
Adapting to the Unknown With a few Simple
Rules: The glideinWMS Experience

Igor Sfiligoi, Benjamin Hass, Frank Würthwein
University of California San Diego

La Jolla, CA 92093, USA
email: {isfiligoi,bhass,fkw}@ucsd.edu

Burt Holzman
Fermi National Accelerator Laboratory

Batavia, IL 60510, USA
email: burt@fnal.gov

Abstract—The High Energy Physics community requires a
large amount of compute resources and had to adopt the Grid
computing paradigm to satisfy its needs. Scheduling of jobs in
the Grid environment is however very challenging, due to the
high autonomy enjoyed by the participating resource
providers, requiring the user community to constantly adapt to
the ever-changing conditions. The CMS experiment addressed
this problem by developing the glideinWMS system, which
addresses this problem by using an overlay compute pool and a
few simple rules for provisioning the needed resources. This
approach has been very successful and is now being used by
several other communities in the Open Science Grid. This
paper provides the description of the glideinWMS system, the
algorithms used as well as an analysis of the experience CMS
has had using the system.

Keywords-layered scheduling; adaptation; glideinWMS.

I. INTRODUCTION

Over the past decade, the high throughput computing in
science has been moving from dedicated compute clusters to
a widely distributed, shared Grid infrastructure in an effort to
distribute the system maintenance effort, increase the
average equipment utilization and gather additional compute
resources in times of need. This paper explores the
challenges of doing Grid-wide user job scheduling in this
environment.

One of the core principles of the Grid paradigm that
makes it so appealing for the scientific resource providers is
the high autonomy enjoyed by each participating compute
cluster, allowing them to participate in the system without
sacrificing neither the quantity nor the quality of compute
resources given to the local users. As a consequence, while
the external, opportunistic users can request to use compute
resources, they have no guarantee if and when those compute
resources will become available.

Another core principle that makes the Grid paradigm
appealing to the user community is, instead, the freedom
users retain to schedule the compute resources the way they
deem more fit; the users are free to choose the product they
like, or for example, only submit to local resources due to the
perceived ease of use. As a consequence, there cannot be a
single Grid-wide job scheduler instance, and there is also no
guarantee that the various instances will exchange
information with one another.

A Grid-wide scheduler is thus unlikely to ever obtain an
accurate state of the whole system, much less be able to
predict what the state of the system will be in the near future.
Being able to adapt to the ever-changing situation is thus
essential.

This paper describes the approach taken by the
glideinWMS system [1,2], a scheduling solution developed
by the Compact Muon Solenoid (CMS) experiment [3] and
extensively used in the Open Science Grid (OSG) [4,5]. The
key component of this system is the conceptual simplicity of
the approach; the user scheduling is solved by the use of an
overlay compute pool and the resource provisioning is
handled by just a few simple rules.

A schematic description of the system architecture is
provided in Section II, while Section III provides a detailed
description of the resource provisioning rules. Section IV
provides an analysis of the experience CMS has had using
the system. Finally, Section V provides a comparison against
other Grid-wide scheduling systems.

II. THE GLIDEINWMS ARCHITECTURE

The glideinWMS approach to Grid-wide user job
scheduling is based on the pilot paradigm. In this paradigm,
the scheduling system does not even try to directly schedule
the user jobs on Grid resources, but instead creates a
dynamic overlay pool of compute resources on top of the
Grid resources, by submitting so-called pilot jobs, and then
schedules user jobs inside this pool. A schematic view of a
pilot system is shown in Fig. 1. More details can be found
in [1].

The pilot jobs are effectively resource provisioners; once
one of them starts on a Grid resource, it takes ownership of
that resource for the allocated lease time, and gives it in
exclusive use of the pilot system, by joining the overlay pool.
The pilot system scheduler thus has complete control over
this overlay pool, and can make scheduling decisions based
on trustworthy information obtained from the provisioned
resources, just as in a truly dedicated compute cluster.

The pilot system, of course, now needs to schedule the
pilots themselves across all the Grid resources, and do this
with only partial information. Due, however, to the nature of
pilot jobs, this task is much simpler than direct Grid-wise
user job scheduling. Unlike user jobs, all pilot job payloads
are the same, and thus the order in which they start is
irrelevant. Moreover, each and every pilot can run jobs from
any user of the community, relinquishing the need of inter-

25

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

pilot priorities. The glideinWMS scheduling algorithms
exploit these properties and do not track the single pilot jobs
themselves, but only monitor and regulate the cardinality of
pilot jobs in the queues.

Somebody, however, still has to actually submit and
track the single pilot jobs as they are submitted to the Grid
sites. In the glideinWMS system this is delegated to a set of
processes called glidein factories, one per logical Grid site,
which are essentially just slaves to the actual scheduling
process, called the VO frontend, as shown in Fig. 2.

The communication between the frontend and a factory is
based on the concept of constant pressure; the frontend
asks the factory to keep a certain number of pending, or idle
pilot jobs in the Grid queue, and to continue to submit new
ones to replace the ones that start running, until the frontend
issues a new request changing that number, possibly to zero.
In Fig. 2, the pressure numbers are represented by letters P
and R.

The adaptability of the system thus lies in the calculating,
at any given point in time, the appropriate pressure point for
each and every Grid site. If the pressure is too low, there may
not be enough idle pilots in a Grid site's queue when
compute resources at the site become available, resulting in a
smaller overlay pool and thus lower user job throughput. If
instead the pressure is too high, the Grid resources added to
the overlay pool may not be needed anymore by any user
job, resulting in wasted CPU cycles.

III. REGULATING THE PILOT PRESSURE

The pilot jobs are being submitted to Grid sites because
there is an expectation that when they do start up and provide
compute resources to the overlay pool, there will be user jobs
that can make use of them. However, in order to accurately
forecast the available jobs at pilot startup, the system would
need to know the current state of the users' job queue, the
Grid site scheduling policies, the behavior of all other Grid-
wide schedulers, the behavior of the local users and the run
times of the users' jobs. Only the first one is available to the
glideinWMS VO frontend.

Most of the logic is thus based on the current state of the
users' job queue. At each iteration, the VO frontend collects
the information about all the idle user jobs and matches them
against the information available about the Grid sites,

similarly to how the matchmaker in the overlay pool would
do it. The details of what information is available and how is
the matchmaking performed is beyond the scope of this
document, and the interested reader should refer to the
glideinWMS manual [6] instead.

Simply calculating the number of idle user jobs for every
Grid site is however not enough. If a user job is capable of
running on more than one Grid site, simply counting each
job against each matching site will result in double counting
for some. The VO frontend thus keeps track of how many
Grid sites each job matches against, and counts each job as
only the appropriate fraction against each matched site. As
an example, if a job matches against sites A, B and C, it will
be counted as 1/3 against each of them.

Once the weighted count of matched idle user jobs is
computed, the VO frontend calculates the pressure point for
each Grid site as a function of the number of matched idle
user jobs, as in

Ps(t)=f(Is(t)). (1)

As stated above, knowing the current state of the users'
job queue is not enough to obtain the optimal value.
However, given that there is no easy way to obtain the vast
majority of data needed for a reliable forecast, the VO
frontend does not even try. Instead, the VO frontend uses a
simple heuristic to achieve the desired result.

In our multi-year experience of using the Open Science
Grid, we noticed that Grid jobs tend to start and terminate
with a relatively flat frequency. Most Grid sites will start and
terminate O(10) jobs every few minutes, and it is very rare to
have O(100) Grid jobs terminate in the same period. As
such, having a pressure point of O(10) is sufficient to get
access to the vast majority of available Grid resources.

With the maximum pressure point capped at O(10), the
remaining range is small enough to not require fine tuning.
The VO frontend thus simply divides the number of
currently idle user jobs by 3, resulting in the following
formula:

f(Is(t)) = min(Is(t)/3,Cs). (2)

Figure 1. A pilot system

Site N

Site 1

Pilot
submitter

Pilot

Pilot

Overlay
pool

Figure 2. The glideinWMS pilot submission

Site N

Site 1

Glidein factory

Pilot

Pilot

VO
frontend

Glidein factoryP

R

26

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

The factor 3 was chosen pretty arbitrarily, but following
the simple logic that the pressure point should be lower than
the number of idle jobs, in order to not over-provision, and
that the fraction should still be high enough to obtain the
desired amount of Grid resources at an acceptable rate.

IV. OPERATIONAL EXPERIENCE

The CMS experiment has been using the glideinWMS
system for over two years and has been generally very
satisfied with the experience. The glideinWMS instance at
UCSD is serving a user community of about 4k users and
scheduling their jobs on Grid resources distributed across
about 100 Grid sites located in the Americas, Europe and
Asia. The actual numbers of Grid sites used by user jobs in a
recent month can be seen in Fig. 3.

As simple as the algorithms described above are, the
system proved to be very effective and efficient. Fig. 4
contains the status of the users' job queue in a recent month,
both idle and running. As can be seen, the CMS users have
been using up to about 16k CPUs in that period, with steep
ramp-ups and ramp-downs based on user jobs demand. This
resulted in short wait times for user jobs; as shown in Fig. 5,
most jobs started within an hour.

Furthermore, as an indicator of the overall system
efficiency, the amount of over-provisioned resources, labeled
as Unmatched in both Fig. 4 and Fig. 6, has been
consistently very low and typically represented less than 5%
of all the provisioned resources.

The glideinWMS systems has also been recently adopted
by several other OSG communities [7], with similar results.
It is worth noting that the addition of several other
independent glideinWMS frontend instances has had no
impact on the performance of the CMS frontend.

V. RELATED WORK

There are several other products that provide Grid-wide
scheduling. They can be categorized as being either direct-
submission or pilot systems.

Two major direct-submission systems are the gLite
Workload Management System (gLiteWMS) [8] and the
Resource Selection Service (ReSS) [9] based OSG
Matchmaker (OSGMM) [10]. Compared to glideinWMS,
both require a more complex setup by requiring continuous
information flow from each and every Grid site. This
approach also is less flexible and more brittle, since the
information source is controlled by the site, and thus cannot
be influenced or verified by the scheduling system; this is not
a problem for pilot-based systems like glideinWMS, because
the needed information is collected directly by the pilots
themselves.

Major pilot-based systems are PanDA [11], DIRAC [12]
and MyCluster [13].

The PanDA approach to scheduling of pilots to Grid sites
is even simpler than the glideinWMS approach; the system
continuously submits pilots to all available Grid sites.
If there are no suitable user jobs available at pilot startup,
it quickly exists, wasting very little wallclock time. The
major drawback of this approach is the high load it imposes
on the batch system of every Grid site. By contrast, the
glideinWMS system only sends out pilots that are expected
to be needed by user jobs, although it too will quickly
terminate them if the submission logic was faulty and there
are no suitable user jobs available.

DIRAC and MyCluster rely instead on separate services
running at each Grid site. This allows them to gather detailed
information about the Grid sites, and thus making a more
informed decision. The major drawback of this approach is

Figure 5. CMS user jobs wait times distribution, in minutes

Figure 6. Over-provisioned resources in the CMS glideinWMS system

Figure 3. Number of Grid sites used by the CMS glideinWMS system

Figure 4. Snapshot of the CMS glideinWMS system

27

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

the assumption that Grid sites will allow the Grid schedulers
to install long-lived services at the sites; while this is
possible at some sites, many others do not allow this option,
thus severely limiting the amount of resources that can be
gathered using those systems.

There are also several pilot-based scheduling systems
that require the users to explicitly request pilots at various
Grid sites. These manually-provisioned systems thus lack
end-to-end automation, and a comparison to the glideinWMS
would not be meaningful.

VI. CONCLUSIONS

The Grid computing environment has many advantages
for compute resource providers, but does introduce
significant challenges for effective user job scheduling. The
main issue is the lack of complete information, which
requires continuous adaptation of a Grid-wide scheduling
system of each and every user community.

The glideinWMS system addresses this problem by
reducing the scheduling complexity through the adoption of
the pilot paradigm, where only the pilot jobs need to be
scheduled across Grid sites. The user jobs are instead
handled within the resulting well-behaved overlay compute
pool.

Unlike user jobs, all pilot jobs carry the same payload.
Together with the fact that there is only one pilot user, this
allows the glideinWMS system to only consider the
cardinality of the pilot jobs, drastically reducing the
scheduling complexity.

Moreover, operational experience tells us that the Grid
job startup frequency is very low, allowing for the capping of
the pilot job pressure at an equally low number without
significant loss in effectiveness. This makes scheduling of
pilot jobs effectively trivial. And the years of operational
experience CMS has with the glideinWMS system confirm
that this approach works very well.

Using the pilot paradigm and looking only at the
cardinality of the pilot jobs thus allow us to reduce the hard
Grid-wide scheduling problem into a mostly trivial endeavor.

ACKNOWLEDGMENT

This work is partially sponsored by the US Department
of Energy under Grant No. DE-FC02-06ER41436
subcontract No. 647F290 (OSG), and the US National
Science Foundation under Grant No. PHY-0612805 (CMS
Maintenance & Operations).

REFERENCES

[1] I. Sfiligoi et al., "The pilot way to grid resources using
glideinWMS," CSIE, WRI World Cong. on, vol. 2, pp. 428-
432, 2009, doi: 10.1109/CSIE.2009.950.

[2] “glideinWMS,” http://tinyurl.com/glideinWMS, Accessed
June 2011.

[3] The CMS Collaboration et al. “The CMS experiment at the
CERN LHC,” J. Inst, vol. 3, S08004, pp. 1-334, 2008, doi:
10.1088/1748-0221/3/08/S08004.

[4] R. Pordes et al., “The open science grid,“ J. Phys.: Conf. Ser.,
vol. 78, 012057, pp. 1-15, 2007, doi: 10.1088/1742-
6596/78/1/012057.

[5] “Open Science Grid Home page,” http://www.
opensciencegrid.org/, Accessed June 2011.

[6] “Glidein Frontend documentation,” http://tinyurl.com/
glideinWMS/doc.prd/frontend/configuration.html, Accessed
June 2011.

[7] I. Sfiligoi et al., “Operating a production pilot factory serving
several scientific domains,” J. Phys.: Conf. Ser., in press.

[8] P. Andreetto et al., "The gLite workload management
system,“ J. Phys.: Conf. Ser., vol. 119, 062007, pp. 1-10,
2008, doi: 10.1088/1742-6596/119/6/062007

[9] P. Mhashilkar, G. Garzoglio, T. Levshina, and S. Timm,
“ReSS: Resource Selection Service for National and Campus
Grid Infrastructure,” J. Phys.: Conf. Ser., vol. 219, 062059,
pp. 1-8, 2010, doi: 10.1088/1742-6596/219/6/062059

[10] “OSG MM - The Open Science Grid Match Maker,”
http://osgmm.sourceforge.net/, Accessed June 2011.

[11] T. Maeno, “PanDA: distributed production and distributed
analysis system for ATLAS ," J. Phys.: Conf. Ser., vol. 119,
062036, pp. 1-4, 2008, doi: 10.1088/1742-6596/119/6/062036

[12] A. Tsaregorodtsev et al., “DIRAC: a community grid
solution,” J. Phys.: Conf. Ser., vol. 119, 062048, pp. 1-12,
2008, doi: 10.1088/1742-6596/119/6/062048

[13] E. Walker, J.P. Gardner, V. Litvin, and E.L. Turner, “Creating
personal adaptive clusters for managing scientific jobs in a
distributed computing environment,” CLADE, 2006 IEEE,
pp. 95-103, 2006, doi: 10.1109/CLADE.2006.1652061

28

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

