
Replica Voting Based Data Collection:
Adaptive Protocols and Application Studies

Mohammad Rabby, Kaliappa Ravindran
The City University of New York

New York, NY 10031, USA
Email: mfrabby@yahoo.com; ravi@cs.ccny.cuny.edu

Kevin A. Kwiat
Air Force Research Laboratory

Rome, NY, 13441, USA
Email: kwiatk@rl.af.mil

Abstract—
Data collection in a hostile environment requires dealing with

malicious failures in the sensing devices and underlying transport
network: such as data corruptions and message timeliness violations.
Functional replication is employed to deal with failures, with voting
among the replica devices to deliver a correct data to the end-user.
The paper describes the protocol-level design issues for voting with
low message overhead and delivery latency under various failure
scenarios. The well-known 2-phase voting protocol is employed as a
building-block, with different protocol variants dynamically selected
based on the network conditions and device-level fault severity. A
case study of replicated web services is also presented to illustrate
the usefulness of our dynamic adaptation mechanism.

Keywords - Majority voting, sensor replication, malicious
faults, voter asynchrony, adaptation to environment.

I. INTRODUCTION

In a distributed information system, it is often required
to move the data collected from an external environment
to the end-user (e.g., market indices for stock-purchase, ter-
rain images for surveillance). Problems arise however due
to failures occurring during data collection, because of the
exposure of data collection devices and/or the data flow paths
to hostile external conditions. The failures often manifest as
data corruptions by malicious devices and timeliness violations
in the processing and communication paths.

The devices are often replicated to mask out failures, with
some form of majority voting employed to reach agreement
on the data fielded by various replicas [6]. In this paper, we
focus on the voting protocol mechanisms to deal with data
corruptions and enforce a timely delivery of correct data to
the end-user. We employ a variant of the 2-phase majority
voting to validate the data fielded by replicated devices.

The protocol, in its basic form, requires the sending of
consent and dissent votes (YES and NO) by devices about
a data value being voted upon, to a central site B. See Figure
1. Suppose a data X(v) proposed by voter v is put to vote.
Thereupon, a voter v′ sends YES or NO message to B based
on whether its locally computed data X(v′) matches closely
with X(v) or not. Based on the YES and NO messages
received from {v′}, B determines if X(v) enjoys a majority
consent for delivery to the user. The solicitation of votes from

NO

manager of shared buffer

B

USER

voter

1 . . .

S
e
c
u

r
e
 v

o
tin

g

a
p
p
a
r
a
tu

s

write

data

voter

N
voter

2

d-1

voter

3

YES

faulty

deliver data

(say, d-2, later)

YES

d-2 d-Nd-3

data from external environment (say, sensor network)

(voters can be mobile terminals,

radar devices, etc)

YES: consent message

NO: dissent message

Fig. 1. Distributed voting protocol structure

devices gets repeated until at least (fm +1) consent votes are
received — where fm is the maximum number of devices that
can be faulty. With N replica devices (where N ≥ 3), we have
1 ≤ fm < dN

2 e. When fm ¿ N
2 , the decision on delivering a

correct data can be made with less message overhead.
Replica voting has been studied by many researchers in the

area of database, file, and web servers: primarily to achieve
service-level fault-tolerance and performance. In the context
of sensor-based embedded systems however, two important
issues come to the forefront. First, the limited battery power
of sensor devices imposes a severe constraint on the message-
level overhead of voting protocols and the data exchanges
between voter devices. Second, the widely varying channel
characteristics of communication paths between the devices
and the end-user (such as packet loss) can make protocol
performance unpredictable. Given these issues, it is necessary
that voting protocols are adaptive to the changing operating
conditions, while providing a dependable data delivery to the
end-user with minimum power and bandwidth consumptions.

The paper describes our extensions to the voting protocol
mechanisms to deal with the various failures occuring in the

117

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

environment (such as device attacks and network packet loss).
Our extended protocol strives to reduce the number of control
messages and application data exchanged between various
nodes during voting. This becomes important when large-sized
sensor data such as images are considered.

The paper is organized as follows. Section II gives a data-
oriented view of replica voting. Section III describes 2-phase
commit protocols for voting in resource-scarce systems, with
adaptation to the environment conditions. Section IV describes
a case study of voting protocols in replicated web services.
Section V concludes the paper.

II. DATA-ORIENTED VIEW OF VOTING PROTOCOLS

In this section, we describe why a content-dependant notion
of device faults is necessary in sensor networks, and how this
notion impacts the replica voting mechanisms.

A. Timeliness and accuracy of data

The data delivered to the user as representing an external
event (or phenonmenon) may be associated with a timeliness
parameter ∆. It pertains to how soon the data produced by
a sensor device be delivered at the user since the occurrence
of external event represented by this data (i.e., life-time of
data). The ∆ parameter impacts the data delivery mechanisms
embodied in the voting protocol.

The data generated by a sensor device may be somewhat
inaccurate in content (relative to the actual reference datum)
due to the inherent sampling errors in the sensing mechanism
and/or resource limitations on the data pre-processing algo-
rithms in the device (such as CPU cycles and memory sizes).
Accordingly, the bit-level representations of data generated by
two different devices may not exactly match — even though
the semantic contents of these data may be close enough that
they can be declared as representing the same object (as is the
case with non-numeric data such as camera images).

Consider, for example, the detection of an enemy plane fly-
ing at azimuthal location, say, 35.00. A radar unit may report
detection at, say, 35.10 azimuth due to sampling error. Despite
this difference in the sampled value and the consequent mis-
match in its syntactic representation, the ’data comparison’
procedure should treat the two location reports (provided by
different devices) as being the same in terms of their semantic
contents. The voting system should tackle the computational
complexity involved in such a ‘data comparison’, and still
deliver an accurate location report to the Command Center
within a few seconds of the presence of enemy plane.

The data generated by a non-faulty device always satisfies
the timeliness and accuracy constraints. Whereas, a faulty
device may violate the constraints in an unpredictable manner.
In the earlier example of radars, a faulty radar unit may report
the location of enemy plane as, say, 48.00, or report a more
accurate value of, say, 35.150 but after a couple of minutes.
In the presence of such faults, the voting protocol should
validate a candidate data for its timeliness and accuracy before
delivering it to the user. Figure 2 illustrates how the data

E.g., =3 sec,

(Tc)=300 msec; (Tc)=100 msec;

sense

data

pre-process

data

data delivery to user

time at which data

becomes useless

data delivery round

Tc(1)

compare 2 or 3

data and decide

0

Tc(3)

Tc(2)

st
ar

t d
at

a

co
ll

ec
ti

on

voting

latency

TIME

Fig. 2. Illustration of timeliness issues in voting

processing delays incurred for voting impact timeliness at user-
level. The device computation time Tc to generate data and the
network delay for vote collation are other influential factors.

B. Protocol-level control of data delivery

From an algorithmic standpoint, the application environment
may have at most fm of the N voters as being faulty, where
N ≥ 3 and 0 < fm < dN

2 e. This depicts the condition for
determining if a candidate data is deliverable to the user.

A functional module B manages a buffer tbuf into which
a device writes its data for voting. B resides within the secure
enclave of voting machinery, and is securely connected to
the user to whom a final result in tbuf gets delivered. The
voter devices and B are connected through a secure multicast
message channel, where communications are authenticated,
have certain minimum bandwidth guarantees, and enforce
anonymity among voters. We assume that B is housed within
a secure infrastructure that is immune from getting attacked.

A voter first proposes its data by a multicast-write into the
remote buffer tbuf . From among multiple data items proposed,
the buffer manager B selects a candidate data for voting, and
then solicits votes on this data. If a majority of consents (i.e.,
fm + 1 YES votes) are received from the voters, B passes on
this data to the user. Otherwise, B selects a next candidate data
for voting. If B cannot determine a majority before the data
delivery deadline ∆, it discards the data (for safety reasons).

In a real-time system where data may arrive continuously,
it is possible that the information loss caused by a missed
data delivery can be compensated for by the subsequent data
deliveries (e.g., periodic dispatch of terrain maps from a
battlefield with adequate frequency). In this setting, the data
delivery requirement can be relaxed by prescribing that the rate
of missed data deliveries over an observation interval should
not exceed a small threshold ζ(X), where 0.0 < ζ ¿ 1.0.

C. Partial synchrony in communications

Partial synchrony in a system means that if an activity
starts (say, a network message transmission), it will eventually
complete in a finite amount of time. An upper bound on the
completion time is however not known to the higher-layer

118

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

algorithm running on the system [9]. In our data collection
system, the ’partial synchrony’ property manifests as follows.

A non-malicious device will eventually report a correct
data (the device is assumed to have adequate computational
resources: such as CPU cycles, bandwidth, and battery power).
No device can be branded as faulty, in an algorithmic sense,
unless it exhibits a sustained bad behavior. A network channel
that loses messages intermittantly will eventually transmit a
message successfully. And, adequate number of replica units
remain in the field so that a management entity assigns the
task of data collection to N units for voting purposes.

In the light of above data characteristics and operating
environments, we outline the voting protocol extensions next.

III. AUGMENTATIONS TO VOTING PROTOCOLS

In this section, we augment the 2-phase voting protocol with
an implicit voting mode to enhance the performance under
normal cases, i.e., when packet loss in the network is small.

A. Explicit determination of majority

2-phase voting protocols require the sending of explicit
consent and dissent votes (i.e., YES and NO messages) about
a data being voted upon to a central vote collator. The protocol
determines a majority based on the number of YES (or NO)
votes from among the responses received. That only the votes
received are considered in the decision (instead of requiring
all the N votes) guarantees liveness in the presence of send-
omissions of faulty devices and network message loss [5]. We
refer to the protocol as M2PC (modified 2-phase commit).

Note, a non-faulty device X that does not yet have its data
locally computed always votes NO for a data v from another
voter X ′ currently being voted upon. This is because X does
not have the local context yet to determine if v is a good data
or a bad data — and hence X votes NO for safety reason.

The M2PC protocol incurs a worst-case message complexity
of O(N c), where c is a constant: 1.0 ≤ c ≤ 2. The actual value
of c depends on the environment, such as the extent of voter
asynchrony σ(Tc) and the number of faulty voters f .

In contrast, a centralized placement of ’data comparison’
functions, as would be needed in coordinator based voting
schemes [6], requires shipping the large-sized non-numeric
data to the central node B (e.g., terrain images from remote
cameras). Here, the data movement overhead over the network
is: (fm + 1) in the best case and (2fm + 1) in the worst
case. By careful engineering of the M2PC scheme on the other
hand, a voting incurs just 1 multicast data transfer in the best
case1, with the semantics-aware ’data comparisons’ carried out
locally at the voters in parallel — thereby reducing the drain
on battery energy and the voting latency.

B. ‘Voter silence’ as consenting vote

The large number of YES/NO message exchanges in M2PC
raises scalability concerns with respect to the size of voter

1M2PC incurs (fm + 1) data movements only in the worst case. The
substantial savings in data movements over the centralized scheme outweighs
the O(Nc) short YES/NO messages needed in the M2PC scheme.

complex N . An implicit-consent based voting protocol [3]
solves the scalability problem. In this protocol, B solicits only
dissents, if any, from the voters for a candidate data. The large
number of YES responses is avoided by having a consenting
voter X not send any message and B treating the ‘lack of
message from X’ as an implicit notification of consent. The
protocol, referred to as IC-M2PC, rests on the premise that a
large majority of voters are non-faulty (i.e., f ¿ N

2 |NÀ3) and
message loss is sporadic in the normal case.

When f is close to dN
2 e− 1 and/or many dissent messages

are lost or excessively delayed, it is possible for a faulty data
to be delivered inadvertantly. This is because B construes the
non-receipt of a (dissent) message from a voter X as a consent
by X . The motto is: NO NEWS IS GOOD NEWS — which
is an optimistic one ! The likelihood of an undetected mis-
delivery of data (due to missed and/or lost dissents) should
be kept to a small minimum — say, < 10−2. Where a
100% guarantee in the integrity of data delivery is required, a
supplementary mechanism should be resorted to by the voting
layer to ascertain the voters’ intent through other means of
low overhead probing. The choice is based on how often the
above cases arise and the relative design complexities.

The message overhead of IC-M2PC may be given as
O(N c′), where 0.0 < c′ ≤ 1.0 in the normal case and c′ < c
in the worst case (i.e., f → dN

2 e−1). Here, c′ → 0+ captures
the case of voting on exactly one data item that requires just
one message exchange (from the voter who proposed the data).
And, c′ → c(−) captures the case of voting on multiple data
items, with all but the last item getting discarded.

Figure 3 illustrates IC-M2PC based voting relative to M2PC,
with timing scenarios. As can be seen, the YES vote generated
by M2PC does not occur in IC-M2PC. But, IC-M2PC takes
longer to complete the voting because of the wait for a full
timeout period of Tw to determine if there are any dissents;
whereas, M2PC may complete the voting quicker if fm + 1
YES votes are received well before the expiry of timeout Tw.

C. Vote history based sanity check

From an algorithmic standpoint, the network-induced mes-
sage loss or excessive message delays are indistinguishable
from send-omissions of voters. This uncertainty has different
implications on M2PC and IC-M2PC: an inability of M2PC
to establish a majority consent/dissent if a large number
of the voter responses were lost, whereas IC-M2PC may
inadvertantly decide to deliver a bad data by believing that
the voters whose dissent responses were lost have consented.
To deal with this problem, IC-M2PC employs a history vector
based mechanism to sanitize the commit decisions.

Here, B solicits the history of how each voter had cast its
votes in the last K rounds of voting, where K > 1. A voter
sends its history information as bit map, with each bit position
corresponding to a voting round and indicating whether a YES
or NO vote was intended by this voter in the corresponding
round. Upon collecting histories from enough number of voters
such that a majority determination of the actual votes can be
ascertained, B compares its earlier decision for this round. If

119

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

in tbuf

in tbuf

in tbuf

in tbuf

Voter writing into is treated
as having (implicitly) expressed consent

Buffer Buffer

write(v’)write(v’)

ICM2P scenario

write(v)

M2PC scenario

M
a

x
im

u
m

w
a

it
 p

e
r
io

d
L

e
s
s
 t

h
a

n
 m

a
x

im
u

m

tbuf

w
a

it
 p

e
r
io

d

write(v)

voters 1 and 3 : Non-faulty
voter 2 : Faulty

TIME

voter 1 voter 2 voter 3

v’ loses

v’ vv

tbuf

VOTE

REVOTE

voter 1 voter 2 voter 3

v’ loses

v’ vv

tbuf

VOTE

REVOTE

from write
disabled

v wins

TIME

NO NO

NO
NO

NO
X

NO

disabled
from writeX

v wins
YES

Fig. 3. A voting scenario with M2PC and IC-M2PC protocols

the two decisions match, the result is delivered to the user;
otherwise, the result is discarded.

Consider a sample scenario shown in Figure 4. After round
4 in IC-M2PC mode, history vectors are collected, whereupon
B finds that the decision in round 2 was erroneously made,
and hence caused a discard of the result d2. Since only 1 out
of the 4 decisions was erroneous, B attributes the problem
as arising from benign message loss conditions. At the end
of round 6 however, B finds that both the decisions were
erroneously made, and hence suspects a persistent message
loss. This causes B to switch to the safer mode: M2PC.
That B receives the consent/dissent messages without much
loss in rounds 7-9 causes a switch back to the optimal mode:
IC-M2PC, in round 10.

We introduce a resilience parameter M , which is the number
of implicit YES votes needed in favor of a data d′ (in addition
to the YES vote associated with the proposer of d′) for B to
accept d′ as good, where fm ≤ M ≤ (N − fm − 1). Thus2,
if L NO votes are received by B from the remaining (N − 1)
voters during the dissent timeout period Tw, the condition:

(N − 1− L) ≥ M (1)

determines if the acceptance threshold has been met to declare
the data d′ as good. M is a tunable parameter in the range
[fm, N − fm − 1] to control the data miss rate ζ. Choosing a
value of M much higher than fm reduces the occurrence of
false negatives, i.e., lowers ζ.

Our voting protocol thus embodies 2 modes of operation:
i) the light-weight IC-M2PC that performs well under normal

2In M2PC, there is no need for the M parameter, i.e., fm YES votes
(besides the YES from the proposer of d′) suffice to accept d′ as good.

consent and dissent
messages are not lost
(so, message loss rate

has reduced)

[y, n, y, y]

[y, y, n, n]

[*, n, y, y]

round 6

[n, n]

[n, n]

V-yV-x V-z Buffer manager
(faulty)

.

.

round 1

round 4

round 3

round 2
(say, dissent from V-x

was lost)

round 5

 incorrect decisions

deliver d1, d3, d4 --- and
discard d2 (sporadic

message loss)

were lost)
(dissents from V-x and V-z

(dissents from V-x and V-z
were lost)

IC
M

2

TIME

IC
M

2
M

2
P

C

YES votey:
NO voten:

persistent message loss)
discard d5 and d6 (suspect

round 7

round 8

round 9

round 10

switch
modes

switch

IC
M

2

modes

voter voter voter

incorrect decision

X
omission

send-

Fig. 4. Vote history to check commit decisions (’*’: voter Vz is unaware of
round 1)

cases when packet loss is small and failures are benign, and
ii) the heavy-weight M2PC that is more resilient against severe
failures but incurs more message overhead. The protocol
evaluates these tradeoffs at run-time, and then switches to the
appropriate mode based on the sensed failure conditions.

D. Voting mode switching control

Since the network message loss rate l may not be directly
available to the voting protocol layer, l is determined based
on the data misses observed at the interface to the user.

The message loss rate l impacts the data miss rate ζ in
different ways in M2PC and in IC-M2PC. A higher l causes
an increase in the duration of data proposal phase due to
retransmissions of a candidate data until B and at least N

2
voters receive the data. The non-receipt of a candidate data
at one or more voters causes them to cast a NO vote for
the data (for safety reasons), which makes it possible that
no data is delivered to the end-user even after 2fm + 1
iterations. Furthermore, the time-to-complete a voting iteration
(i.e., decide on the abort or commit of a candidate data)
increases in M2PC due to retransmissions of the lost votes for
a candidate data. The resulting increase in the time-to-deliver
a data may cause more frequent violations of the timeliness

120

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Packet Los s vs Zeta for different fm

[fm= 1,2,3,4, M=5, r=1.0]

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Packe t Loss Rate (l)

Z
e

ta

fo
r

v
a

ri
o

u
s

 f
m

Zeta (fm=1)

Zeta (fm=2)

Zeta (fm=3)

Zeta (fm=4)

message loss rate in network (l)d
a
ta

 m
is

s
 r

a
te

 a
t

e
n

d
-u

s
e
r
 l

e
v
e
l

 (
)

analytical results of IC-M2PC from probabilistic estimates

d
a

ta
 m

is
s
 r

a
te

 (
)

 X
 1

0
^
2
 %

message loss rate (l) X 10^2 %

N=10, M=5, r=1.0

N=10, M=5, r=1.0,

(Tc)=50 msec,

Tw=125 msec

(experimental results from

SUN-UNIX implementation

of IC-M2PC)

1
0

%
3

0
%

2
0

%
0

%

0% 1% 5%4%3%2% 6% 7% 8%

x

x

x

x

x

x

xx

x

x

x

x x x xooo o o oo o o o
o

o
o

o o

fm=4

fm=3

y
y

yy
y

y y y y y yyy y y

fm=2
fm=1

T
o
 k

e
e
p

<

 2
%

,

fm
=

1
-3

 r
e
q

u
ir

e
s

l <
 4

%
;

fm
=

4
 r

e
q

u
ir

e
s

l <
1
.7

5
%

.
Fig. 5. Experimental and analytical results on data miss in IC-M2PC mode

constraint ∆. In IC-M2PC however, the lost NO votes within
a waiting period Tw are treated as consents, leading to a
premature tentative commit in favor of a faulty candidate data
that subsequently gets invalidated during the history-vector
based check. Regardless of how the message-loss phenomenon
inter-plays with the data delivery mechanisms in M2PC and
IC-M2PC, an increase in l causes an increase in ζ.

The voting layer employs a monitor at the data delivery
point to the user to determine the missing data, if any. For
this purpose, the monitor agent at B affixes sequence numbers
to the voting rounds generated during a IC-M2PC run. At the
point of delivery to the end-user, the agent at the user delivery
point checks for missing sequence numbers. The observed data
miss rate (ζ) allows the monitor to estimate l therefrom.

For the M2PC protocol, the monitor agent at the user end
keeps track of the number of missing data in the various voting
rounds (using the monitor-assigned sequence numbers). This
information, combined with the observed number of missing
votes (from the required N votes) in each round during M2PC
execution, allows estimating of the message loss rate l.

Figure 5 provides the experimental results from IC-M2PC
implementation on SUN-UNIX system for the case of [N =
10,M = 5, r = 1.0], with fm = 1, 2, 3, 4 and l = 0.5 − 8%.
For fm = 4, ζ increases to beyond 4% for l ≈ 3%. For
fm = 3, ζ increases to beyond 3.5% for l ≈ 5%. For fm = 2
and fm = 1, ζ < 1.5% for l < 4%. These results, combined
with the information on voting message overhead and latency,
allow the designer to set an acceptable operating region for
IC-M2PC vis-a-vis M2PC.

We now describe a case study of replicated web services
where M2PC and IC-M2PC protocols can be employed to

infuse fault-tolerance during query processing.

IV. CASE STUDY OF REPLICATED WEB-BASED
INFORMATION SERVICE

A web service is provided by one or more App servers
that process client queries about the information objects main-
tained by back-end data servers [11]. The information objects
are often structured pieces of pre-processed data about the
application’s external environment (e.g., data collected from
target tracking sensors in a military application, market indices
prepared by trend-watchers in a stock market application). The
information repository is updated with new objects or object
modifications by ’publisher’ clients that process raw data from
the external environment for writing into the repository [12],
[13] (e.g., sensors deployed in a field). ’subscriber’ clients
query the repository to identify objects of interest via read
operations on the data servers. Multiple client queries may be
posted concurrently on a web service, wherein the processing
actions on these queries share the computational and network
resources at the server end.

A web service is more vulnerable to attacks than the back-
end data servers that host the web service. This is because
of the security weaknesses and diverse usage profiles inherent
in the web service operations. Servlet replication is often em-
ployed as the basic means to counter the effects of attacks and
enhance the service availability. Our goal here is to examine
the web service reliability in terms of our probabilistic models
in a scenario of servlet replication.

A. Servlet replication support mechanisms

The servlet replicas are capable of independently processing
the queries and computing the results returned to the client.
The parameter fm, which depicts the maximum number of
replicas that the system designer assumes as fault-prone,
strongly impacts the choice of N : the total number of replicas.
A client query is multicast to all the replicas for processing.
The multiple query results are then voted upon to decide on
a correct result for delivery to the client. See Figure 6.

The degree of replication N is determined by the cost of
replication weighed against the need for a higher reliability
of the web service. For a given N , the network message-
loss phenomenon however impacts the M2PC and IC-M2PC
operations in different ways, as measured in terms of voting
message overhead and latency.

Voting latency directly impacts the user-level data miss rate
ζ — and hence the query success rate.

B. Web service reliability: IC-M2PC vs M2PC

The performance measure ζ is an indicator of service
availability, depicting how often a client query fails to return
a correct result. Here, any attempt to return a faulty result (i.e.,
a corrupted result or a result that is delayed longer than ∆) is
detected by the replica voting protocol.

The candidate output result of a query from a servlet can
be decided as correct upon receiving fm +1 consent votes for

121

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

s1 s2 s3

client

x

q
u
e
ry

re
q
u
e
st

computed

responses

R
e
p
lic

a
te

d

w
e
b

 S
e
rv

ic
e

(a
c
tiv

e
 ty

p
e
)

voting unit

m
ajority

response
client

y

Back-end data server

(information objects)

B

v1 v2 v3

internal control

network

query

request

read object data

ATTACK

servlets

Fig. 6. Servlet replication technqiues for query processing

the result, under the condition: f ≤ fm, where f is the actual
number of attacked servlets and 1 ≤ fm < dN

2 e [15].
As for the timely return of a result, the higher latency in

voting with IC-M2PC may increase ζ (and hence lower the
content availability), in comparison with M2PC. IC-M2PC
however incurs less message overhead (and hence consumes
less bandwidth) than M2PC. Furthermore, the protocol de-
signer may conservatively set fm = dN

2 e − 1 for a given N
(for an increased margin of consent voting) — even though
the knowledge about f may instil confidence in the designer
to set fm optimistically to a lower value.

The resilience of a web query is determined by the ability
of the web service layer to reconfigure the query processing
without exceeding the latency limit ∆ when the servlet cur-
rently returning the query result is deemed to have failed. A
reconfiguration involves aborting a query result due to lack of
enough consent votes and soliciting a new result for the query
from a different servlet (i.e., moving to a next iteration in the
current round). Since IC-M2PC infers the consent votes for a
query result only by implicit means: namely, the non-receipt
of dissent votes, a message loss in the network may cause IC-
M2PC to initially proceed with incorrect results which then
get discarded later by the history-vector mechanism (even if
the time elapsed is less than ∆). So, IC-M2PC may incur a
higher ζ (and hence entail a lower resilience) than M2PC when
l and/or f is large.

V. CONCLUSIONS

We considered the development of message-optimal voting
protocols for data collection in sensor networks. The environ-
ment is one of a lossy data transport network, compounded
by malicious failures of data collection devices. The functional
extensions needed to the basic form of 2-phase majority voting
are the provisioning of additional protection layers to sanitize

the voting decisions in the presence of sustained message
loss. We described two modified versions of 2-phase commit:
M2PC and IC-M2PC. M2PC is based on explicit exchange
of YES and NO votes; IC-M2PC attempts to reduce the
message overhead by suppressing the YES votes. The required
augmentations to the protcols to increase their robustness and
performance were also described, along with experimental data
from a prototype voting system.

The important goal is to ensure the integrity of data delivery
to the end-user in the presence of data corruptions and other
faults in the sensing system. A main thrust is to reduce the
message overhead, while keeping the voting latency to within
tolerable limits. Our protocol is highly adaptive to the various
types of failures occurring in the data collection environment
(such as sensor networks), to meet the goal. We also described
a case study of replicated web service employing the voting
protocols to provide a fault-tolerant query processing.

ACKNOWLEDGEMENT

The paper has been approved by AFRL for Public Release
(Distribution Unlimited): 88ABW-2010-3936 dated 21 Jul 10.

REFERENCES

[1] H. Kopetz and P. Verissmo. ’Real Time Dependability Concepts’.
Chap.16, Distributed Systems, S. Mullender, Addison-Wesl. Co., 1993.

[2] O. Babaoglu. ’Non-blocking Commit Protocols’. Chap. 7, Distributed
Systems, ed. S. Mullender, Addison-Wesley Publ. Co., 1993.

[3] B. Hardekopf, K. A. Kwiat, and S. Upadhyaya. ’Secure and
Fault-tolerant Voting in Distributed Systems’. In proc. IEEE Aerospace
Conference, Big Sky (MT), pp. 1117-1126, March 2001.

[4] R. R. Brooks and S. Iyengar. Chap. on ’Sensor Fusion and Approximate
agreement’. In Multisensor Data Fusion, Prentice-Hall Publ., 1998.

[5] R. D. Prisco, B. Lampson, and N. Lynch. ’Fundamental study: Revisiting
the Paxos algorithm’. In Theoretical Computer Science, 243:35–91, 2000.

[6] P, Jalote and et al. ’Atomic Actions on Decentralized data’. Chap. 6,
Fault-tolerant Systems, John-Wiley Publ. Co., 1995.

[7] W. Du, J. Deng, Y.S. Han, and P.K. Varshney. ’A Witness-based Approach
for Data Fusion Assurance in Wireless Sensor Networks’. In proc. IEEE-
GLOBECOM’03, pp. 1435-1439, Dec.2003.

[8] S. Forrest, A. Somayaji, and D.H. Ackley. ’Building Diverse Computer
Systems’. In proc. 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), IEEE, ISBN: 0-8186-7834-8, 1997.

[9] M. Castro and B. Liskov. ’Practical Byzantine Fault Tolerance’. In
proc. 3rd Symp. on Operating Systems Design and Implementation, New
Orleans (LA), ACM-DL, ISBN:1-880446-39-1, Febr. 1999.

[10] M. A. Malek, G. Ganger, G. Goodson, M. Reiter and J. Wylie. ’Fault-
scalable Byzantine Fault-tolerant Services’. In proc. 20th ACM symp. on
Op. Sys. Principles, ACM SIGOPS, Brighton (UK), ISBN:1-59593-079-
5, Oct. 2005.

[11] S. Ghandeharizadeh, C. Papadopoulos, M. Cai, R. Zhou, and P. Pol.
’NAM: A Network Adaptable Middleware to Enhance Response Time of
Web Services’. Chap. II, Web Services: Researches and Chalenges, ed.
L. J. Zhang, Cybertech Publishing, 2008.

[12] S. Pollack and W. K. McQuay. ’Joint Battlespace Infosphere Applica-
tions Using Collaborative Enterprise Environment Technology’. In proc.
SPIE-5820, Defense Transformation and Network Centric Systems, Ed.
Raja Suresh, Bellingham (WA), pp. 235-242, 2005.

[13] IBM Software Group. ’IBM Infosphere Master Data Management
Server: Technical Overview’. White Paper, Feb. 2008.

[14] A. Sabbir, K. A. Kwiat, K. Ravindran, and M. Rabby. ’Do Centralized
and Distributed Voting Methods Complement Each Other ?? A Case
Study of Replica Voting Protocol Design’. in Technical Report, Dept.
of Computer Science, The City University of New York, Sept. 2009.

[15] K. A. Kwiat, K. Ravindran, C. Liu, and A. Sabbir. ’Performance and
Correctness Issues in Secure Voting for Distributed Sensor Systems’. in
proc. SPECTS’02, San Diego (CA), July 2002.

122

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

