ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Adapting Abstract Component Applications Using
Adaptation Patterns

Imen Ben Lahmar*, Djamel Belaid*, and Hamid Muktar®
*Institut Telecom; Telecom SudParis, CNRS UMR SAMOVAR, Evry, France
Email: {imen.ben_lahmar, djamel.belaid} @it-sudparis.eu
National University of Sciences and Technology, Islamabad, Pakistan
Email: hamid.mukhtar@seecs.edu.pk

Abstract—Using a component-based approach, applications
can be defined as an assembly of abstract components, requiring
services from and providing services to each other. At the time of
execution, they are mapped to the concrete level after identifying
the deployed components. However, several problems can be
detected at init time that prevent the mapping to be achieved
successfully, e.g., heterogeneity of connection interfaces. More-
over, applications in pervasive environment are challenged by
the dynamism of their execution environment due to, e.g., users
and devices mobility, which make them subject to unforeseen
failures.

Both of these problems imply mismatches between abstract
and concrete levels detected at init time or during the execution.
Therefore, abstract applications have to be adapted to carry out
their mapping and their execution.

In this article, we propose a new dynamic structural adaptation
approach for abstract applications. Our approach is based on
adaptation patterns that provide solutions to the captured mis-
matches between abstract and concrete levels. We also compare
and contrast our approach with the existing ones concluding that
our approach is not only generic, but it is also applicable both
at init time and at runtime.

Index Terms—Adaptation patterns, adapter template, abstract
application, mismatch, pervasive environments.

I. INTRODUCTION

The recent research work related to automatic service com-
position in pervasive environments has gained much maturity,
and together with advancements in various technologies, this
concept has reached a level where the life of an ordinary user is
completely automatized. Emphasis has been on the automatic
selection of services for users, without their intrusion, in
the pervasive environment. In most cases, such an approach
considers an abstract user task on the user device, which leads
to automatic selection of services across various devices in the
environment, according to the current context.

For example, consider a video player application that pro-
vides the functionality of displaying video to the user. The
user is also able to control the playback of the application.
The application is represented by an assembly of abstract
components, which describe only the services required or
provided by the application namely, controlling, decoding and
displaying video. The application has to be mapped to the
concrete components to achieve its realization.

The complexities involved in designing and realizing such
applications have been identified and addressed by many
previous approaches [2] [5] [14]. Mostly, they consider both

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

the functional and non-functional aspects of the application.
For example, in one of our previous work, we have presented
a mapping algorithm that maps an abstract application to
concrete one considering functional aspects of the applica-
tion —interfaces and message interactions— as well as non-
functional aspects like user preferences, devices’ capabilities
and network protocol heterogeneity to ensure the mapping of
services to the components [14].

While the existing approaches may assume that a mapping
from abstract to concrete application can be done effortlessly,
many problems may rise that prevent it to be achieved
successfully. As a first case, consider the heterogeneity of
interfaces of different components or devices, heterogeneity
of interaction messages, etc. Furthermore, applications in
pervasive environments are challenged by the dynamism of
their execution environment due to, e.g., user and device
mobility, which make them subjects to unforeseen failures.
An automatic adaptation is to remap the abstract description of
application to the concrete level. The remapping corresponds
to the reselection of new concrete components to replace some
others.

Both of these problems imply mismatches between abstract
and concrete levels that may occur either at the time of
mapping during initialization or even after the application has
been executed. Thus, adapting abstract applications represents
a crucial need to be considered in order to ensure their
mapping to the concrete level and their execution.

The problem of adapting component-based models has
been extensively studied in different contexts, notably in
component-based applications. In the literature, we distinguish
many relevant adaptive approaches that propose parametric or
compositional mechanisms to adapt applications in pervasive
environment (e.g., [2] [18] [19]). Parameterization techniques
aim at adjusting internal or global parameters in order to
respond to changes in the environment. Compositional adap-
tation is classified into structural and behavioural adapta-
tions [13]. We mean by behavioural adaptation the modifi-
cation of the functional behaviour of application in response
to changes in its execution environment. However, structural
adaptation allows the restructuring of the application by adding
or removing software entities with respect to its functional
logic.

In this article, we propose a dynamic structural adaptation

170

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

approach based on adaptation patterns to provide solutions to
the detected mismatches between abstract application and the
concrete level. Adaptation patterns are injected into the ab-
stract application to provide extra-functional services allowing
its mapping and its execution. Thus, the abstract application
is transformed to another one that ensures its mapping and
its execution. To facilitate the description of the adaptation
patterns, we define a generic adapter template that encapsulates
the main features of an adapter.

We are not interested in describing the detection of adapta-
tion context; rather, our objectives are: 1) to define an adapter
template and to give examples of adaptation patterns based on
this template and 2) to show how adaptation patterns are used
to adapt the abstract application and hence the concrete one.

The remainder of this paper is organized as follows. Section
II mentions and classifies examples of factors triggering the
adaptation of abstract application. Section III describes the
principle of our structural adaptation approach illustrated by
examples of adaptation patterns. In Section IV, we present
an example scenario through which we show how patterns
are used to adapt dynamically an application. In Section V,
we present some implementation details. Section VI provides
an overview of existing related approaches as well as their
limitations. Finally, Section VII concludes the article with an
overview of our future work.

II. ADAPTATION CONTEXTS

A generalized notion of context has been proposed in [1]
as any information that can be used to characterize the
situation of an entity (person, location, object, etc.). We
consider adaptation context as any piece of information that
may trigger the adaptation of the application. We are interested
in contexts that represent the mismatches between abstract
and concrete levels. These mismatches imply that the current
abstract description could not be realized in the given context,
or in the new context, if it has changed.

We classify the factors triggering the adaptation of the
abstract description into three categories: 1) factors related to
the software characteristics of devices, 2) factors associated
with the network characteristics of devices and 3) factors
related to the hardware characteristics of devices. Our intent
through the given classification is to cover the different aspects
related to software, network or hardware sides that may trigger
the adaptation of the abstract application.

The software factors are related to the software components
of the application through which it describe its functionalities.
A mismatch related to software factors includes interface mis-
matches due to different syntactic representation, differences
of the interaction messages supported by components, requir-
ing component wrappers to hide implementation heterogeneity,
or adding proxy components to control access, etc.

In hardware factors, we consider the factors associated
with the hardware characteristics of devices. A change in
hardware configuration may lead to change in the context,
requiring adaptation. Such changes may imply improvement or
decline in the device capacities, e.g., high CPU usage, reduced

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Component |Interface | Service || Component
B - A
(a)

Component |Interface | Service I| Component
B A

Adapter
Composite

(b)

Service | Interface |

Fig. 1. Transforming abstract application using Adapter composite

capacity of memory storage, attachment of new hardware
components, etc.

In addition to the software and hardware factors, there are
several challenges related to the network characteristics of
a device that may require the adaptation of the application,
e.g., use of different interfaces of network connections such
as changing to Bluetooth from Wi-Fi if the latter disappears,
the fluctuation in the quality of network signals, etc.

The example factors are some of recurrent causes that are
responsible for the mismatches between abstract and concrete
levels. There may be other factors that trigger the adaptation
of the abstract description of the application to support the
changes of the environment (e.g., user preferences); however,
we do not deal with them in this article.

In the next section, we detail the proposed adaptation ap-
proach to overcome the detected mismatches that are triggered
by some factors related to software, hardware or network
characteristics of devices.

III. ADAPTATION PATTERNS

A. Principle of our Approach

To overcome the captured mismatches between abstract
and concrete levels, we propose to transform an abstract
application to another one that ensures its mapping and its
execution. The transformation consists of injecting extra-
functional adapters into the abstract application.

As shown in figure 1, an adapter composite is injected
to adapt the interaction between components A and B. The
adapter composite requires the service I of the component
A and exposes a service implementing the interface I. This
provided service will be used by the component B, since it
corresponds to its required service. Thus, the abstract appli-
cation is transformed by adding extra-functional behaviour to
achieve its mapping or its execution.

We note that adapters are identified at execution time
without the assistance of the designer. This can be done by
using a set of adaptation policies defined at the design time.
These policies can then relate the adaptation pattern with the
execution context. However, in the present work, we do not
tackle the identification of the used adapters that remains an
objective for the future work.

171

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Adapter Template
Interface |

Service || | Adaptive Logic

Component

Extra-Fundtionall Extra-Functionnal
Service Component

Fig. 2. Generic adapter template

B. Adapter Template

As the basis for our approach we propose to use adaptation
patterns as adapter composites to provide solutions for the
detected mismatches between abstract and concrete levels.
Patterns have component-based descriptions that encapsulate
extra-functional services for the adaptation of abstract appli-
cations.

We have defined an adapter template to be used for the de-
scription of adaptation patterns. Figure 2 shows the description
of the adapter template, which consists of an “adaptive logic”
component and an “extra-functional” one.

The extra-functional component provides transformation
services allowing, e.g., encryption, compression, etc. The
adaptation pattern provides an abstract description for the
extra-functional component to be mapped following the match-
ing algorithm [14]. Thus, the extra-functional component is
identified dynamically without the assistance of designer. Its
offered service will be used by an adaptive logic component
which acts as an intermediate between the abstract and the
extra-functional components.

For this, the adaptive logic component is considered as the
main element of the adapter template. And each adaptation
pattern should contain at least the adaptive logic component,
if it does not require any transformation service to overcome
the mismatch (see Section IV). The implementation of the
adaptive logic component is generated, since it depends to the
business interfaces of abstract components. As shown in figure
2, the adaptive logic component requires the offered service
of the extra-functional component and a service implementing
the interface I, which corresponds to the service I of the
component A. Otherwise, the component provides a service
implementing the interface I as the required service of the
component B.

Using this specific structure of the adapter template has an
advantage, on the one hand, to separate the adaptive logic from
the functional logic of the application. Thus, it is possible
to modify the adaptive logic with respect to the components’
descriptions. On the other hand, it allows providing an abstract
description for the adaptation actions, corresponding to extra-
functional components, to be mapped following the matching
algorithm. Thereby, the separation between adaptive logic and
extra-functional components facilitates the generation of the
adaptive logic that plays an intermediary role between abstract
components and extra-functional ones.

Due to space limitation, in this section, we only discuss

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

three adaptation patterns that are defined based on our intro-
duced adapter template.

C. Example Adapter Patterns

1) Compressor Pattern: A compressor pattern is used to
handle a mismatch between an abstract application and a
concrete level triggered by a network factor, which is the
fluctuation of the network signal used by devices. Thus, if
the signal strength is high, bigger data can be sent over
network. However, if the signal strength is weak; data should
be compressed for a quick transfer.

The compressor pattern has the given description by fig-
ure 3. It consists of an adaptive compression component and
a compressor one. The abstract compressor component will
be mapped to the concrete level to identify the corresponding
concrete component that implements the described compres-
sion interface. However, the adaptive compression component
will be generated to implement the interface I as required by
the component B. Its implementation contains an invocation of
the provided service of the compressor component in addition
to the service I.

2) Decompressor Pattern: A decompressor pattern is used
whenever a compressor pattern is handled by a device to
overcome the weakness of the network signal. Indeed, within
a compressor pattern, we require a decompressor pattern to
decompress the data before using it by the component A.

The decompressor pattern is described following the adapter
template as shown in figure 3. It contains an adaptive de-
compression component and a decompressor one. While the
decompressor component is mapped to the concrete level, the
adaptive decompression component is generated to provide a
service I. The implementation of the adaptive logic component
consists on applying a decompression algorithm supported by
the service of the decompressor component before invoking
the service I provided by the component A.

3) Proxy Pattern: The proxy pattern, as defined by Gamma
et al. [9], provides solutions to problems related to inaccessible
software entities. Thus, it would be useful to overcome the
network factor related to different interfaces of connections as
detailed in the next section IV.

Figure 4 gives a component-based description of the proxy
pattern following the adapter template. As it can be seen, the
proxy pattern represents a specific case of the adapter template.
It contains only a proxy component representing the adaptive
logic component that forwards the call of the service I to the
component A.

IV. EXAMPLE SCENARIO USING ADAPTATION PATTERNS

Referring back to the video player application described in
the introductory section, figure 5 shows an abstract description
of the Video player application that consists of three compo-
nents: a VideoDecoder component, a DisplayVideo component
and a Controller Component. The Controller component sends
a command to the VideoDecoder component to decode a stored
video. The VideoDecoder component decodes a video into
appropriate format. Once the video is decoded, it is passed

172

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

=TT T T T T T T T T T T T T T T T T T I Fm T TSI T T T T T e e e e
: Component |Interface | : : Service || Component :
I B | ! A |
| | | |
I | | |
: Compression Adapter : : Decompression Adapter :
:s || Adaptive Interface 1| _ | :s o[Adaptive interface 1| | |
! *1% L Compression | : °'4=> || Decompression |
| Component | | Component |
| | |
I Compressipn | Compressor | | Decompression| Decompressor :
| Service ™| Component ! ! Service Component |
I | I
| | | |
! Device B ! | Device B I
__________________________ | - ____.
Fig. 3. Compressor and decompressor adaptation patterns
T T T T T T T T | T T T T T T | . . .
| [Component |interface | : | Senice || Component ! 1n.III—C3,. the composite of the proxy pgttern contan}s only a
| B I I I DisplayVideoProxy component representing the adaptive logic.
| | | : It requires the DisplayVideoService to forward the call of
Lo DeviceB | | L I the VideoDecoder component to the DisplayVideo component.
The proxy pattern is generated on the laptop device since
P =~ =~ === ————— - — = T this latter supports Wi-Fi and Bluetooth connections. As a
: Froxy Adapier ! result, the application is transformed, as shown in figure 6, to
! I contain the DisplayVideoProxy component in addition to its
[play y p
Seryice | Proxy Interface | |
' own components
! Component ! :
L __
: | A Abstract Level 7
I I A VideoDecoding | Video Decoder /
| Devi | /
evice C |

Fig. 4. Proxy adaptation pattern

to the DisplayVideo component to play it. This is done using
the service provided by the DisplayVideo component through
an appropriate programming interface.

The given execution environment consists of a Smartphone
(SP) device that supports a Wi-Fi interface connection and
contains the Controller and the VideoDecoder components.
There is also a flat-screen (FS) device that uses a Bluetooth in-
terface connection and maintains the DisplayVideo component.
A laptop (LP) device is available in the execution environment
and supports both interfaces of connection (i.e., Bluetooth and
Wi-Fi). However, LP does not provide any services described
in the video player application. Thus, only the smartphone and
the screen devices would be used to support the application
mapping.

However, both of these devices cannot interact between
them, since they support different connection interfaces. Thus,
there is a mismatch between the given abstract description of
the video player application and the concrete level because
of a network factor that causes the failure of the mapping.
Therefore, the Video Player application should be adapted to
achieve its mapping.

To overcome the heterogeneity of connection interfaces,
we propose to use a proxy adaptation pattern to create a
representative for the DisplayVideo component. As described

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

ST . - Display Video | /
Controller DisplayVideo play y

/
/ *—Service |__component |/
/ Component ScS > 7
A — T __ . L sl __ _
\ pd s
N s
p % " Concrete Level /
/ @ LP - /
et FS_ /
Fig. 5. Video Player application
T T T T T Abstract Level /
/ VideoDecoding| Video Decoder /
// Service Component
// _ DisplayVideo| Display Video Y.
; Service component |/
/| Controller /| DisplayVideoProxy /
/ / Vi
y; Component /= (Generated) /
/ e /
A Component /

R —_—

.-~ Concrete Level ,
/

/ // . 3
e é E L .
/ /
P
/ S FS /

T /

Fig. 6. Adaptation of the Video Player application

V. IMPLEMENTATION

We have implemented, as a proof of concept, a java
prototype of a service allowing the automatic generation of
pattern’s components following the description of adapter

173

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

template. SCA (Service Component Architecture) [15] is used
to describe components since it provides the ability to write
applications abstractly and then map them to the concrete
components. One of the main features of the SCA compo-
nent model is that it is independent of particular technology,
protocol, and implementation.

The open source Javassist ' (JAVA programming ASSIS-
Tant) library is used to generate the byte code of an adaptive
logic component that implements a specified interface 1. For
this purpose, we use the java.lang.reflect package to
obtain reflective information about methods of the interface I
(i.e., names, parameters, etc).

Similarly, if the adaptive logic component requires an extra-
functional component, the interface of this latter is introspected
to be used for the implementation of the adaptive logic
component.

In case of our example Video Player application, the inter-
connectivity between devices is represented by a graph [14].
For the given scenario, there will be no connection between
smartphone and flat-screen devices in the graph, represent-
ing an interface mismatch. However, connections between
smartphone and laptop, and between laptop and flat-screen
are detected in the graph, which indicates a proxy pattern
should be generated in the laptop device to overcome interface
mismatching. The pattern consists of the DisplayVideoProxy
component that implements the introspected interface of the
DisplayVideo service and whose byte code is generated dy-
namically using the Javassit library.

VI. RELATED WORK

In this section, we detail some of the existing structural
adaptation approaches as well as their limitations.

In [17], Sadjadi et al. propose a general programming
model called transparent shaping that supports the design
and the development of adaptable programs from existing
programs. In transparent shaping, an application is augmented
with hooks that intercept and redirect interaction to adaptive
code. Integration of the adaptive code is a two-phase process,
in the first phase; the application is transformed into a new
adapt-ready application by weaving hooks into the application
code. In the second phase, usually executed at run-time, an
adaptation infrastructure is inserted dynamically using these
hooks.

Compared to our approach, the major drawback of their
approach is that the identification of the hooks is done at
development time. Besides, the program should be in ready
state, using a static transformation, to support the insertion and
the removal of adaptive code at runtime. However, in our case,
we provide a dynamic adaptation for applications at init time
as well as at runtime without any transformation in advance.

[16][8] present an AO-ADL (Aspect Oriented-Architecture
Description Language) language. AO-ADL considers that
components model either crosscutting (named aspectual com-
ponent) or non-crosscutting behaviour (named base compo-
nent) exhibiting a symmetric decomposition model. Towards

Uhttp://www.csg.is.titech.ac.jp/"chiba/javassist/

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

this challenge, they propose to use aspectual connectors that
provide support to describe and to weave aspectual compo-
nents to the regular ones. These connectors are described
following a template connector.

However, the instantiation of the connector template is
done at design time, which limits the possibility to extend
applications with new aspects. Furthermore, they consider
connector template per aspect. However, it is not possible to
define as many connector templates as possible aspects.

In another related work, AO-OpenCom [10] [18] that is an
Aspect Oriented Middleware platform, provides a dynamic
reconfiguration of distributed aspects. The platform builds
on the OpenCom component model [7] and the distributed
component framework. Aspect composition in AO-OpenCom
employs components to play the role of aspects. Aspects are
composed at runtime using so-called interceptor-connectors
that support the dynamic insertion of aspect components.
Aspects can be added to a system at run-time using an aspect-
oriented MOP that allows a fine-grained introspection and an
adaptation of cross-cutting behaviour.

While their approach is quite general, we can identify two
limitations compared to our proposed approach. First, aspects
are used only to adapt OpenCom-based application at runtime.
Second, the join points are already defined by designer, which
limits the number of adaptations.

[19] presents a WComp middleware that uses the concept
assembly of aspects (AA) to modify the internal component
assembly of event-based web services [11]. Aspects of assem-
bly are pieces of information describing how an assembly of
components will be structurally modified. In such mechanisms,
aspects are selected either by the user or by a self-adaptive
process and composed by a weaver with logical merging rules.
The result of the weaver is then projected in terms of pure
elementary modifications of components assemblies.

However, the weaving and the validation rules are prede-
fined by the developer at design time, which limits the number
of adaptation. Moreover, they do not take into account to the
adaptation of applications at initialization.

In [3], Becker et al. propose an adaptation model which
is built upon a classification of component interfaces’ mis-
matches. To cover these mismatches, they identify a number of
patterns to be used for eliminating the interfaces’ mismatches.
They classify the adaptability pattern into two categories; func-
tional adaptation pattern to bridge the functional component
incompatibilities and extra functional adaptation pattern to
increase a single or several quality attributes of the component
being adapted.

However, these adaptation patterns are identified at design
time to achieve the adaptation of applications at runtime.
Besides, they limit the adaptation contexts to the mismatches
between components’ interfaces. Thus, they do not take into
account the network and hardware factors related to charac-
teristics of devices.

Other related work in this area [12] [6] have also investi-
gated matching of Web service interfaces by providing a clas-
sification of common mismatches between service interfaces

174

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

and business protocols, and introducing mismatch patterns.
These patterns are used to formalize the recurring problems
related to the interactions between services. The mismatch
patterns include a template of adaptation logic that resolves the
detected mismatch. Developers can instantiate the proposed
template to develop adapters. For this purpose, they have to
specify the different transformation functions.

We can identify two important limitations compared to
our approach. First, the mismatch patterns are limited to
the interfaces and protocols mismatches. Thus, they do not
consider the other different software, network and hardware
factors. Second, the specification of adapters is done with the
help of developers. However, in our approach, we are able
to specify dynamically the different components of a used
pattern; by generating the implementation of its adaptive logic
component and mapping the extra-functional one following
our matching algorithm [14].

VII. CONCLUSION AND FUTURE WORK

In this article, we have proposed an approach for dynamic
structural adaptation of abstract applications. We limit the
adaptation contexts on factors implying mismatches between
abstract application and the concrete level. These factors are
related to software, hardware and network characteristics of
devices and they are detected at init time or during the
execution of the application.

To overcome these mismatches, we propose to use adap-
tation patterns that provide extra-functional behaviour to the
abstract applications. The adaptation patterns are described
following our generic adapter template, which consists of
adaptive logic and extra-functional components. While the
adaptive logic component has a generated implementation, the
extra-functional component is identified following a mapping
process in [14].

Using this approach allows to separate the extra-functional
logic from the business one, and hence, to add or remove
adaptation patterns dynamically from the abstract application
whenever there is a need.

We are looking forward to integrate the implemented proto-
type in our SCA platform [4] and the Newton SCA runtime?.
And in the near future, we will tackle the identification of
adaptation patterns that are used to support the adaptation of
abstract applications.

VIII. ACKNOWLEDGMENTS

This work is partially supported by French ANR through
Seamless (SEamless and Adaptive Services over MultipLe
AccEsS NetworkS) project number 07TCOMO18.

REFERENCES

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In HUC ’99: Proceedings of the Ist international
symposium on Handheld and Ubiquitous Computing, pages 304-307,
1999.

Zhttp://newton.codecauldron.org/site/concept/ComponentModel.html

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
Pcom - a component system for pervasive computing. In PERCOM ’04:
Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom’04), page 67, Washington,
DC, USA, 2004. IEEE Computer Society.

Steffen Becker, Antonio Brogi, Ian Gorton, Sven Overhage, Alexander
Romanovsky, and Massimo Tivoli. Towards an engineering approach
to component adaptation. In Architecting Systems with Trustworthy
Components, pages 193-215, 2004.

Djamel Belaid, Hamid Mukhtar, Alain Ozanne, and Samir Tata. Dy-
namic component selection for sca applications. In I3E, pages 272-286,
2009.

Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny. Cocoa:
Conversation-based service composition in pervasive computing envi-
ronments with qos support. J. Syst. Softw., pages 1941-1955, 2007.
Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari
Nezhad, and Farouk Toumani. Developing adapters for web services
integration. In In Proceedings of the International Conference on
Advanced Information Systems Engineering (CAiSE), Porto,Portugal,
pages 415-429. Springer Verlag, 2005.

Geoff Coulson, Gordon Blair, Paul Grace, Ackbar Joolia, Kevin Lee,
and Jo Ueyama. A component model for building systems software. In
IASTED Software Engineering and Applications (SEA04), 2004.

Lidia Fuentes, Nadia Gdmez, Monica Pinto, and Juan A. Valenzuela.
Using connectors to model crosscutting influences in software architec-
tures. In ECSA, pages 292-295, 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Paul Grace, Bert Lagaisse, Eddy Truyen, and Wouter Joosen. A reflective
framework for fine-grained adaptation of aspect-oriented compositions.
In SC’08: Proceedings of the 7th international conference on Software
composition, pages 215-230. Springer-Verlag, 2008.

Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaétan Rey, and
Michel Riveill. Slca, composite services for ubiquitous computing. In
Mobility ’08: Proceedings of the International Conference on Mobile
Technology, Applications, and Systems, pages 1-8. ACM, 2008.
Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Bena-
tallah, Fabio Casati, and Regis Saint-Paul. Mismatch patterns and
adaptation aspects: A foundation for rapid development of web service
adapters. IEEE Transactions on Services Computing, pages 94-107,
2009.

Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. A taxonomy of compositional adaptation. Technical report,
2004.

Hamid Mukhtar, Djamel Belaid, and Guy Bernard. A graph-based
approach for ad hoc task composition considering user preferences and
device capabilities. In Workshop on Service Discovery and Composition
in Ubiquitous and Pervasive Environments, New Orleans, LA, USA, dec
2007.

Open SOA Collaboration. Service component architecture (sca): Sca
assembly model v1.00 specifications. http://www.osoa.org/, 2007.
Monica Pinto and Lidia Fuentes. Ao-adl: an adl for describing aspect-
oriented architectures. In Proceedings of the 10th international confer-
ence on Early aspects, pages 94—114. Springer-Verlag, 2007.

S. Masoud Sadjadi, Philip K. McKinley, and Betty H. C. Cheng.
Transparent shaping of existing software to support pervasive and
autonomic computing. In DEAS '05: Proceedings of the 2005 workshop
on Design and evolution of autonomic application software, pages 1-7.
ACM, 2005.

Bholanathsingh Surajbali, Geoff Coulson, Phil Greenwood, and Paul
Grace. Augmenting reflective middleware with an aspect orientation
support layer. In ARM ’07: Proceedings of the 6th international
workshop on Adaptive and reflective middleware, pages 1-6. ACM,
2007.

Jean-Yves Tigli, Stephane Lavirotte, Gaétan Rey, Vincent Hourdin,
Daniel Cheung-Foo-Wo, Eric Callegari, and Michel Riveill. Wcomp
middleware for ubiquitous computing: Aspects and composite event-
based web services. Annales des Télécommunications, pages 197-214,
2009.

175

