
Input-adaptive QMC-Kalman filters for track fitting

Rodolfo G. Esteves and Michael D. McCool
School of Computer Science

University of Waterloo
{rgesteve, mmccool}@cs.uwaterloo.ca

Christiane Lemieux
Department of Statistics and Actuarial Science

University of Waterloo
clemieux@math.uwaterloo.ca

Abstract—On-line track reconstruction is one of the bottle-
necks of the pattern recognition task in High-Energy Physics
(HEP). This problem has been traditionally divided into the
sub-tasks of track finding and track fitting. The latter involves
estimating the state of a particle inside a detector moving under
the influence of a magnetic field. For the last twenty or so
years the most popular solution to the track fitting problem
has been the Kalman filter (KF). It is well known that the
KF is only guaranteed to compute the optimal estimator if
the dynamics of the system are linear and subject to Gaussian
noise. However, these conditions are not met in the track fitting
problem, in particular, the dynamics are strongly non-Gaussian
due to effects such as multiple Coulomb scattering and energy
loss. A proposed solution is the “Gaussian sum filter” (GSF)
which runs a bank of KFs to estimate each of the modes of the
noise distributions, modelled here as a mixture of Gaussians.
But this solution is limited by the fact that the GSF uses the
same distribution for every input dataset. To address this issue,
we present in this paper the Input-adaptive KF (IAKF), which
makes use of the dynamic code generation features in Intel’s
ArBB parallel framework to create a GSF that matches the
given (observation) noise distribution. The IAKF further deals
with non-linearity by having the GSF drive, instead of KFs,
the recently proposed Quasi-Monte Carlo KF (QMC-KF), a
generalization of the σ -point KF family. Numerical results are
shown to validate the performance of the IAKF. The generated
code is not only tailored to the data, but takes advantage of
several levels of parallelism in multi-core processors.

Keywords-Nonlinear dynamic systems; quasi-Monte Carlo
(QMC); Kalman filter (KF)

I. INTRODUCTION

High-Energy Physics (HEP) studies the fundamental com-
ponents of matter and radiation, as well as their interactions,
thereby addressing questions crucial for the understanding
of the Universe. HEP experiments pose unique challenges
in design, implementation and data analysis. For one, HEP
experiments often have to sort through the massive data
streams produced by particle accelerators. Particle accel-
erators use electromagnetic fields to induce high-momenta
on sub-atomic particles, whose collisions among each other
generate data that is invaluable to understand matter under
extreme conditions. This data often takes the form of traces,
measurements of various physical aspects of the particle
taken along their collision paths at specific detection points
(the “stations”). A considerable portion of the data mining
that takes place in a HEP experiment is spent in the track

reconstruction task, which consists of taking the traces
and reconstructing the underlying physical process. Track
reconstruction is often broken up in the complementary sub-
tasks of track finding and track fitting. Track finding involves
associating a set of readings with the likely trajectory of
a specific particle. Track fitting then takes those sets and
determines the values that best conciliate the experimental
readings and the mathematical description of the trajectory.
These values, or state are usually denoted by xk ∈ R5, and
consist of the exact intersection point of the particle with
each of the detectors, the track direction and the curvature.
A measurement zk is taken at each station k, and a collection
of stations represents a model of the whole detector.

The mathematical setting of this problem is to consider
the particle accelerator as a nonlinear dynamic system [1]:

xk+1 = f (xk)+ωk (1)

of which the measurement zk is a function, also polluted by
noise to form the stochastic “observation” process:

zk = h(xk)+νk (2)

It can be seen from the notation that the system is
considered as discretized in time with indices k. In the
transition between measurement points k − 1 and k, the
state is considered to be subject to process noise, which is
denoted here by ωk. Moreover, precise observations are not
possible because of the limitations in the measuring model
and instruments, a circumstance which is considered by in-
troducing the measurement noise νk. The precise probability
distributions of ωk and νk heavily depend on the application,
but they are commonly taken to be mutually independent.

The goal of track fitting is then to filter out the noise,
i.e., to calculate the posterior distribution p(xk|z1:k) at all
measurement indices k, where z1:k denotes a sequence of
observations {zi}k

i=1. The optimal solution to this problem
is given by the recursive Bayesian estimation algorithm
[2], which recursively updates the posterior density of the
system state as new observations arrive. However, it is worth
noting that this recursive solution is only tractable for linear,
Gaussian systems, in which case the closed-form recursive
solution to the Bayesian integral equations is the well-known
Kalman filter (KF). Because in HEP experiments process
noise arises from interactions between charged particles and

9

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

detector materials, the linearity and Gaussianity assumptions
the KF relies on are hardly ever met. The measurement
noise νk is also rarely Gaussian, since in real detectors
there is an ever-present possibility of outlying or ambiguous
observations. Therefore, approximate solutions need to be
applied to this problem.

Approximate filtering for general dynamic state space
systems can be roughly categorized in two approaches:
deterministic and Sequential Monte Carlo-based. The first
approach, which is the focus of this paper, generalizes the
KF, trying to keep its simplicity and well-understood theory
[1], [2], [3]. However, these generalizations suffer from the
fact that filters must be manually constructed from the input
data, or that the same filter is applied to every input dataset,
which degrades the quality of the estimator or require
inordinate user effort. To overcome these disadvantages,
we present the Input-adaptive KF (IAKF), an approximate
solution to the filtering problem based on the KF where
an automatically constructed Gaussian mixture models the
measurement noise and a set of non-linear KFs are used for
the actual filtering. We note that some ideas preliminary to
this paper have been presented in [4], but a paper-length
exposition has never been published.

The organization of this paper is as follows: Section II
introduces the variants of the KF designed to handle non-
linear dynamics in the presence of non-Gaussian noise.
Our proposed method, the IAKF is presented in Section
III, where we describe its operation and demonstrate its
statistical performance. The most novel feature of the IAKF
is that it is implemented by relying heavily on dynamic
code generation, an aspect we explore in section IV. After a
brief introduction to this technology, we present the dynamic
code generation facilities of ArBB, and how we use them to
implement the IAKF. We also compare previous approaches
to code generation for filtering with our work. Finally, we
conclude in Section V.

II. NON-LINEAR GENERALIZATIONS TO THE KF

The KF is a prediction/correction scheme with the pre-
dicted state and observation being calculated from the esti-
mate at the previous measurement point (or from the prior
distribution p(x0)):

xk|k−1 = f (xk−1|k−1,ωk)

zk|k−1 = h(xk|k−1,νk)

where ωk and νk are independent and normally-distributed,
with zero mean and covariances Q and R respectively. f is
a stochastic transition kernel from state xk−1 to state xk and
h is a stochastic non-linear mapping from the current state
to the observation. xk−1|k−1 is the state estimate given the
observations z1:k−1, and xk|k−1 is the predicted estimate for
the next state given the same trace.

These predictions are then updated with the innovation,
the difference between predicted and actually observed mea-
surement, modulated with a correcting factor Kk, the Kalman
gain, to render the next state estimate xk|k and corresponding
covariance Pk|k:

xk|k = xk|k−1−Kk(zk− zk|k−1)

Pk|k = Pk|k−1−Kk(Pz)k−1KT
k

The KF is optimal (in the least-squares sense) provided
process and measurement mappings are linear, and the
associated noise is Gaussian. However, as mentioned in
Section I, this is not the case in HEP experiments. Below, we
present two general approaches dealing with non-linearities
and non-Gaussianity, particularly relevant to track fitting.

A. Dealing with non-linearities
When considering non-linearities, a common simplifying

assumption is that

p(xk−1|z1:k−1) = N (xk−1|k−1,Pk−1|k−1)

p(xk|z1:k−1) = N (xk|k−1,Pk|k−1)

which makes the filtering distribution p(xk|z1:k) normally
distributed as well.

The Extended Kalman filter (EKF) is by far the most
popular technique for state estimation on non-linear dynamic
systems. Despite its advantages, the EKF comes at the cost
of considerable shortcomings, most of which result from the
EKF’s linearization of process and measurement equations
around the previous estimate. This does not take into account
the statistical properties of the noise, and may ultimately
cause the divergence of the filter [1].

Alternative approaches go back to the definition of first-
and second-moment of the filtering distribution:

xk|k−1 =
∫

xk p(xk|z1:k−1)dxk

=
∫

f (xk−1)p(xk−1|z1:k−1)dxk−1 (3)

The second moment follows the same pattern and is ommit-
ted here due to space restrictions.

In this paper we present the Input-adaptive KF, which
makes use of the QMC-KF algorithm to construct filters that
are tailored to the input data, thereby improving the robust-
ness of a track-fitting system as shown in Section III-B. The
QMC-KF numerically approximates (3) using Monte Carlo
or quasi-Monte Carlo (QMC) integration. QMC-KF [2], a
generalization of σ -point filters, relies on the approximation

xk|k−1 =
n

∑
i=1

f (x(i)k) (4)

where [x(i)k]ni=1 is a low-discrepancy point set of the ap-
propriate dimensionality (in this work, as in [2], we use
randomized Halton point sets) under some transformation
that maps to a Gaussian distribution. This can be done in
several ways, and we explain our choices in Section III-B.

10

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

B. Dealing with non-Gaussianity

Gaussian distributions are hardly appropriate for the phe-
nomena studied in HEP experiments. Measurements include
outliers and ambiguity that introduce tails in the measure-
ment error distribution νk, whereas the biggest contributors
to process noise, energy loss and multiple scattering, are
highly non-Gaussian. Forcing a Gaussian distribution to
describe these effects greatly reduces the amount of infor-
mation contained in the true densities, especially in the case
of multimodal densities.

A common approach to avoid information loss while
remaining within the KF framework consists of modelling
the non-Gaussian distributions by Gaussian mixtures. For ex-
ample, measurement outliers can be handled by a Gaussian
mixture with a “core” component describing the “regular”
measurements, and one or more components describing the
outlier-induced tails [5] (e.g., by a mixture of Gaussians
sharing the mean but with different covariances). Likewise,
ambiguous measurements can be modeled by a mixture of
Gaussians with one component per possible value, i.e., with
the mean set to the possible value and identical variances,
thus concurrently using all possible meanings of the ambigu-
ous measurement. As for process noise, we can model the
tails of the multiple scattering for low-energy particles, or the
highly asymmetric energy loss of electrons by suitable Gaus-
sian sums [6]. In principle, every distribution involved in
the filtering process (state priors, measurement and process
noise) can be modeled as a Gaussian mixture. Taking this
notion as a guideline, Alspach and Sorenson [3] proposed
the Gaussian-sum filter (GSF), where every component of
the mixture is propagated and updated by a standard KF.
This is to say that the GSF consists of a bank of Kalman
filters running in parallel.

III. THE INPUT-ADAPTIVE KALMAN FILTER

All the techniques described in the above section assume
that the same filter will be applied to every input, since
parameters chosen for the filter are fixed at program con-
struction time. This does not reflect the actual system under

Training data

Clustering data

Model selection

GSF code generation σ-KF

Input-adaptive KF (IAKF)

Input data (tracks) State estimates

Figure 1. Conceptual diagram of the IAKF

consideration, and may therefore result in inaccurate or
divergent filters. Here we address this issue by dynamically
building the filter based on the input data. In this section
we present the Input-adaptive KF (IAKF), a GSF driving
QMC-KFs with a preprocessing step of data clustering.

A. Operation of the IAKF

Figure 1. shows the conceptual diagram of the IAKF,
whose general operation is as follows: a sample of the tracks
at the first station is read as a training set, assumed to have
been generated by a Gaussian mixture density

p(x0) =
l

∑
i=1

αiN (µi,Ci) (5)

We fit the training data into the Gaussian mixture, which
models the notion that the measurement noise is multimodal
due to outliers. It is premature to decide a priori how
many terms l the mixture is to have because of the lack
of information on the outlier distribution. Therefore we run
a parameter-estimation task on several candidate component
counts and use a model selection criterion to choose the best
fit among them. The parameter estimation procedure deter-
mines the values for mixture parameters and proportions.
Having determined the appropriate number of components,
we generate the corresponding QMC-KF instances, which
will be “baked in” the final filter. Finally that resulting filter
is run on the input data to perform the actual state estimation.
It is worth noting that the mixing proportion of the Gaussian
sum needs to be reweighted at every iteration to maintain
an accurate estimate.

The model selection criteria we use to determine how
many components the Gaussian mixture should have is the
Bayesian information criterion (BIC). For parameter estima-
tion, we have chosen the Expectation Maximization (EM)
algorithm, a commonly used maximum-likelihood technique
to estimate the parameters of a distribution of a specified
form from training data. As the computational load of the
GSF is directly related to the number of components in the
mixture, we run EM for a low component count (2 to 5).

In the GSF, care must be taken to control the possible
combinatorial explosion of Gaussian terms in the posteriors.
As the IAKF has a fixed number of components, when
any of the constituent QMC-KF estimates becomes multi-
modal, the smaller components are dropped as to maintain
a constant component count.

B. Numerical evaluation

To validate the computational performance of the IAKF
implementation, we test our system on simulated data.
We use the methodology proposed in [7] to simulate the
transit of a charged particle in a magnetic field. Therefore,
the function f takes the form of a 4th-order Runge-Kutta
solution (with fixed-step size) to the equation

dp = κq(v×B)ds/|v|

11

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

where p is the momentum of the particle, q its charge,
v its velocity, dt = ds/|v| the trajectory length, B the
magnetic field, and κ is a constant. The state is the 5-
tuple (x,y, tx, ty,q/|p|) where (x,y)z denote the intersection
of the trajectory with detecting surface z, tx(z) = dx/dz
and ty(z) = dy/dz indicate the particle’s direction at that
point. The observation function h mimics the way silicon
micro-strip detectors carry out measurements, projecting the
x,y-coordinates at the intersections with the stations z. An
illustration of a simplified version of the above system is
shown in Figure 2. The simplifications consist of using an
homogeneous magnetic field and a (uni-modal) Gaussian
noise for both system (a) and measurement (b) noise.

(a) Dynamics process f (motion of
charged particle in a magnetic field)

(b) Measurement process h

Figure 2. Non-linear functions f and h for track fitting

The actual experimental setup consists of adding 2-, 3-
and 4-component Gaussians mixture additive noise to the
measurement process on a 7-station detector. The dynam-
ics of the system are encoded in the Runge-Kutta solver
described above.

We test three filters: the Unscented Kalman filter (UKF)
and the IAKF driving both QMC-KFs and traditional Monte
Carlo filters (i.e., a non-linear filter making use of Monte
Carlo integration of the Kalman filter recurrences). Our
QMC-KF filters are fed by a 1024-randomized Halton se-
quence of state dimension 5. The particular randomization
method is to use an Owen-type scrambling [8].

(a) Covariance trace (b) State estimation residuals

Figure 3. Performance of 2-component IAKF (solid) vs UKF (dashed)

Figure 3 illustrates the relative filter efficiency of the
UKF vs the 2-component IAKF/QMC on simulated runs.

It averages the RMSE (i.e., the trace of the covariance
matrix Pk) on 1024 tracks on 20 stations subject to a 2-
component Gaussian mixture “outlier” measurement noise
(i.e., two components with the same mean but different
covariance). It is shown that the IAKF (solid line) presents
a significantly smaller and steadier filtering error than the
UKF (dashed line), thus providing more accurate and stable
state estimation.

IV. RUN-TIME CODE GENERATION OF THE IAKF

When developing a program, there is a constant tension
between information and time: often, decisions about a
program structure have to be made and implemented well
before any input is actually seen; when input data becomes
available to the program, it is too late for the characteristics
of that data to shape the program’s execution in a deep
level. A system that could interpret the specific input and
generate code specifically tailored to that input and the
host environment would see improved performance. Such a
system clearly has the need to programmatically manipulate
program code. This is made easier by a simple, regular
syntax, so systems based on Lisp or its variants are highly
favoured in this type of application. A common solution
to allow the creation and execution of code at run-time in
languages with richer syntax is to provide a special function
(usually called eval) that takes a string containing the
source code to be executed, and executes it immediately.
Incrementally building strings that constitute correct and
complete programs is difficult enough, but having to deal
with dependencies, variables and other bookkeeping that
allows communication between host and created program
constitutes a cost that far outweights the possible benefits.

A more tractable solution has been found to use a two-
stage approach, where the code to be generated is restricted
to a small domain-specific language (DSL). Instead of feed-
ing text written in this language to an eval-like function, a
full language processing infrastructure processes the DSL
source and somehow injects it to the main code, which
is written in a general-purpose language. The best-known
example of this form of DSL is the pair lex/yacc for
lexer/parser generation, which generates code from the DSL
at compile-time. The recent proliferation of just-in-time
(JIT) compilers has made this two-stage approach possible
at run-time, but the maintenance of two separate source
translation infrastructures is still cumbersome. Recent work
addresses this problem by using an “embedded” variation
of DSL, which uses some facilities of a general-purpose
language, to host a more specific language. Examples of this
technique can be found in a number of modern languages,
like the Spirit [9] parser generator C++ library, the LINQ
language-integrated data-query framework for Microsoft’s
.NET, and most famously, numerous examples in the Ruby
language, like Ruby on Rails. Embedded domain-specific
languages (EDSLs) and JIT compilers are a good fit, as it is

12

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

much easier to develop a compiler for a simple language than
to take on the task of developing an incremental compiler
for a full language.

A central issue when developing EDSLs is the choice of
data structure to represent programs or program fragments.
As stated above, the most natural to use is a string containing
the source of the program to be executed at the next stage.
This representation, however, is rife with problems, as the
contents of a string are effectively out of the control of
the programming language. An alternative is the macro-like
approach incorporated in the Intel Array Building Blocks
(ArBB) library, which is used in this paper and will be
described next.

A. Code generation in ArBB

ArBB, formerly Ct, library [10] is a retargetable dynamic
compilation framework whose main purpose is to facilitate
the coding of programs that are to take advantage of modern
multi- and many-core architectures. As such, it provides a
set of implicitly data-parallel collection data structures and
computational patterns (including map, reduce and prefix
sum). A programmer can make use of this abstract notation
and target several levels of parallelism present in multi-
core homogeneous systems, as well as potentially heteroge-
neous accelerator-based many-core architectures (for exam-
ple, Graphics Processing Units) and cluster-based systems.

A more complete description of ArBB is best found
elsewhere [11]. Here, we focus on the code-generating
aspect. ArBB is a two-stage system, where the programmer
works within the usual confines of the C++ language (the
uncaptured environment), but specifies the functions that
are to be run in parallel using library-provided data types,
functions and control flow (the captured environment). The
rationale for this two-level architecture is that captured code
can be compiled to make maximum use of the system
it is running on: vectorized ALUs, multiple processors,
accelerators and other possible system configurations.

ArBB provides mirrors of C++ control structures in the
form of the ‘keywords’ _if, _for, _while and _do. This
inclusion allows the programmer to express the effect of
the computation serially, even though this computation will
ultimately be performed in parallel. For example, the kernel:

void n r s q r t k e r n e l (a rbb : : f32 a , a rbb : : f32& s)
{

i f (a < 0) { re turn −1; } e n d i f ;
a rbb : : f32 s p r e v = a rbb : : f32 (0) ;
s = a ;

wh i l e (a rbb : : abs (xp rev −x) > t o l) {
s p r e v = s
s = 0 . 5 ∗ (s p r e v + a / s p r e v)

} end whi l e ;
}

can be the argument of a map operator to find the square root
of each (positive) element in an ArBB array. Each invocation
of nr_sqrt_kernel will execute concurrently.

An interesting side effect of this two-level execution
approach can be seen when C++ control flow is used in
captured mode. The following code:
unsigned i n t u n r o l l f a c t o r = 4 ;

void f i l l v e c k e r n e l (a rbb : : dense<a rbb : : f32>& v ,
a rbb : : f32 v a l) {

f o r (s i z e t i =0 ; i < u n r o l l f a c t o r ; i ++)
{ v [i]= v a l ; }

}

has the same effect as unrolling the loop:
void f i l l v e c k e r n e l (a rbb : : dense<a rbb : : f32>& v ,

a rbb : : f32 v a l)
{

v [0] = v a l ; v [1] = v a l ; v [2] = v a l ; v [3] = v a l ;
}

In what follows, we will use this sort of template-based
generation to produce QMC-KFs customised to the input.
It is pertinent to note that, while C++ templates are one
form of code generation and programmatic manipulation
(known as metaprogramming), they are an altogether dif-
ferent mechanism from the one described above for ArBB.
C++ template-based metaprogramming is a compile-time
construct that can be used in addition to the run-time
facilities we have explained.

B. The ArBB implementation of the IAKF

We have built an ArBB implementation of the IAKF,
which determines the number of components NUM_KF by
the procedure described in Section III and uses this number
to generate as many QMC-GSF as necessary, in a manner
sketched by:

f o r k = 0 ; k < NUM KF; k ++) {
f o r (i = N − 1 , i >= 0 , i−−) {

/ / . . . m a g n e t i c f i e l d s e t u p . . .
f i l t e r (t s , ss , x In fo , t s . h i t s X 2 . row (i) , w, T , C) ;
f i l t e r (t s , ss , y In fo , t s . h i t s Y 2 . row (i) , w, T , C) ;
f o r (i n t j = 0 ; j < 3 ; j ++) {

H2 [j] = H1 [j] ;
H1 [j] = H0 [j] ;

}
z2 = z1 ; z1 = z0 ;

} e n d f o r ;
}

The filter kernels are wrapper functions over maps,
which result in a parallelization strategy both over tracks and
over concurrent QMC-KFs. Below we present the results
of some numerical experiments. As an experiment we ran
the filter with 1- and 2-component mixtures to assess the
computational load.

13

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

Figure 4 illustrates a benchmark of our system, running
on a dual-Core Intel i3 at 2.27 GHz. It can be seen from
that the running time is roughly proportional to the number
of components. Beyond that, it is more interesting to note
that the program is scalable, i.e., that the running time
consistently decreases as the number of cores increases. This
is greatly desirable, as core count is only likely to increase
given the current hardware trends.

C. Other approaches to KF code generation

The automatic generation of data analysis programs has
been explored for at least a decade. For example, the
AutoBayes program synthesis system [12] generates C++
code from a declarative specification of the statistical model
via deductive synthesis directed by code templates. As
such, it most resembles the lex/yacc-approach of DSLs
described above, where a separate programming language
infrastructure is required.

Another example of a system that synthesizes KF and
variants code is AutoFILTER [13], which similarly to Au-
toBayes, outputs C++ code from a textual specification
specialized to the description of noise distributions and
differential equations. An interesting variation that AutoFIL-
TER includes is that it links against the libraries from the
Octave linear algebra system, within which its output is
supposed to be used. This illustrates another aspect of code
generation within C++, its interoperability.

In contrast to the above-mentioned systems, our work only
requires a standard C++ compiler. Furthermore, our gener-
ated code takes full advantage of the parallel features of the
architecture the program is running on. On the other hand,
significant work has gone into the automated verification
and certification of the code generated by AutoBayes, an
aspect of considerable importance, which is not covered in
this paper. The interoperability aspect of AutoFILTER is also
a straightforward addition to our system.

V. CONCLUSION

In this work we proposed the Input-adaptive Kalman filter
(IAKF), a member of the deterministic, approximate, non-
linear filter family. In contrast with traditional methods,

Figure 4. Running time of the QSF with 1- (in blue) and 2-component
(in red) MoG νk

the IAKF adapts to the input, running as many filters as
necessary to best fit the input data. This feature, validated
by numerical results, makes its estimates more accurate.
Furthermore, the IAKF is more robust to changes in data
than its non-adaptive counterparts. To implement the IAKF,
we make use of the run-time code generation and com-
pilation afforded us by modern parallelism libraries. It is
our contention that furnishing the end-programmer with
the ability to tailor the program in data-driven programs,
as inferencing systems must be, allows for simple and
straightforward implementation of programs that deal better
with realistic scenarios. Moreover, the improved running
time that modern parallel hardware offers can be put to good
use in more realistic models and greater variety of data.

REFERENCES

[1] R. van der Merwe and E. Wan, “Sigma-point Kalman filters
for probabilistic inference in dynamic state-space models,” in
Workshop on Advances in Machine Learning, 2003.

[2] D. Guo and X. Wang, “Quasi-Monte Carlo filtering in
nonlinear dynamic systems,” IEEE Transactions on signal
processing, vol. 54, 2006.

[3] D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian
estimation using Gaussian sum approximations,” IEEE Trans-
actions on automatic control, vol. 17, no. 4, 1972.

[4] R. G. Esteves, C. Lemieux, and M. D. McCool, “Run-time
generation of qmc-kalman filters for track fitting (abstract),”
in Monte Carlo and Quasi-Monte Carlo methods, 2010.

[5] R. Frühwirth, “Track fitting with long-tailed noise: a Bayesian
approach,” Computer Physics Communications, vol. 85, 1995.

[6] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov, “Re-
construction of electron tracks with the Gaussian-sum filter,”
CERN, Tech. Rep. CERN-CMS-RN-2003-001, 2003.

[7] S. Gorbunov and I. Kisel, “An analytic formula for track
extrapolation in an inhomogeneous magnetic field,” in In-
ternational Workshop on Advanced Computing and Analysis
Techniques in Physics Research, 2005.

[8] C. Lemieux, Monte Carlo and quasi-Monte Carlo Sampling.
Springer, 2009.

[9] J. de Guzman and H. Kaiser, “Boost.Spirit homepage,” http:
//boost-spirit.com, 2010.

[10] “Intel Array Building Blocks homepage,” http://software.intel.
com/en-us/articles/intel-array-building-blocks, 2011.

[11] M. McCool, “Intel Array Building Blocks: A retargetable,
dynamic compiler and embedded language,” in Code Gener-
ation and Optimization, 2011.

[12] B. Fischer, J. Schumann, and T. Pressburger, “Generating
data analysis programs from statistical models,” in Workshop
on Semantics, Applications, and Implementation of Program
Generation, 2000.

[13] J. Richardson and E. Wilson, “Flexible generation of Kalman
filter code,” in IEEE Aerospace Conference, 2006.

14

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

http://boost-spirit.com
http://boost-spirit.com
http://software.intel.com/en-us/articles/intel-array-building-blocks
http://software.intel.com/en-us/articles/intel-array-building-blocks

	Introduction
	Non-linear generalizations to the KF
	Dealing with non-linearities
	Dealing with non-Gaussianity

	The Input-adaptive Kalman filter
	Operation of the IAKF
	Numerical evaluation

	Run-time code generation of the IAKF
	Code generation in ArBB
	The ArBB implementation of the IAKF
	Other approaches to KF code generation

	Conclusion
	References

