
An Adaptive Look-Ahead Strategy-Based Algorithm
for the Circular Open Dimension Problem

Hakim Akeb
ISC Paris School of Management

22 Boulevard du Fort de Vaux
75017 Paris, France

UPJV, UR MIS, Équipe ROAD
Email: hakeb@groupeisc.com

Mhand Hifi
Université de Picardie Jules Verne

UR MIS, Équipe ROAD
33 rue Saint-Leu, Amiens, France
Email: mhand.hifi@u-picardie.fr

Abstract—In this paper, we study the circular open dimension
problem, a well-known combinatorial optimization problem of
the cutting and packing family. We are given a set of circular
pieces (or circles) of known radii and a strip of fixed width and
unlimited length. The objective is to determine the minimum
length of the initial strip that packs all the circular pieces. The
problem is approximately solved with an adaptive look-ahead
strategy-based algorithm, which combines greedy procedures,
restarting and separate beams strategies, and a look-ahead
search. The running experiments show, on a set of benchmark
instances of the literature, the effectiveness of the proposed
method. For these instances, the proposed algorithm improves
10 results out of 18.

Keywords-beam search, cutting and packing, look-ahead, min-
imum local-distance position, multi-start strategy.

I. INTRODUCTION

Some industrial processes need to pack efficiently goods
or products in order to save space during the storage or the
transportation phase. In other cases, industrial machines have
to cut material of predetermined shapes from a given two-
dimensional plate. Cutting and Packing (C&P) problems have
several industrial and commercial applications and they were
intensively studied by applying approximate and exact algo-
rithms (cf. Wäscher et al. [1]). In fact, a C&P problem consists
of cutting or packing a set of items of known dimensions
from or into one or more large objects or containers so as
to minimize the unused portion of the objects, or waste. The
items and objects can have rectangular, circular, or irregular
shapes. These problems are known as difficult to solve exactly
and so, heuristics are used for tackling a variety of them.
Herein, we solve the circular open dimension problem (CODP)
where the items are circular and the container is a strip. CODP
is also known as the strip cutting/packing problem (cf. Akeb
and Hifi [2], Hifi and M’Hallah [3], and Huang et al. [4]).

More precisely, in CODP we are given an initial strip S of
fixed width W and unlimited length (L), as well as a finite
set N of n circular pieces Ci of known radius ri, i ∈ N =
{1, . . . , n}. The objective is to pack (or cut) all the pieces such
that (i) the length of the strip S is minimized and (ii) there
is no overlapping between pieces, and between pieces and the
edges of the strip.

CODP can be formulated as follows:

minL
(xi − xj)2 + (yi − yj)2 ≥ (ri + rj)

2, j < i, (i, j) ∈ N2 (1)
xi − ri ≥ 0, ∀i ∈ N (2)
yi − ri ≥ 0, ∀i ∈ N (3)
W − yi − ri ≥ 0, ∀i ∈ N (4)
L− xi − ri ≥ 0, ∀i ∈ N (5)
L ≥ L (6)

Equation (1) represents the non-overlap constraint of any
pair of distinct pieces (Ci, Cj); it means that the distance
between the centers of these two circles must be greater than
or equal to the sum of their radii. Equations (2), (3), (4), and
(5) ensure that any piece Ci, i ∈ N, belongs to the target
rectangle of dimensions (L,W). Finally, Equation (6) means
that the solution (L) is necessarily greater than or equal to the
trivial lower bound L =

(
π ×

∑
i∈N r

2
i

)
/W .

The rest of the paper is organized as follows. Section II pro-
vides a literature review for CODP. Section III summarizes the
principle of the minimum local-distance position procedure.
Section IV describes the BSBIS algorithm already considered
in Akeb and Hifi [2]. Section V details the proposed adaptive
look-ahead strategy-based algorithm, which combines beam
search (using separate beams), a multi-start, and a look-
ahead strategy. In Section VI, the results of the proposed
algorithm are evaluated on a set of benchmark instances.
Finally, Section VII summarizes the contribution of this work
and indicates some perspectives.

II. LITERATURE REVIEW

Several approaches and methods were used in order to solve
circle cutting/packing problems. These approaches depend
generally on whether the container is a circle or a rectangle.

The problem of packing identical circles into a circular
container was for example studied by Graham et al. [5].
Their approach is based on combining both billiard simulation
and energy function minimization techniques. The problem of
packing non-identical circles of known radii into the smallest
containing circle was studied by several authors. Indeed,
Huang et al. [6] have proposed two algorithms (called A1.0
and A1.5), which are based on the maximum hole degree

158

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

(MHD) strategy. Hifi and M’Hallah [7] proposed a dynamic
adaptive local search where, at each iteration, a new circle is
inserted, and the coordinates of the container and its radius are
updated. Finally, Akeb et al. [8] applied, for the same problem,
a width-first beam search.

For the rectangular (or strip) version of the problem,
George et al. [9] designed an approach that simulates the
packing of circles into a rectangle. The authors showed that
the best rules are those using a quasi-random approach and a
genetic algorithm. Stoyan and Yaskov [10] solved the CODP
by considering a mathematical model that searches for feasible
local optima by combining a tree-search procedure with a
reduced-gradient method. Hifi and M’Hallah [11] proposed a
constructive procedure and a genetic algorithm to pack circles
into a strip. Birgin et al. [12] tackled the same problem by
proposing an algorithm based on a non-linear approach. Huang
et al. [4] proposed two solution procedures for the CODP and
finally, Akeb and Hifi [2] proposed three algorithms for the
latest problem: (i) an open-strip generation solution procedure
based on an optimization problem, (ii) a local beam-search
solution procedure that combines beam search and the open-
strip generation procedure, and (iii) a hybrid algorithm that
combines beam search, binary interval search, and the open-
strip generation procedure.

In this paper, CODP is solved by using an adaptive algo-
rithm. The method combines separate beams search, a multi-
start strategy, and look-ahead. So the objective is to see how
the look-ahead may improve the existing results obtained by
using the other strategies.

III. THE MLDP STRATEGY
Herein, we describe the notations used in the paper and

explains the principle of the minimum local distance position
(MLDP) strategy.

Notations.
1) N = {1, ..., n} denotes the set of the circles to pack,
2) the strip S is placed with its bottom left corner at (0, 0),
3) the four edges of S are denoted by Sleft, Stop, Sright,

and Sbottom, respectively,
4) each circular piece Ci of radius ri is placed with its

center at (xi, yi),
5) Ii is the set of i circles already packed inside the strip,
6) Ii contains the circles, which are not yet placed,
7) PIi denotes the set of distinct corner positions of Ci+1

given the set Ii,
8) a corner position pi+1 ∈ PIi is determined by using

two elements a and b. An element is either a piece
already placed or one of the three edges of S (Sleft,
Stop, Sbottom). Tpi+1

denotes the set composed of both
elements a and b.

The minimum local distance position (MLDP) can be ap-
plied in a greedy way in order to select a corner position
among a set of feasible positions. An iterative MLDP selection
induces a greedy algorithm that can be summarized as follows.
Having positioned a set Ii ⊂ N of circular pieces, the process

Fig. 1. Feasible distinct corner positions for C3 in the strip

(3)

1

2

p (1)

p
3

p
3

(1)

p
3

p (2)
3

3

(3)

tries to position the next piece, namely Ci+1, i ∈ N\Ii, into
a corner position among all its eligible positions in the strip
S, i.e., without overlapping any of the pieces already placed,
and by touching two already placed circles or by touching a
circle and one of the edges of the strip.

Figure 1 illustrates such corner positions −dotted-line cir-
cular pieces− for circle C3. Note that I2 = {C1, C2} and
PI2 = {p(1)3 , p

(2)
3 , p

(3)
3 }. The notation p

(k)
3 , for k = 1, . . . , 3,

denotes the kth corner position such that p(k)3 ∈ I2. In this
example, the corner position p(1)3 is obtained by using the piece
C2 and the top edge of the strip, p(2)3 is provided by using both
pieces C1 and C2, and p

(3)
3 is obtained by using C1 and the

bottom edge of the strip. It follows that T
p
(1)
3

= {C2, Stop},
T
p
(2)
3

= {C1, C2} and T
p
(3)
3

= {C1, Sbottom}.
Let Ci+1 be the selected circular piece to pack at

position pi+1 and let δi+1(edge), edge ∈ Eedge =
{Sleft, Sbottom, Stop}, be the three distances defined as fol-
lows: δi+1(Sleft) = xi − ri, δi+1(Sbottom) = yi − ri, and
δi+1(Stop) =W − yi − ri.

The distance between the edge of the next circle to place
Ci+1 (when positioned at pi+1) and circle Cj is denoted by
δi+1(j) and is defined as follows:

δi+1(j) =
√

(xi+1 − xj)2 + (yi+1 − yj)2 − (ri+1 + rj). (7)

It follows that the MLDP of a piece Ci+1 when positioned
at pi+1 ∈ PIi is:

δ̂pi+1
= min
α∈Ii∪Eedge\Tpi+1

{δi+1(α)}. (8)

Equation (8) indicates that Ci+1’s MLDP is computed
according to the distances between the current piece and the
elements of the set Ii∪{Sleft, Sbottom, Stop}\Tpi+1 composed
of the pieces already placed, and the three edges of the strip.
In this case, both elements of Tpi+1

used for computing the
coordinates of Ci+1 are excluded, because such a distance is
setting equal to zero. Note also that the MLDP is equal to zero
when Ci+1 touches more than two elements.

Figure 1 indicates that the minimum local distance between
C3 and the circular pieces already packed, when positioned in
p
(1)
3 and p(3)3 , are δ̂

p
(1)
3

and δ̂
p
(3)
3

respectively.
Specifically, for a pre-determined ordering of the pieces,

the solution procedure starts by positioning the first circular
piece C1 at the bottom-left corner, i.e., at the position (r1, r1),
while the remaining n− 1 pieces are successively positioned
by using the MLDP rule.

159

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

IV. THE BSBIS ALGORITHM

Beam search is a tree search strategy where, at each level `
of the tree, a fixed number of nodes are selected for branching.
The aforementioned number (denoted ω) is called the “beam
width” (for more details, the reader can refer to Akeb and
Hifi [2]).

For the CODP, Akeb and Hifi [2] proposed an algorithm
(denoted by BSBIS), which combines two solution procedures:
the beam search and the binary interval search. The interval
search is denoted by [L,L], and the role of the beam search
procedure is to try to pack all the pieces into the current target
rectangle (L∗,W), where L∗ ∈ [L,L].

Fig. 2. The BSBIS algorithm

Input. A node η` of level ` characterized by I`, I`, and PI` , the
beam width ω, and the bounds of the interval search L and L.
Output. A complete feasible packing and the best length L∗.

Initialization phase
Set L∗ = L, where L∗ denotes the best solution found so far;

Iterative Phase

while (L− L > δ) do

1) Set L∗ = (L+ L)/2;
2) Set Feasible = BS(η`, ω);
3) if Feasible=true {the n pieces have been packed}

then set L = L∗, otherwise set L = L∗;
enddo

Different parameters are transmitted to BSBIS (Figure 2):
η` representing a partial solution (where ` circles are already
placed into the target rectangle), ω denoting the beam width,
and [L,L] corresponding to the interval search.

At each iteration, (cf. while loop), BSBIS calls the BS
procedure in order to pack the remaining circles. BS procedure
uses a width-first beam search, which is based on the MLDP
rule (a detailed version of BS is described in Akeb and
Hifi [2]). The interval search is then updated depending on
whether a feasible solution is obtained or not (a solution is
feasible if the n circles are placed into the target rectangle).

In addition, we note that the interval search needs both lower
and upper bound limites. As used in Akeb and Hifi [2], the
upper bound L is initially generated by applying the open-
strip generation solution procedure (OSGSPa) and the lower
bound L is setting equal to (π ×

∑
i∈N r

2
i)/W.

V. AN ADAPTIVE ALGORITHM FOR CODP

Herein, we describe an adaptive look-ahead strategy-based
algorithm, denoted by A-SEP-MSBS, used for tackling the
CODP. The proposed algorithm combines several strategies
including the separate-beams search, the multi-start, and the
look-ahead ones.

A. The beam-search look-ahead algorithm (BSLA)

The quality of the results provided by a greedy algorithm
depends generally on the criterion used; that can be considered
as a decision criterion for such an algorithm. Using a look-
ahead strategy may enhance such a decision criterion. Indeed,
the purpose of the look-ahead strategy is to try to enrich

the criterion of choice, so allowing to increase the quality
of the solution provided. Such a strategy can also be viewed
as case of the backtracking phase used in branch-and-bound
procedures. For instance, such a strategy may explore several
paths of the tree search following the quality of the partial
solution at hand. It then employs some strategies in order to
guide the method to branch towards the best directions. Hence,
the strategy used consider a “global evaluation” instead of
a “local evaluation”. Even the mechanism can require more
runtime, but it generally leads to better solutions (as shown in
the computational results − Section VI).

The look-ahead strategy, associated with the beam search to
solve CODP, leads to the BSLA algorithm detailed in Figure 4.
In order to facilitate the readability of BSLA, we present in
Figure 3 the look-ahead selection phase (denoted by LASP).
We can observe that LASP is called at each step of BSLA
(Step 5 of Figure 4).

Fig. 3. The look-ahead selection procedure (LASP)

Input. A set B = {η1` , ..., ηω` } of ω nodes and a boolean variable
feasible initialized to false.
Output. A feasible solution corresponding to feasible=true or
a set Bω of ω nodes (those leading to the highest densities through
the MLDP packing procedure).

Initialization phase
Let P`i be the set of corner positions of node ηi` ∈ B;

Iterative phase
for each node ηi` of B do
for each corner position pi ∈ P`i do

1) Pack Ci+1 in pi and insert the resulting node η`+1 into Bω;
2) Evaluate the new inserted node η`+1 by placing the remaining

circles using the MLDP packing procedure;
3) if all circles are placed then set feasible = true,

exit; else assign to η`+1 the density obtained by MLDP;
enddo

enddo
Terminal phase

4) Reduce Bω to the ω nodes that led to the highest densities by
using MLDP;

5) Exit with Bω .

LASP receives two parameters. The first one corresponds to
the set B = {η1` , ..., ηω` } containing the nodes of the current
level of the search tree. The second parameter feasible is
an indicator, which takes the value true if the solution reached
is feasible, false otherwise. In the Iterative phase, the
procedure tries to generate the nodes according to the positions
of B. Such a branching creates the list Bω of successors.
Second, each node of Bω is evaluated according to the MLDP
packing (Step 2). Third, if MLDP obtains a feasible solution
(Step 3) then the procedure exits with feasible = true,
otherwise the best nodes leading to the highest densities are
retuned (Steps 4–5) and so, BSLA (Figure 4) uses these nodes
for branching. Of course, the density of a node corresponds
to the area of the circles packed divided by the area of the
current rectangle (L∗,W).

Figure 4 summarizes the main steps of BSLA. The

160

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Fig. 4. Beam search look-ahead algorithm (BSLA)

Input. A node η`, the beam width ω, and the bounds of the interval
search L and L.
Output. A feasible packing and the best corresponding value for the
rectangle length (Lbest).

Initialization phase

- Let B and Bω be the sets of nodes to be considered and the
offspring nodes of the node currently being considered;

- Let Lbest be the best length found so far;
- Let feasible be a boolean variable;

Iterative Phase.
while (L− L > δ) do

1) Set B = {η`}, where η` is a starting node of level `
characterized by I`, I`, and PI` ;

2) Set L∗ = (L+ L)/2;
3) Set feasible = false;
while (B 6= ∅ and feasible=false) do
4) Set ` = `+ 1;
5) Set Bω = LASP(B, feasible);
6) if feasible=true then set L = L∗ and Lbest = L∗

else set B = Bω and Bω = ∅;
enddo

7) if feasible=false then set L = L∗;
enddo

Initialization phase, serves to initialize the interval
search, the best length Lbest is setting equal to the best length
found so far (Lbest = L otherwise).

The Iterative phase is composed of two loops. The
first loop is composed by steps 1, 2, 3 and 7. Steps 1, 2 and 3
serve to initialize B to the current node η`, to set the current
target length of the rectangle (L∗,W) in the dichotomous
search and to initialize the indicator feasible to false
(feasible indicates if a feasible packing into the target
rectangle (L∗,W) is obtained). The second loop simulates
the packing phase. Indeed, Step 4 serves to increment the
level ` before the look-ahead takes place (Step 5, as described
in Figure 3) for evaluating each position corresponding to
the nodes of the current level. In Step 6, two possibilities
may appear: a feasible solution for (L∗,W) is reached (with
feasible =true), then both lower and upper limits are
updated. Otherwise (feasible=false) no feasible solution
is provided and so, the ω best expanded nodes representing
Bω are returned for restarting the set B. Finally, in Step 7,
feasible with the value false implies non-existence of
feasible packing, the lower bound L is then replaced by L∗.

BSLA terminates, with the best length Lbest, when the
difference between both limits of the interval search becomes
less than or equal to the tolerance gap δ, i.e., when L−L ≤ δ.

B. The separate-beams strategy

The separate-beams search-based algorithm was proposed
by Akeb et al. [13]. The method is mainly based on the
separate beams instead of pooled ones (as used in [2]).
The mechanism used by the aforementioned strategy can be
summarized in Figure 5. First, the root node (η1) corresponds
to the first level (` = 1) and it contains the starting solution
where the first circle is placed at the bottom-left corner of

Fig. 5. The separate-beams mechanism

level ℓ=2

level ℓ=3

level ℓ=4

level ℓ = n

BSLA with

ωωωω = 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BSLA with

ωωωω = 2

BSLA with

ωωωω = 3

.

Starting node η1, level ℓ=1

the strip. Second, the search branches out of η1 and creates
the nodes of level ` = 2. Third, the separate beams are then
initiated at the current level. More precisely, the first (best)
node initiates a width-first beam search of width ω = 1, the
second best node initiates a similar search but width ω = 2,
and so on. Hence, the ith node of the current level initiates a
beam search of width ω = i. On the one hand, the best nodes,
with a high potential to lead to the optimum, do not require an
extensive search. The corresponding beam width is then small.
On the other hand, the nodes with lesser potentials initiate
beam searches with the higher values of the beam width. Note
that the width-first beam search initiated by each node at level
` = 2 corresponds to algorithm BSLA (Figure 4) since the
look-ahead strategy is used.

C. Adaptive separate multi-start beam search (A-SEP-MSBS)

A separate-multi-start beam search algorithm, denoted by
SEP-MSBS, was first used by Akeb et al. [13]. Indeed, SEP-
MSBS combines the separate-beams strategy, described in
Section V-B, with a multi-start strategy, which consists in
running the algorithm by forcing the first starting circle to
pack. The method is then restarted at most m times, where
m is the number of different radii of the instance. Herein, we
propose to introduce an augmented stage; that is based on the
look-ahead strategy. This one is added in order to improve
the selection mechanism used at each level of the developed
tree. The resulting algorithm, denoted by A-SEP-MSBS, is
summarized in Figure 6.

The proposed A-SEP-MSBS algorithm works as follows.
First, A-SEP-MSBS starts by ranking the circles in decreasing
order of their radii, the best length is initialized to the upper
bound L (Step 2) and the index (iorder) of the first circular
piece’s type to place is initialized (Step 3).

The iterative phase contains two main steps: the generational
phase and the improvement phase. The fist phase serves to
generate the root node η1 by placing the circle Ciorder into
the current rectangle. Second, the algorithm branches out of
η1 in order to generate the nodes corresponding to the second
level ` = 2 (see Figure 5). It then selects the ωth node from
B (Step 7), which corresponds to η2 containing two circles
already placed in the current rectangle.

The second phase starts by applying BSLA algorithm
(Step 8) with η2 as an input node; it is used for packing

161

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Fig. 6. An adaptive separate multi-start beam search (A-SEP-MSBS)
Input. A beam width ω.
Output. A feasible packing with the best length Lbest for the strip.

Initialization phase
1) Rank the pieces of N in decreasing value of their radii;
2) Set Lbest = L, the best target length found so far;
3) Set iorder = 1, where iorder is the index of the first circular

piece’s type of the set M = {1, ...,m};
Iterative phase
Do
Generational step

4) Generate the node η1, characterized by I1, I1, and PI1 , by
placing the first circle Ciorder inside the current rectangle and
let B = η1;

5) Branch out of B and generate the list of offspring nodes Bω;
6) Let B = min(ω, |Bω|) nodes having the best MLDPs and

corresponding to distinct corner positions and reset Bω = ∅;
7) Let η2 be the node at position ω in B;

Improvement step.

8) Set feasible = BSLA(η2, ω, L, L);
9) if feasible = true then L and Lbest are updated if a

better length is obtained by BSLA;
10) Set L = (π ×

∑n
i=1 r

2
i)/W ;

11) Set iorder = iorder + 1;
while iorder ≤ m;
Terminal phase
exit with the best target length Lbest.

the n − 2 remaining circles using the look-ahead strategy
(BSLA). Then, two possibilities can be distinguished: (i)
feasible=true and (ii) feasible=false. For the first
case, it means that BSLA reaches a feasible solution and so,
both L and Lbest are updated (Step 9). The lower bound L of
the search is after that reinitialized to the trivial lower bound
(Step 10) and another circle is designed (Step 11) for the next
restarting of the algorithm

Finally, A-SEP-MSBS terminates with the best length Lbest,
which is reported in column 8 of Table I.

D. Adapting the beam width to the look-ahead strategy

In Akeb and Hifi [2], several tunings have been considered
for the principal algorithm BSBIS (Beam Search combined
with a Binary Interval Search). Through the aforementioned
part, it was noticed that the provided results (the best length
of the rectangle) oscillated when the values of the beam width
varied. Then, it isn’t evident to plan the behavior of such
a variation in particular when the values of the beam width
increase. In fact, increasing the beam width doesn’t guarantee
better results, since even the search strategy considers the ω
best ones, the choice is based on the “local evaluation”; that is
a local beam search. We recall that the look-ahead strategy (as
discussed in Section V-A) is applied by considering a “global
evaluation”; that is based on the selection of the best nodes
leading to the best densities. Such a strategy leads to a global
beam search, which may contribute to reduce the oscillations
of the generated solutions. In fact, we can observe that the
length of the target rectangle generally decreases when the
beam width increases and so, it is preferable to run the look-
ahead-based algorithm with some largest values of ω. Our

limited computational results showed that running A-SEP-
MSBS algorithm with a beam width starting from 10 and
incremented by 5 (i.e., ω = 10+5∗k, k ∈ N), provided a good
compromise between the quality of the provided solutions and
the computation time.

VI. COMPUTATIONAL RESULTS

The objective of the computational investigation is to assess
the performance of the proposed algorithm A-SEP-MSBS by
comparing its solution quality to the best known results in the
literarture. A-SEP-MSBS was coded in C language and run
on a 3-GHz processor and 256 MB of RAM.

Two sets of instances were used in the comparison. The
first set contains the six instances taken from Stoyan and
Yaskov [10] namely SY1–SY6. Each instance contains be-
tween 20 and 100 circles. The second set of instances is
composed of twelve problems taken from Akeb and Hifi [2],
and are obtained by concatenating the six original problems
of the first set. The problems of the second set are identified
as SY12, SY13, SY14, SY23, SY24, SY34, SY56, SY123,
SY124, SY134, SY234, and SY1–4 and contain between 45
and 200 circles. Thus, varying the number of circles n from 20
(small size) to 200 (large size) reflects objectively the behavior
of the proposed algorithm.

TABLE I
SOLUTION QUALITY OBTAINED BY ALGORITHM A-SEP-MSBS

Best SEP-MSBS A-SEP-MSBS
Inst. n m W L L ω∗ L ω∗

SY1 30 30 9.5 17.2070 17.2070 50 17.0954 20
SY2 20 20 8.5 14.4867 14.5287 24 14.4548 15
SY3 25 25 9 14.4176 14.4616 44 14.4017 70
SY4 35 35 11 23.4921 23.4921 66 23.3538 10
SY5 100 99 15 36.0796 36.1818 22 36.0061 10
SY6 100 98 19 36.7197 36.7197 26 36.6629 10
SY12 50 48 9.5 29.6837 29.6837 61 29.8148 20
SY13 55 54 9.5 30.3705 30.3705 68 30.4547 15
SY14 65 65 11 37.8518 37.8518 63 37.7244 10
SY23 45 45 9 27.6351 27.6351 89 27.7574 30
SY24 55 54 11 34.1455 34.1455 49 34.1511 15
SY34 60 59 11 34.6376 34.6859 43 34.6744 10
SY56 200 193 19 64.7246 65.2024 6 64.7876 10
SY123 75 72 9.5 42.9931 43.0306 25 43.0930 15
SY124 85 82 11 48.8411 48.8411 35 48.6101 15
SY134 90 88 11 49.3254 49.3362 27 49.2739 15
SY234 80 78 11 45.5576 45.6115 39 45.4586 15
SY1–4 110 105 11 60.0564 60.0564 25 60.3346 10

The results obtained by A-SEP-MSBS are compared to
those obtained by SEP-MSBS [13] and to the best known
results in the literature obtained either by BSBIS [2] or by the
maximum hole degree heuristic (algorithms B1.0 and B1.5)
[4].

For an accurate comparison, the maximum beam width
value ω does not exceed 100 (the same limit was used in [2],
[13]) and the cumulative computation time is fixed to thirty
hours for all the algorithms (B1.0 and B1.5 were also ran with
this time limit). So each algorithm may stop after attaining the
beam width limit or when it exceeds the fixed computation

162

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

time. Not that ω = 10 + 5 ∗ k, k ∈ N for algorithm A-SEP-
MSBS as explained in Section V-D, and ω ∈ [1, .., 100] for
BSBIS and SEP-MSBS.

Table I displays the results provided by the proposed algo-
rithm A-SEP-MSBS. The solution quality is compared to the
solution obtained by several other algorithms. Columns 1 and
2 of Table I indicate the instance name and its size. Column 3
shows the number of circle types in the instance, i.e., the
number of different radii (this parameter is used by the multi-
start strategy). Column 4 indicates the width of the strip (W)
for each instance. Column 5 reports the best known solution in
the literature obtained either by BSBIS [2], SEP-MSBS [13],
or by the MHD heuristic (algorithms B1.0 and B1.5) [4].
Column 6 indicates the best length of the strip corresponding
to the SEP-MSBS algorithm, and Column 7 gives the beam
width ω∗ used to obtain this solution. Finally, Columns 8 and
9 display the same information than Columns 6 and 7 but for
the proposed algorithm A-SEP-MSBS.

The results of Table I indicate that algorithm A-SEP-MSBS
improves the best known results in ten occasions out of
eighteen. It improves SEP-MSBS in twelve occasions. Note
that the new algorithm (A-SEP-MSBS) improves all the best
known solutions for the first set of instances (SY1–SY6) with
an average percentage of improvement equal to 0.32%. This
percentage is computed as Lbest−L

Lbest
×100%, where Lbest is the

best known solution in the literature (Column 5) and L is the
length obtained by A-SEP-MSBS (Column 8). When including
the second set of instances, this improvement becomes 0.05%.
It is also to note that A-SEP-MSBS improves SEP-MSBS in
twelve occasions with 0.16% in average.

The computation time is not reported in Table I. This is
because the time limit of thirty hours was attained by A-SEP-
MSBS for all the instances. This phenomenon is due to the use
of the look-ahead strategy, which is very time-consuming. The
time limit (thirty hours) was also attained by the SEP-MSBS
algorithm [13] for thirteen instances on eighteen (except for
SY1, SY2, SY3, SY4 and SY23), i.e., when n > 45.

Table I shows that A-SEP-MSBS (even if it performs
better than the other methods) is especially efficient for small
instances for which the maximum attained values of ω (accord-
ing to the time limit) is greater than for the larger instances.
So for these instances, A-SEP-MSBS can be used. For larger
instances, the standard beam search algorithm [2] often obtains
better results. In order to apply A-SEP-MSBS on the larger
instances, the best solution would be the parallelization of this
algorithm in order to explore more search space with the same
run time limit.

Fig. 7. Solution of A-SEP-MSBS on SY1 (n = 30 and L = 17.0954)

Figure 7 displays the solution obtained by algorithm A-
SEP-MSBS on the first instance (SY1, n = 30). The previous
best known solution was L = 17.2070 obtained by SEP-
MSBS [13], and the new solution is L = 17.0954, i.e., an
improvement of 0.65%.

VII. CONCLUSION AND FUTURE WORK

In this paper an adaptive look-ahead strategy-based al-
gorithm is proposed for approximately solving the circular
open dimension problem. The algorithm combines several
strategies: beam search, look-ahead, multi-start, as well as
a separate beams strategy. The computational investigation
shows that the proposed algorithm, for a set of benchmarks
instances taken from the literature, is able to improve several
best known solutions. The results showed also that the look-
ahead strategy needs more runtime for large size instances.
Then, we think that the parallel implementation of such an
approach may enlarge the search space and so, improve the
quality of the solutions. A parallel algorithm may also allow
processing larger industrial problems (instances with more
than one thousand of circles for example) in a reasonable
computation time.

REFERENCES

[1] G. Wäscher, H. Haussner, and H. Schumann, “An improved typology
of cutting and packing problems”, European Journal of Operational
Research, vol. 183, 2007, pp. 1109–1130.

[2] H. Akeb and M. Hifi, “Algorithms for the circular two-dimensional
open dimension problem”, International Transactions in Operational
Research, vol. 15, 2008, pp. 685–704.

[3] M. Hifi and R. M’Hallah, “A hybrid algorithm for the two-dimensional
layout problem: the cases of regular and irregular shapes”, International
Transactions in Operational Research, vol. 10, 2003, pp. 195–216.

[4] W. Q. Huang, Y. Li, H. Akeb, and C. M. Li, “Greedy algorithms for
packing unequal circles into a rectangular container” Journal of the
Operational Research Society, vol. 56, 2005, pp. 539–548.

[5] R. L. Graham, B. D. Luboachevsky, K. J. Nurmela, and P. R. J.
Östergård, “Dense packings of congruent circles in a circle”, Discrete
Mathematics, vol. 181, 1998, pp. 139–154.

[6] W. Q. Huang, Y. Li, C. M. Li, and R. C. Xu, “New heuristics for packing
unequal circles into a circular container”, Computer and Operations
Research, vol. 33, 2006, pp. 2125–2142.

[7] M. Hifi and R. M’Hallah, “A dynamic adaptive local search based
algorithm for the circular packing problem”, European Journal of
Operational Research, vol. 183, 2007, pp. 1280–1294.

[8] H. Akeb, M. Hifi, and R. M’Hallah, “A beam search based algorithm
for the circular packing problem”, Computers & Operations Research,
vol. 36, 2009, pp. 1513–1528.

[9] J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized
circles into a rectangular container”, European Journal of Operational
Research, vol. 84, 1995, pp. 693–712.

[10] Y. G. Stoyan and G. N. Yaskov, “Mathematical model and solution
method of optimization problem of placement of rectangles and circles
taking into account special constraints”, International Transactions in
Operational Research, vol. 5, 1998, pp. 45–57.

[11] M. Hifi and R. M’Hallah, “Approximate algorithms for constrained
circular cutting problems” Computers and Operations Research, vol. 31,
2004, pp. 675–694.

[12] E. G. Birgin, J. M. Martinez, and D. P. Ronconi, “Optimizing the
packing of cylinders into a rectangular container: A nonlinear approach”,
European Journal of Operational Research, vol. 160, 2005, pp. 19–33.

[13] H. Akeb, M. Hifi, and S. Negre, “An augmented beam search-based
algorithm for the circular open dimension problem”, Proceedings of
the CIE 2009, International Conference on Computers & Industrial
Engineering, Troyes, France, July 2009, pp. 372–377.

163

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

