a new field with the data type of the
assigned value. The procedure of resolving a target reference
is shown in Figure 8.

Field type + Reference word + Data type

Ask context for existing variable

Create new field with provided informations

Return object as the result of the reference
resolution

No existing object found

Existing object
found

Figure 8. A reference resolution specified as the target of a directed action.

C. Context
The context module is the brain of the system and knows

both the program sequence as well as the current position in
it and offers functions to search for elements in it. Similar
to [18], we solve an ordering problem that arises in natural-
language programming. End users provide expressions involv-
ing ”before”, ”after”, ”while”, ”at the end”, and others. Our
module represents the interface to the current excel document
and thus allows the access to cells or area therein. It also knows
the statement history and has a semantic understanding of the
program code. This means that it knows at which position
something was inserted last and what consequences this has
on the accessible variables. Therefore, assigning an existing
object in the program to a specified reference is an important
task of the context. The procedure for resolving field references
is shown in Figure 9. This function is called by the respective
services as required.

Reference Word + Field Type
Search reachable field

with given name and type

Search recently used field
with given type

reference is name

reference is implicit

Search reachable field
with given type

no hit or not reachable

Return founded object

Figure 9. Sequence for resolving a reference in the context.

D. Data structure
The foundation on which both the context and the service

structure work is a data structure which represents an object-
oriented illustration of a programming language. Program

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

sequences, actions, control structures and fields are imple-
mented as classes. Functions are implemented as program
sequences and contain references to the instructions placed
in them. Analogous to this, control structures are constructed,
which, depending on the type, additionally have a condition
(branches or while-loop) or a reference to a quantity
(for-loop). Actions define a processing rule and have appro-
priate references to fields that are necessary for execution. Ac-
cording to this concept, a program sequence can be represented
as an object tree. The advantage of this implementation is
the simple management and expansion of a resulting program
sequence. Finally, in order to display the program code of the
detected algorithm, each of the classes defines a method which
dynamically generates the pseudo code of it. The execution is
implemented in the same way. Each program component can
be executed atomically. As a result of the structure as a tree, the
entire program sequence can be drawn or executed by calling
the respective method of the root object.

V. EVALUATION

In order to be able to make a statement about the quality
of the system, the user study should be considered in addition
to the unit tests carried out during the implementation.

A. Unit Tests
Due to the high complexity and complex dependencies,

the active ontology was implemented with the process of test-
driven development. The identification of individual concepts
is ensured by a total of 132 defined entries. This results in a
test coverage of 86%. The tests check whether the ontology
delivers the expected output to an input. 57 test cases verify
easy to recognize instructions, such as definitions, actions
and unconditioned loops. 39 tests check the identification of
various conditions. 36 defined inputs test the ontology for the
detection of more complex instructions such as linking an
action to a loop or condition.

In addition to the assurance of the functionality of individ-
ual concepts, complete algorithm descriptions are also tested
by unit test. The following description of the switching sort
algorithm shown in Algorithm 2 is tested.

Algorithm 2 Pseudo code of switching sort.

1: procedure SWITCHINGSORT(input)
2: n← length(input)− 1
3: for i← 0→ n do
4: for j ← 0→ n do
5: if input[j] > input[j+1] then
6: tmp← input[j]
7: input[j]← input[j + 1]
8: input[j + 1]← tmp

In contrast to the above mentioned tests, the result of the
ontology is not checked here, but the algorithm developed
in the description has to sort a quantity of positive natural
numbers. Thus, the function of the long-term memory and its
interaction with ontology is ensured. In summary, the basic
functionality is assured with the unit tests and at the same
time it is shown that the system is able to process defined
natural inputs correctly.

1. ”check if any element of the input is higher than the
next element”

2. ”save it in an auxiliary variable”
3. ”then the actual value should be set to the value of

the next element”
4. ”set the next element to the value of the auxiliary

variable”
5. ”do this for each element of the input”

B. User Study
In order to gain an impression of the reliability of the

system in relation to unknown and unrestricted formulations,
a user study with a total of 11 participants was carried out.
The participants were undergraduate computer science students
and non-native English speakers. With six people, more than
half of the participants described themselves as beginners in
programming skills. Five participants described their skills
at least as advanced. Seven of them have never used our
system before. Four of the participants have already used
previous version of our prototype in evaluations earlier. We
were afraid that the prototype experts could sophisticate our
evaluation results. At the end, they struggled the most during
the evaluation trying to use our system in the old way, with
old natural language structures.

1) Setup: The tasks of the study cover both the recognition
of individual concepts as well as the processing of whole
algorithm descriptions. In the first part the participants were
asked to submit atomic descriptions of the supported pro-
gramming elements. These includes definitions, assignments,
conditions and loops. The second part again contained two
tasks. In the first, the users should construct a process to find
the largest element in a set of numbers and then write a step-
by-step description of this on paper. The second task involved
the pseudo code of a switching sort algorithm and claims
the realization of this with the system. The reason for this
subdivision is the insights that can be gained later. Interesting
questionnaires are, for example, what influence the answer
and the preview of the algorithm have on the course of the
description and the achievement of the target.

2) Results: For a better overview of the results, the sup-
ported concepts were divided into three complexity classes.
The tasks below are listed and assigned to the respective
classes. Instructions describing a class three action are most
difficult to detect.

1. Declarations, actions and for-loops:
◦ Assigning a cell reference to a variable
◦ Remove a value from a quantity
◦ Save the value of a reference into a cell refer-

ence
◦ Iterate over all elements of a quantity

2. Conditions and while-loops:
◦ Check whether the value at a given position of

a quantity is equal to 5
◦ Check whether the value of a variable is al-

ready contained in a set
◦ Do something until a given quantity is empty
◦ Check if the value of a variable is less than

three or greater or equal to five

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

3. Conditioned actions and conditioned loop action:
◦ If the value of a variable is smaller than five

write it to A3 otherwise store it into B3.
◦ Remove all elements less than three from a

quantity

Most of the tasks listed are code excerpts which have to
be described. Figure 10 shows how reliable descriptions in the
respective complexity classes have been correctly recognized.
On average, the rate of detection of individual descriptions is
60%. It was noticeable in the analysis of the unrecognized
inputs that many of the description could not be recognized
due to the use of an unknown synonyms. For this reason,
the descriptions were re-evaluated, this time replacing one
word with a synonym. This time, a detection rate of 74% was
achieved. A comparison of the individual classes is shown in
Figure 10. The reason for the, in comparison to the other,

57%

64%
59%

80%
82%

59%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Complexity Class 1 Complexity Class 2 Complexity Class 3

Current success rate Success rate after adding synonyms

Figure 10. Result of the study for the individual complexity classes
with and without synonyms

bad recognition rate in class three was that at the current time
side additions are not considered. Therefore, no improvement
could be achieved by taking synonyms into account. An input
of complicity class three that could not be detected in the
evaluation is ”remove all elements from input which are
smaller than 3”. The condition is placed in a clause by using
the phrase ”which are”. For the ontology, the distance between
the referenced field name ”input” and the condition is too large
and therefore no relationship is detected. If the condition would
be listed without a clause, as in ”remove all elements from
input smaller than 3”, the input would have been correctly
recognized.

In evaluating the results of a maximum-finding procedure
given on paper, only two could be processed and executed
correctly. Amazing after this modest success rate was that
in implementing a switching sort algorithm with the system,
seven out of eleven descriptions could be correctly processed
and executed. From this contrast, the advantages of a dialog
system and user feedback can be inferred. While this result
demonstrate that our system is far from perfect it also shows
that it is possible to correctly recognize programming instruc-
tions in natural language without restricting them beforehand.
Knowing that nearly half of the unsolved tasks stemmed from
unknown synonyms which are easy to fix the results we
achieved are auspicious.

VI. RELATED WORK

The idea of programming in natural language was first
proposed by Sammet in 1966 [19], but enormous difficul-
ties have resulted in disappointingly slow progress. One of
the difficulties is that natural language programming re-
quires a domain-aware counterpart that asks for clarification,
thereby overcoming the chief disadvantages of natural lan-
guage, namely ambiguity and imprecision. In recent years,
significant advances in natural language techniques have been
made, leading, for instance, to IBM’s Watson [20] computer
winning against the two Jeopardy! world champions, Apple’s
Siri routinely answering wide-ranging, spoken queries, and
automated translation services such as Google’s becoming
usable [21][22]. In 1979, Ballard et al. [23][24][25] introduced
their Natural Language Computer (NLC) that enables users to
program simple arithmetic calculations using natural language.
Although NLC resolves references as well, there is no dialog
system. Metafor introduced by Liu et al. [26] has a different
orientation. Based on user stories the system tries to derive
program structures to support software design. A different
approach regarding software design via natural language is
taken by RECAA [27]. RECAA can automatically derive UML
models from the text and also keep model and specification
consistent through an automatic feedback component. A lim-
ited domain end-to-end programming is introduced by Le.
SmartSynth [28] allows synthesizing smartphone automation
scripts from natural language description. However, there is
no dialog interaction besides the results output and error
messages. One of the last research results have been presented
by Wang [29]. They created a convenient natural language
interface to perform user tasks. The system uses grammar rules
that format natural language into a formal language. However,
it is familiar with the pattern matching prototype that we have
presented in late 2015 [11].

Paternò [30] introduces the motivations behind end user
programming defined by Liberman [4] and discusses its basic
concepts, and reviews the current state of art. Various ap-
proaches are discussed and classified in terms of their main
features and the technologies and platforms for which they
have been developed. In 2006, Myers [8] provides an overview
of the research in the area of End-User Programming. As he
summarized, many different systems for End User Develop-
ment have already been realized [31][32][33]. However, there
is no system such as our prototype that can be controlled with
natural language. During a study in 2006, Ko [31] identi-
fies six learning barriers in End User Programming: design,
selection, coordination, use, understanding and information
barriers. In 2008, Dorner [34] describes and classifies End
User Development approaches taken from the literature, which
are suitable approaches for different groups of end users.
Implementing the right mixture of these approaches leads
to embedded design environments, having a gentle slope of
complexity. Such environments enable differently skilled end
users to perform system adaptations on their own. Sestoft [35]
increases expressiveness and emphasizing execution speed of
the functions thus defined by supporting recursive and higher-
order functions, and fast execution by a careful choice of
data representation and compiler technology. Cunha [36] real-
izes techniques for model-driven spreadsheet engineering that
employs bidirectional transformations to maintain spreadsheet
models and synchronized instances. Begel [37] introduces

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

voice recognition to the software development process. His
approach uses program analysis to dictate code in natural
language, thereby enabling the creation of a program editor
that supports voice-based programming.

NLyze [38], an Add-In for Microsoft Excel that has been
developed by Gulwani, Microsoft Research, at the same time as
our system. It enables end users to manipulate spreadsheet data
by using natural language. It uses a separate domain-specific
language for logical interpretation of the user input. Instead of
recognizing the tables automatically, it uses canonical tables
which should be marked by the end user. Another Gulwani’s
tool QuickCode [39] deals with the production of the program
code in spreadsheets through input-output examples provided
by the end user [33]. It automates string processing in spread-
sheets using input-output examples and splits the manipula-
tions in spreadsheet by entering examples. The focus of his
work is on the synthesizing of programs that consist of text
operations. Furthermore, many dialog systems have already
been developed. Commercially successful systems, such as
Apple’s Siri, actually based on active ontology [13], and
Google’s Voice Search [40][41] cover many domains. Refer-
ence resolution makes the systems act natural. However, there
is no dialog interaction. The Mercury system [42] designed by
the MIT research group is a telephone hotline for automated
booking of airline tickets. Mercury guides the user through
a mixed initiative dialog towards the selection of a suitable
flight based on date, time and preferred airline. Furthermore,
Allen [43] describes a system called PLOW developed at
Stanford University. As a collaborative task agent PLOW can
learn to perform certain tasks, such as extracting specific
information from the internet, by demonstration, explanation,
and dialog.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented our work on a natural user
interface which enables the end users to program in natural
language. Based on active ontologies, programming concepts
such as loops, conditionals and statements can be recognized
in the analysis of the natural input. A meta model of the
recognized concept, which contains relevant information, is
then forwarded to the interpreter service provider. Here, the
meta model is transformed into the target data structure with
the help of a contextual knowledge. This corresponds to
the object-oriented representation of a simple programming
language. The context finally places the recognized program
component in the history and informs the user of the detected
action by updating the pseudo code. In this way, an algorithm
is generated in an interactive process step for step, which can
also be executed at the user’s request.

In the evaluation of the prototype it was shown that the
system is able to perform the required tasks. However, there
is still a lot of work on our system needs to be done. The goal
is the independent expansion of the language domain based
on the basic vocabulary by means of a dialog system. In the
following, such functions, algorithms, control structures and
definitions to be recognized are summarized under description.
The aim of this work is to ensure that system recognizes
the synonyms entered by the user from a known description,
learns it, assigns it to the known descriptions and saves it in a
user-specific dictionary. This is intended as a local long-term
memory for future input. Current work enables end users to

describe algorithms and create code sequences as functions.
Next step is to enable object-oriented programming [44].
Based on this, end users will also be able to interact with
already existing objects, e.g., Excel tables, images, graphs, but
also external connections, such as connecting to SQL tables.
Such objects should be addressed directly and manipulated by
natural-language input. In this case, our system analyzes big
data and allows requests from different resources like tables,
charts, and databases. End users could ask for information in
their natural language that cannot be looked up in one step by
the human.

Ordinary, natural language would enable almost anyone
to program and would thus cause a fundamental shift in the
way computers are used. Rather than being a mere consumer
of programs written by others, each user could write his or
her own programs [45]. However, programming in natural
language remains an open challenge [22]. With natural lan-
guage, programming would become available to everyone. We
believe that it is a reasonable approach for end user software
engineering and will therefore overcome the present bottleneck
of IT proficients.

REFERENCES

[1] A. Wachtel, J. Klamroth, and W. F. Tichy, “Natural language user in-
terface for software engineering tasks,” Tenth International Conference
on Advances in Computer-Human Interactions, March 2017.

[2] W. F. Tichy, “What can software engineers learn from artificial intelli-
gence,” Computer;(United States), vol. 20, no. 11, 1987.

[3] ——, “NLH/E: A Natural Language Help System,” the 11th Interna-
tional Conference on Software Engineering, 1989.

[4] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-user develop-
ment: An emerging paradigm,” in End user development. Springer,
2006, pp. 1–8.

[5] Eurostat, “European statistics database,” last accessed March 17, 2018.
[Online]. Available: http://ec.europa.eu/eurostat/data/database

[6] Microsoft, “By the numbers,” last accessed March 17, 2018. [Online].
Available: https://news.microsoft.com/bythenumbers/planet-office

[7] M. F. Hurst, “The interpretation of tables in texts,” 2000.
[8] B. A. Myers, A. J. Ko, and M. M. Burnett, “Invited research overview:

end-user programming,” in CHI’06 extended abstracts on Human factors
in computing systems. ACM, 2006, pp. 75–80.

[9] B. M. Christopher Scaffidi, Mary Shaw, “Estimating the numbers of
end users and end user programmers,” in Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, ser.
VLHCC ’05. IEEE Computer Society, 2005.

[10] R. Abraham, “Header and Unit Inference for Spreadsheets Through
Spatial Analyses,” in IEEE Symposium on Visual Languages - Human
Centric Computing, 2004.

[11] A. Wachtel, “Initial implementation of natural language turn-based dia-
log system,” International Conference on Intelligent Human Computer
Interaction (IHCI), December 2015.

[12] A. Wachtel, J. Klamroth, and W. F. Tichy, “A natural language dialog
system based on active ontologies,” in Proceedings of the Ninth In-
ternational Conference on Advances in Computer-Human Interactions,
2016.

[13] D. Guzzoni, “Active: A unified platform for building intelligent web in-
teraction assistants,” in Web Intelligence and Intelligent Agent Technol-
ogy Workshops, 2006. WI-IAT 2006 Workshops. 2006 IEEE/WIC/ACM
International Conference on. IEEE, 2006, pp. 417–420.

[14] A. Wachtel, M. T. Franzen, and W. F., “Context Detection In Spread-
sheets Based On Automatically Inferred Table Schema,” ICHCI 2016:
18th International Conference on Human- Computer Interaction, World
Academy of Science, Engineering and Technology, October 2016.

[15] A. Wachtel, “Programming Spreadsheets in Natural Language: Design
of a Natural Language User Interface,” Intl Journal on Advances in
Software, Vol. 10, no. 3/4. Nice, France., December 2017.

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

[16] T. H. Cormen, Introduction to algorithms. MIT Press, 2009.
[17] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-

rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology-Volume 1. Association for Computational Linguistics,
2003, pp. 173–180.

[18] T. Hey, “Deriving time lines from texts,” in 3rd International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE’14), ser. ICSE. ACM New York, 2014.

[19] J. E. Sammet, “The use of english as a programming language,”
Communications of the ACM, vol. 9, no. 3, 1966, pp. 228–230.

[20] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager et al.,
“Building watson: An overview of the deepqa project,” AI magazine,
vol. 31, no. 3, 2010, pp. 59–79.

[21] H. Liu and H. Lieberman, “Toward a programmatic semantics of natural
language,” in Visual Languages and Human Centric Computing, 2004
IEEE Symposium on. IEEE, 2004, pp. 281–282.

[22] C. L. Ortiz, “The road to natural conversational speech interfaces,” IEEE
Internet Computing, vol. 18, no. 2, 2014, pp. 74–78.

[23] B. W. Ballard and A. W. Biermann, “Programming in natural lan-
guage:nlc as a prototype,” in Proceedings of the 1979 annual conference.
ACM, 1979, pp. 228–237.

[24] A. W. Biermann and B. W. Ballard, “Toward natural language compu-
tation,” Computational Linguistics, vol. 6, no. 2, 1980, pp. 71–86.

[25] A. W. Biermann, B. W. Ballard, and A. H. Sigmon, “An experimental
study of natural language programming,” International journal of man-
machine studies, vol. 18, no. 1, 1983, pp. 71–87.

[26] H. Liu and H. Lieberman, “Metafor: visualizing stories as code,” in
Proceedings of the 10th international conference on Intelligent user
interfaces. ACM, 2005, pp. 305–307.

[27] S. J. Körner, M. Landhäußer, and W. F. Tichy, “Transferring research
into the real world: How to improve re with ai in the automotive in-
dustry,” in Artificial Intelligence for Requirements Engineering (AIRE),
2014 IEEE 1st International Workshop on. IEEE, 2014, pp. 13–18.

[28] V. Le, S. Gulwani, and Z. Su, “Smartsynth: Synthesizing smartphone
automation scripts from natural language,” in Proceeding of the 11th
annual international conference on Mobile systems, applications, and
services. ACM, 2013, pp. 193–206.

[29] S. I. Wang, S. Ginn, P. Liang, and C. D. Manning, “Naturaliz-
ing a programming language via interactive learning,” arXiv preprint
arXiv:1704.06956, 2017.

[30] F. Paternò, “End user development: Survey of an emerging field for
empowering people,” ISRN Software Engineering, vol. 2013, 2013.

[31] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI conference on Human factors in computing systems.
ACM, 2004, pp. 151–158.

[32] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Communications of the ACM, vol. 55, no. 8, 2012,
pp. 97–105.

[33] A. Cypher and D. C. Halbert, Watch what I do: programming by
demonstration. MIT press, 1993.

[34] M. Spahn, C. Dörner, and V. Wulf, “End user development: Approaches
towards a flexible software design.” in ECIS, 2008, pp. 303–314.

[35] P. Sestoft and J. Z. Sørensen, “Sheet-defined functions: implementa-
tion and initial evaluation,” in International Symposium on End User
Development. Springer, 2013, pp. 88–103.

[36] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional transformation of model-driven spreadsheets,” in Inter-
national Conference on Theory and Practice of Model Transformations.
Springer, 2012, pp. 105–120.

[37] A. B. Begel, Spoken language support for software development.
University of California, Berkeley, 2005.

[38] S. Gulwani and M. Marron, “Nlyze: Interactive programming by
natural language for spreadsheet data analysis and manipulation,” in
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 803–814.

[39] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM,
2011, pp. 317–330.

[40] J. R. Bellegarda, “Spoken language understanding for natural interac-
tion: The siri experience,” in Natural Interaction with Robots, Knowbots
and Smartphones. Springer, 2014, pp. 3–14.

[41] J. D. Williams, “Spoken dialogue systems: Challenges, and opportuni-
ties for research.” in ASRU, 2009, p. 25.

[42] S. Seneff, “Response planning and generation in the mercury flight
reservation system,” Computer Speech & Language, vol. 16, no. 3-4,
2002, pp. 283–312.

[43] J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung, M. Swift,
and W. Taysom, “Plow: A collaborative task learning agent,” in AAAI,
vol. 7, 2007, pp. 1514–1519.

[44] N. Omar and N. A. Razik, “Determining the basic elements of object
oriented programming using natural language processing,” in Infor-
mation Technology, 2008. ITSim 2008. International Symposium on,
vol. 3. IEEE, 2008, pp. 1–6.

[45] W. F. Tichy, M. Landhäußer, and S. J. Körner, “Universal Programma-
bility - How AI Can Help. Artificial Intelligence Synergies in Software
Engineering,” May 2013.

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

