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Abstract—The internet is evolving from a global information
network to an environment that offers services for all areas of
life and business, such as virtual insurance, online banking,
or entertainment. Such services are created frequently during
runtime by service providers according to specific user needs
and they operate in a network and service environment that
provides unified access to virtualized resources. Since the
number of available services increases rapidly, it is hard for
a client to find appropriate services and to compose them to
useful systems. Additionally, clients may use the services in
changing situations and the set of appropriate services and
their binding should change accordingly to meet the users’
needs in every situation.

In this article, we present an approach which enables the
automatic context-aware binding of services during runtime
to so called dynamic adaptive systems. For this purpose, we
introduce an approach for checking semantical compatibility
1 of services followed by an integrated approach for usage-
aware service binding. Finally, we present our infrastructure
DAiSI which provides an integrated implementation of both
aspects. DAiSI has been applied to an application prototype
which is also presented in this article and which validates the
applicability of the presented solutions.

Keywords-Service orchestration, service binding, dynamic
adaptive systems, runtime testing, context awareness, runtime
adaptation, user interaction

I. INTRODUCTION

Software-based systems pervade our daily life – at work as
well as at home. Public administration or enterprise organiza-
tion can hardly be managed without software-based systems.
We come across devices executing software in nearly every
household. Increasing size, penetration and features of software-
based systems have brought us to a point, where software-based
systems are the most complex systems engineered by mankind.

Current research areas, like ubiquitous computing, pervasive
computing, or ultra-large scale systems, want to enable the engi-
neering of future software-based systems by sharing a common
trend: Complex software-based systems are no longer consid-
ered to have well-defined boundaries. Instead future software-
based systems are composed of a large number of distributed,
decentralized, autonomous, interacting, cooperating, organically
grown, heterogeneous, and continually evolving services. Adap-
tation, self-x-properties, and autonomous computing are envis-
aged in order to respond to short-term changes of these service-
based system itself, the context, or a user’s expectation. Further-
more, to cover the long-term evolution of service-based systems

1Patent pending. Patent Nr. 10 2008 050 843.8, 8.10.2008

becoming larger, more heterogeneous, and long-lived, service-
based systems so called dynamic adaptive service-based systems
must have the ability to continually evolve and grow, even in
situations unknown during development time.

Since the number of available services increases rapidly, the
requirements of a service user – independent of the service
user seen as human end-user or as another service requesting
for services – regarding other services get even more and even
harder to manage. As a result, a service user has to solve similar
problems regarding service discovery, like the cumbersome and
painful task to find information in the Internet with different
web search engines and other, more or less sophisticated tools
currently available. It is still the user (human or machine) who
has to be the active part searching and browsing the World Wide
Web like looking for a needle in a haystack. Similar problems
arise in the Internet of Services: The service user has to be the
active part searching in the Internet of Services for the best
services. Once he has found service candidates, it’s again up
to him to bind and orchestrate these services to the intended
dynamic adaptive service-based system. The following questions
arise regarding this process:

• What services provide (in a dependable manner) the service
user’s required service functionality and quality?

• What services fit best to the actual service user’s context?
• What services fit best to the actual service user’s usage

intention?
• What is required by the selected services?
• How can the service binding be established for a depend-

able and usage-aware orchestration?

The aforementioned characteristics of a dynamic adaptive
service-based system are the reason that classical software engi-
neering approaches need to be enhanced. In traditional software
engineering many aspects like software architecture, testing,
component configuration were considered during design time. In
dynamic adaptive service-based systems several aspects, like for
instance the service selection, binding and orchestration to the
intended dynamic adaptive service-based system, can only be
processed during runtime considering context information and
service users’ intentions.

In the following we will introduce our means to enable
a (semi-)automatic binding of dynamic adaptive service-based
systems. Thus we will first introduce the characteristics of dy-
namic adaptive service-based systems regarding service bind-
ings. We will continue by giving an example of a dynamic
adaptive service-based system in section III which is used to
illustrate our methods of establishing a service binding in dy-
namic adaptive service-based systems. Section IV introduces our
approach to achieve dependable, usage-aware service bindings
by applying runtime-testing and considering the context during
service binding. A conclusion rounds up the paper.
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Figure 1. Dependable And Usage-Aware Service Binding

II. DYNAMIC ADAPTIVE SERVICE-BASED SYSTEMS
FROM A BIRD’S EYE VIEW

The Internet of Services offers a frequently dynamically
changing set of services for all areas of life and business. To
fulfill the actual user’s2 needs with respect to it’s context the
proper dynamic adaptive service-based system has to be created
from services contained in the cloud of services. Technical
infrastructures for such a cloud of services are already available,
like for instance OSGi [1] or SOPERA [2].

Using these infrastructures one has to manually define, select,
bind and orchestrate required services respectively one has to
implement a predefined set of possible configurations. Assume
– due to continual evolution and growth of number of existing
services in the cloud – a new, yet not considered, service appears,
which would perfectly fit as an additional configuration option
into the defined set of possible service binding and orchestration
configurations. As long as the manually defined respectively
implemented set of possible configurations will not be re-defined
respectively re-implemented this new service will not be taken
into consideration during selection, binding and orchestration of
the services in the cloud to the desired dynamic adaptive service-
based system.

For that reason, more sophisticated infrastructures have been
developed recently in research and practice, like for instance
Microsoft Extensibility Framework (MEF) [3], ASG [4], KER-
META [5], or DAiSI [6]. These infrastructures provide support
for the top level shown in Figure 1: Infrastructures like for
instance MEF or DAiSI introspect the provided and required
interfaces of existing services and service users in the cloud
and try to automatically bind those that match on the syntactical
level.

Obviously, to provide dependable dynamic adaptive service-
based systems, guaranteeing syntactical compatibility in service
binding is not enough. Therefore one also has to guarantee the
semantical compatibility of a service binding more precisely a
compatible behavior of a service user and its required service to
be bound. Hence as shown in Figure 1 in the next level – seman-
tical compatibility – only those required and provided services

2Note, users can be human users as well as other services requesting
services from this service cloud.

Figure 2. Sequence of Events During an Disaster

will be bound that have a compatible syntax and behavior.
As a result we can guarantee the dependability of a service

binding although it will be established automatically during run-
time. However we have to go further. It is not enough to establish
only correct bindings: we also have to take care that only those
service bindings that match with the actual context and an actual
user’s intention will be established. For that reasons on the next
level, the context specific level, only bindings between those
services are allowed that match with the actual context. And
finally, to provide dependable and usage-aware service bindings,
the last level selects those bindings from the remaining possible
bindings, which match the current user’s intention.

By applying this four level approach to reduce possible service
bindings finally only dependable and usage-aware bindings are
established. In the next section we will show these four levels
within a concrete application scenario. We use it to illustrate the
infrastructure-related challenges that we face, to enable dynamic
adaptive service-based system with all characteristics described
above.

III. SCENARIO

Imagine a huge disaster like the one, which occurred during
an airshow in Ramstein in 1988. Two planes collided in air
and crashed down into the audience. In cases of such a disaster
the number of casualties exceeds the number of medics by far.
Thus medics need to get a quick overview of the whole situation
before treating individuals. Therefore they do a quick triage [7],
classifying the casualties regarding the severity of their injury, in
order to treat casualties with serious injuries first. The sequence
of events in case of such a disaster is depicted in Figure 2.

In our scenario, medics are supported by an IT system, en-
abling them to get a quick overview of the overall situation and
to keep track of the physical situation of previously classified
casualties. Medics come along with a medic unit and a bunch
of casualty units. While a medic unit is a smartphone in our
scenario, a casualty unit consists of vital data sensors. Each
medic unit runs a medic application and each casualty unit runs
a casualty service.

Whenever medics discover a casualty in field, they equip him
with a casualty unit and thus the according casualty service of
this casualty unit is started. The medic enters data regarding the
casualty like his identifier, name, gender, or current position on
a medic application. The data entered by the medic is stored by
the casualty service.
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Biosensors like pulse rate sensors or blood pressure sensors
are part of a casualty unit in order to keep the triage class of
the associated casualty up to date if his condition changes over
time. Thus a casualty service executed on a casualty unit enables
medics to capture and monitor a casualty’s physical condition
without needing to be physically present at his place. Within
our example implementation, we used small sensor nodes [8] to
realize casualty units.

After finishing the triage process, medics can use their medic
applications to locate nearby casualties (respectively their ser-
vices) or those, which need help most urgently. Information
about these casualties is displayed by the medic application. This
information is retrieved from the casualty services.

Figure 3 shows an excerpt of the domain architecture used for
the emergency management system in our scenario. You can see,
that casualty services provide a service interface CasualtySIf,
which is used by medic applications. This interface provides
access to the vital data sensors and enables service users to read
and update the triage class of the associated casualty.

EmergencyManagement DomainArchitecturepackage [   ]

+getPulseRate() : int
+getSystolicBloodPressure() : int
+getDiastolicBloodPressure() : int
+setTriageClass( triageClass : TriageClass )
+getTriageClass() : TriageClass

CasualtySIf

CasualtyServiceMedicApplication

SeriouslyInjured
SlightlyInjured
Unknown

Dead

<<enumeration>>

TriageClass

Figure 3. A Domain Architecture for Emergency Management Systems

We distinguish between two kinds of medics. One group
of medics is responsible for the evacuation of slightly injured
casualties while the other group takes care of seriously injured
casualties. Casualties belonging to the aforementioned groups
are displayed on the smartphones of the according medics.

Given that only casualties in the direct vicinity of a medic
should be taken into consideration, only those are displayed on a
medics’ smartphone. Consequently medic get a filtered view of
the situation.

This system is a typical dynamic adaptive service-based sys-
tem. It consists of a vast array of services which are bound to ser-
vice users at runtime: casualty services and medic applications.
All services respectively service users can be provided by differ-
ent vendors. Thus not each medic applications is compatible with
each casualty service; To avoid malfunctions only compatible
medic applications and casualty services may be bound to each
other.

The overall system is evolving during runtime as new casual-
ties may be integrated via their casualty service as well as casu-
alty services may leave the system as casualties are transported
to hospitals for further treatment. Next to this, medics acting as
service users may enter or leave the system at any time.

We use a map depicted in Figure 4 to give you an overview of
the situation which will be considered in the following. The map
depicts all casualties, medics and their locations.

The map is divided into three areas: Area 1 is assigned to
medic M1, area 2 is assigned to M2 and consequently area 3
is assigned to medic M3. The casualties in our example are
classified into two triage classes: slightly injured casualties and
seriously injured casualties. Slightly injured casualties are col-
ored in blue, like casualty e, whereas seriously injured casualties
are colored in red, like a, b, and c. According to the triage class,
medics are responsible for a subset of these casualties. To keep
it simple in our example all medics are responsible for seriously
injured casualties.

M1

Area 1

Area 2

M2 

c

a

e

M1

M3

f

c

b

Area 3

M3

d?

Figure 4. A Situation from our Application Scenario

Area 1 is allocated to M1; consequently he is responsible for
casualty b and casualty c.

A closer look at area 2 points out, that medic M2 has the
option to treat either casualty a or casualty f. Casualties c and
e are not bound to his medic application. Casualty c is not bound
to his medic application as he is semantically incompatible to
M2. Casualty e is slightly injured and therefore not bound to
his medic application as M2 is responsible for seriously injured
casualties only.

Area 3 shows the scope of responsibility of M3. A characteris-
tic of M3 needs to be considered: M3 is a medic, who has been at
the disaster location by coincidence. He got slightly injured and
now has to decide if he either wants to be treated as a casualty d
or if he wants to help casualties as medic M3. The latter results
in the fact that b is displayed on M3’s medic application.

Summing up, casualty services can be bound to medic appli-
cations in different ways. This article describes the mechanisms
to derive meaningful bindings. These mechanisms can be used
to bind dependable and context aware systems at runtime.

IV. CHALLENGES AND APPROACHES IN DYNAMIC
ADAPTIVE SERVICE-BASED SYSTEMS

In the following we describe the challenges associated with
dynamic adaptive service-based systems. We illustrate these
challenges by the means of our scenario introduced before and
depict possible approaches.

Thereby we focus on challenges associated with providing an
infrastructure for dynamic adaptive service-based systems which
is capable of automatic system configuration.

38

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-156-4



A. Semantical Compatibility
During the scenario description we already identified several

dimensions that may be considered to restrict the set of possible
system configurations towards a reasonable size. The first dimen-
sion is the syntactic and semantic check.

1) Challenge: Dynamic adaptive service-based systems
have to handle the fact that service providers as well as service
users from various vendors may enter and leave the system at
runtime. To allow service users to be bound to service providers
at runtime, common domain architectures containing service in-
terface specifications are provided. This causes the problem that
even if all service providers adhere to this domain architecture,
the system correctness cannot be guaranteed if service bindings
are established which have not been tested in advance. This has
two main causes:

1) A service provider implements a service interface in an
incorrect way (Incorrect service).

2) A service user has implicit assumptions about an service
exceeding the specification from the domain architecture
(Underspecification).

Both causes are relevant in practice. On the one hand we
may face incorrect services at any time, as we have an open
system. On the other hand we need semantic underspecification
in a domain architecture to enable vendors to provide service
providers and service users with unique features.

Each service user may be tested respectively verified in com-
bination with a specific service provider or even with various
service providers. Once a service user is bound to a new service
provider his assumptions might no longer hold resulting in
an incorrect system configuration. Hence, the dependability of
the resulting system can no longer be guaranteed, resulting in
potential system failures. It is thus necessary to make additional
requirements of service users explicit in a way enabling us to
evaluate, whether a specific service provider fulfills them at
runtime.

2) Approaches: The basic assumption of our work is, that
the correctness of all possible system configurations of dynamic
adaptive service-based systems cannot be verified respectively
tested in advance. However, correctness of a specific binding
between a service user and a service provider with respect to
the service interface can be verified in advance. Hence, we still
have to detect and prevent incorrect service bindings at runtime
if we want to establish bindings which have not been tested in
advance.

Our approach is the first step towards dependable dynamic
adaptive service-based systems – since it is a testing approach
we cannot guarantee the correctness of the system. Therefore it
needs to be supplemented with a verification mechanism capable
of proving a restricted set of safety-critical properties of the
system at runtime.

The main question addressed by our approach is, whether
a service provider is compatible to a service user. There are
several approaches to provide (limited) statements regarding the
correctness of service bindings:

• Enriching the domain architecture and its service interface
specifications towards a complete specification. Therefore
not only the service interfaces but also the required environ-
ment has to be specified in a semantically sound manner.
This would mean, that the domain architecture contains
a specification, which implies a single specific realization
and leaves no space for unique features provided by single
vendors. Consequently, there is no need for additional
verification of the correct service binding during runtime

as no different variants are possible. Hence, this is not a
practical approach.

• If service user respectively service provider specify – not
on the domain architecture but on the vendor specific
implementation level – their required respectively provided
service, they are compatible in general, if the specification
of the provided service implies the specification of the
required service [9]. As a consequence we have to prove
the refinement relation between two specifications to ensure
their compatibility. It is well known that for a specification
technique with a high expressiveness (e.g. first order logic,
turing machines) this can not be automatized [10], [11].
If we limit the expressiveness of the used formalism (e.g.
finite state machines, regular expressions, some forms
of temporal logic) this relationship can automatically be
proven [12], [13]. Following this approach, correctness
cannot be guaranteed as we cannot specify some aspects –
usually the critical ones – and therefore cannot verify them
anymore.

• Using pre- and postconditions of the domain architecture
to generate assertions, which are evaluated at runtime.
This enables us to shut down the system, whenever an
incompatibility of service bindings occurs. However we
would like to be able to recognize these incompatibilities
in advance and find an alternate service binding, enabling a
seamlessly continued execution of the system.

• Checking the correctness of service bindings by bisimu-
lation [14]. In this case we need to compare the states of
two simulated system executions for every system execu-
tion step: one system is containing the service user and
performs changes to its system state as specified in the
required service specification, the other one is containing
the service provider and performs changes to its system
state as specified in the provided service specification.
Beside the obvious massive performance problems in case
of a recognized incompatibility the only solution is again
shutting down the whole system.

Since none of the previously mentioned approaches is applica-
ble at runtime very well, we propose integrating a runtime testing
approach into a service orchestration infrastructure. Whenever a
service user and a service provider should be bound together, test
cases are executed in advance, which check, whether they match.
Due to changing states of a service user / provider, additional
tests need to be executed at system runtime as well. We need
to show, that these test cases executed during reconfiguration
are good enough to expose mismatches of service bindings.
Whenever a test case fails, the blamable service binding can be
deactivated and the remaining system can still be executed.

In the following we will consider service bindings between
medic applications and casualty services from our scenario intro-
duced before. In this scenario the casualty services act as service
providers implementing the service interface CasualtySIf .

As already discussed in the previous sections, dynamic adap-
tive service-based systems, like the emergency assistance system
in our application example, are based on a standardized domain
architecture containing interface specifications as shown in Fig-
ure 3, For the application example this domain architecture needs
to contain interface CasualtySIf . Medics use this interface to
provide their functionality.

Since we want to build a dependable system binding service
users and service providers developed by different vendors, the
domain model may not only contain syntactical information like
method signatures or datatypes occurring in the interfaces. It also
may contain semantic specifications following the ‘Design by
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Contract’ [15] approach. To specify pre- and postconditions and
invariants we may use mature specification techniques like the
Java Modeling Language (JML) [16].

The specifications for interface CasualtySIf thus may be as
follows. It specifies a method getPulseRate () , which must not
return a negative value, indicated by the following postcondition:
/∗@ ensures (\ result >= 0)@∗/3

The same postcondition is specified for the two meth-
ods dealing with blood pressure: getSystolicBloodPressure
() and getDiastolicBloodPressure () . Moreover an invariant
may state the medical knowledge, that the systolic blood
pressure must be greater or equal than the diastolic blood
pressure: /∗@ public invariant getSystolicBloodPressure () >=
getDiastolicBloodPressure () ; @∗/.

Next to this, a medic application may use interface
CasualtySIf to set the triage class by executing the method public
void setTriageClass ( TriageClass tc ). This enables medic ap-

plications in our scenario to calculate the triage class based
on the vital data queried from the casualty and set it directly
at the casualty. Thus in the following a context-aware medic
application can show for example only casualties which are
seriously injured.

Imagine medic M2 from Figure 4 is equipped with a medic
application, which calculates the triage class in a way, that it
sets the triage class to Dead whenever a pulse rate of zero is
returned by the casualty. It does not consider the blood pressure
in addition. This is correct due to the medic application’s implicit
assumption that a blood pressure of zero is implied in this
case as well. This assumption might have been derived directly
from the service interface specification, if this is specified as
follows: ( getPulseRate ()==0) <==> (getSystolicBloodPressure()
==0) <==> (getDiastolicBloodPressure()==0).

However the case might occur, that this assumption will not
hold at runtime, since

• the vendor of the casualty service has implemented the
service interface incorrectly (Incorrect Service)

• the domain architecture does not contain the invariant spec-
ified before and thus enables different implementations by
different vendors (Underspecification).

In practice binding M2’s medic application to a casualty,
where this assumption does not hold might lead to misclassifi-
cations. Let’s consider that casualty c’s fingerclip measuring the
pulse rate slips off. In this case casualty c would be classified
as dead by M2’s medic application although he still has a blood
pressure greater than zero. This would lead to a situation, where
no medic is sent to this casualty anymore. Thus it is crucial
to detect this incompatibility between medic applications and
casualties.

Now assume that due to dependability reasons dynamic
checkers like the runtime assertion checker JMLRAC [17] are
used during runtime. JMLRAC can be used to execute Java
bytecode, which has been compiled by the JML runtime as-
sertion checker compiler jmlc. This bytecode contains specified
pre- and postconditions as well as invariants. JMLRAC checks
during execution, whether these conditions are satisfied. If any
condition is violated, it generates an exception containing, which
condition has been violated. In the situation depicted above an
exception will state, that an invariant of the casualty service has
been violated: the blood pressure is not zero although the pulse
rate is zero.

3\result is a JML notation referring to the return value of the specified
method.

If we consider medic M1, equipped with a medic applica-
tion which considers blood pressure as well during triage class
calculation, we will recognize another shortcoming. The medic
application of M1 sets the triage class to Dead whenever pulse
rate as well as blood pressure are equal to zero. This means,
that no problem would appear, if this application interacts with
the casualty service – even if the fingerclip slips off. Anyhow
JMLRAC would state that the invariant of the casualty service
has been violated although this would not cause any problems
for a binding to this specific medic application.

As you can see, specifications in JML guiding a runtime
assertion checker help us to detect the incompatibilities within
our example. However we are not satisfied with the results due to
major drawbacks: We may detect incompatibilities which are not
relevant for the binding and we cannot detect incompatibilities
in advance. Service users need to call a method of a service
provider in order to realize, that it does not satisfy their assump-
tions. Therefore we can only detect wrong behavior at the time
when it occurs. If you think of an in-car scenario, this corre-
sponds to a situation, where we realize, that the inflateAirbag ()
method does not work as we expected exactly when we try to
inflate the airbag due to a major accident. Thus it does not really
help us to establish dependable service bindings. Instead we need
to take all possible means to detect incompatibilities in advance.

To address these drawbacks, we provide an approach which
enables us to automatically establish service bindings in a system
using runtime tests to detect incompatibilities among service
users and service providers. However we can only take advantage
of such an approach, if we have a service orchestration infras-
tructure, which uses the test results during service binding. In the
past, we developed the Dynamic Adaptive System Infrastructure
DAiSI [6] aiming at dynamic adaptive service-based systems.

As motivated before, we want to detect incompatibilities at
runtime in advance within this infrastructure. This is done by
runtime testing in our approach. The basic idea in our approach
is, that service users specify test cases which are executed on a
service provider at runtime.

Tests need to be executed by DAiSI before a service user is
bound to a service provider (i.e. at binding-time). These tests
decide, whether the behavior of a service provider corresponds
to the expected behavior defined by a service user in terms of
a test case. In our example, the vendor of a medic application
might specify such a test case for required casualty services.
The test case simply queries the sensor and checks, whether the
results are in the expected range. If the tests pass, the integration
infrastructure can bind a tested service to its specific service user.

After binding, the compatibility of service provider and ser-
vice user needs to be monitored, since this may change over
time when the internal state of service provider or service user
changes. Considering our application example, it does not help,
if the tests at binding time pass, since an incompatibility may
suddenly come up, when the fingerclip measuring the pulse rate
slips off. Thus we need to provide a mechanism enabling us to
execute test cases triggered by state changes of the bound service
users and service providers.

Our approach here is, defining equivalence classes regarding
the state of the service binding. By equivalence classes we
understand state spaces of service user and service provider,
where the same behavior should apply. If we have these classes,
runtime-compliance tests need to be executed each time, when
the state changes in a way, that the equivalence class changes as
well.

The service provider can define equivalence classes based on
the control flow from its implementation. The service user can
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define equivalence classes based on its requirements regarding a
service provider. Both options alone do not help us: equivalence
classes defined for a service binding by a service user can be very
different from the ones defined by a service provider.

One reason for incompatibilities that we want to detect is,
that the understanding of the service binding and therefore the
resulting equivalence class definitions differ. Therefore areas,
where the definitions of equivalence classes differ are especially
important. They could be missed, if we only define equivalence
classes at one endpoint of the binding relation.

Instead our approach is, that equivalence classes for a service
binding are defined by both: service users and service providers.
This however leads us to the question, how they can be combined
in order to derive a changed equivalence class for a service
binding. Our approach is very simple: The service provider as
well as the service user represent the equivalence class for a
service independently simply as a number (e.g. an enumeration
of different behavior expectations regarding the service binding).

The equivalence class for the service binding now is the tuple
containing the service user’s view of the equivalence class and
the service provider’s view of the equivalence class. We call
this tuple a combined equivalence class. Whenever a combined
equivalence class changes towards an untested combination,
runtime-compliance tests need to be executed, since this means,
that the behavior of the provided service or the expectations of
the service user have changed. The service user needs to asso-
ciate a specific test case with each of its equivalence classes. The
specific test case associated with the current service user’s view
of the equivalence class is executed, if the combined equivalence
class changes.

Looking at our approach from a more abstract point of view,
the system executes a sequence as depicted in Figure 5 to deter-
mine, whether a specific service provider behaves as expected by
a specific service user.

3) Evaluation: For our example this means, that the vendor
of the medic application and the vendor of the casualty, define
equivalence classes for the used respectively provided service.

The vendor of the casualty may for example decide, that
its service provides the same behavior regardless of the inter-
nal state. Therefore he implements the getEquivalenceClass ()
method for both sensors in a trivial way: The provider’s view
of the equivalence class is 0 all the time (cf. Listing 1).

1 p u b l i c i n t g e t E q u i v a l e n c e C l a s s ( ) {
2 re turn 0 ;
3 }

Listing 1. A Trivial Implementation
of getEquivalenceClass() for a Casualty.

The vendor of M2’s medic application associates the equiv-
alence classes of the required casualty service directly with the
triage class it calculates for the casualty. The getter for the equiv-
alence classes is depicted in Listing 2. The postfix casualty in
the method name specifies the required service, associated with
this equivalence class definition.

1 p u b l i c i n t g e t E q u i v a l e n c e C l a s s c a s u a l t y
( ) {

2 re turn c a l c u l a t e T r i a g e C l a s s ( c a s u a l t y ) ;
3 }

Listing 2. Implementation of getEquivalenceClass()
of the Medic Application for Required Casualties.

Next to equivalence classes, the vendor of M2’s medic ap-
plication needs to define test cases, which are executed by

the orchestration infrastructure, whenever the state of service
provider or service user changes in a way, leading to an untested
combined equivalence class. The execution of these test cases
should determine, whether service user and service provider are
compatible regarding this service binding in the current state
space. Therefore the medic application contains a test case,
which could be specified in a specification language like UML
Testing Profile [18], [19] or TTCN-3 [20], [21] as depicted in
Listing 3.

This test case states, that the medic application in general is
not compatible to casualties, when the pulse is out of range or
when the triage class is calculated to dead even though one of
the sensor values is different from zero. In these cases the test
fails, whereas it passes in all other cases4.

1 t e s t c a s e I s C a s u a l t y C o m p a t i b l e ( ) runs on
Medic {

2 c a s u a l t y . c a l l ( g e t P u l s e R a t e ( ) ) ;
3 c a s u a l t y . g e t r e p l y ( g e t P u l s e R a t e :{} va lue

? ) −> va lue p u l s e R a t e {}
4 c a s u a l t y . c a l l ( g e t S y s t o l i c B l o o d P r e s s u r e

( ) ) ;
5 c a s u a l t y . g e t r e p l y ( g e t P u l s e R a t e :{} va lue

? ) −> va lue s y s t o l i c B l o o d P r e s s u r e
{}

6 c a s u a l t y . c a l l ( g e t D i a s t o l i c B l o o d P r e s s u r e
( ) ) ;

7 c a s u a l t y . g e t r e p l y ( g e t P u l s e R a t e :{} va lue
? ) −> va lue d i a s t o l i c B l o o d P r e s s u r e
{}

8 a l t {
9 [ ] g e t E q u i v a l e n c e C l a s s c a s u a l t y ( ) ==

T r i a g e C l a s s . Dead {
10 i f ( p u l s e R a t e != 0 | |

s y s t o l i c B l o o d P r e s s u r e != 0 | |
d i a s t o l i c B l o o d P r e s s u r e != 0) {

11 s e t v e r d i c t ( f a i l ) ;
12 } e l s e {
13 i f (0< p u l s e R a t e <300 && 0<

s y s t o l i c B l o o d P r e s s u r e <300 &&
0<d i a s t o l i c B l o o d P r e s s u r e <300)
{

14 s e t v e r d i c t ( pass ) ;
15 } e l s e {
16 s e t v e r d i c t ( f a i l ) ;
17 }
18 }
19 }
20 [ ] g e t E q u i v a l e n c e C l a s s c a s u a l t y ( ) ==

T r i a g e C l a s s . S e r i o u s l y I n j u r e d {
21 [ . . . ]
22 }
23 [ . . . ]
24 }
25 }

Listing 3. Testcase for Casualties as Defined by the
Medic Application in TTCN-3.

If you now take a look at the situation from our example, we
may initially face the situation, that pulse rate as well as blood
pressure are measured by the sensors. In this case, the combined

4Note, that the test case in our example is very simple in order to focus
on the general principles of our approach. Of course we can specify much
more complicated test cases using our approach.
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RuntimeComplianceTestsFull RuntimeComplianceTestsFullinteraction [   ]

ServiceUser ServiceProviderIntegrationInfrastructure

[untested Equivalence Class Combination]

[isCompatibleInCurrentEquivalenceClass]

[else]

alt

opt

directTestInteractiontestEquivalenceClass5: 

isCompatibleInCurrentEquivalenceClass7: 

isCompatibleInCurrentEquivalenceClass6: 

setTestingmode(true)1: 

setTestingMode(true)2: 

setTestingModeForAffectedCommunicationPartners(true)3: 

testEquivalenceClass(getEquivalenceClass(existing CommunicationPartner), getEquivalenceClass(unknown CommunicationPartner))4: 

storeCompatibleEquivalenceClassCombination(getEquivalenceClass(existing CommunicationPartner), getEquivalenceClass(unknown CommunicationPartner))8: 

connectTo(unknown CommunicationPartner)9: 

removeConnection(unknown CommunicationPartner)11: 

setTestingMode(false)12: 

setTestingMode(false)13: 

storeIncompatibleEquivalenceClassCombination(getEquivalenceClass(existing CommunicationPartner), getEquivalenceClass(unknown CommunicationPartner))10: 

setTestingModeForAffectedCommunicationPartners(false)14: 

Figure 5. Sequence of the Runtime-Compliance Test in Our Approach.

equivalence class (Provider: 0, User: 1) will be calculated at
runtime for the service binding between medic application and
casualty. The test case defined above will query the sensor values
and will pass. In case the fingerclip of the pulse rate sensor slips
off, the combined equivalence class changes towards (Provider:
0, User: 0) triggering another runtime compliance test. The
test case execution fails, since the triage class is calculated to
dead although the blood pressure is still above zero. Therefore
the orchestration infrastructure will remove the service binding
between M2’s medic application and the casualty service of
casualty c – there might also exist a fallback mode, where the
triage class can be manually set by M2.

The test case of M1’s medic application would not fail, since
it does not require that pulse rate and blood pressure need
to be equal to zero at the same time. Thus the orchestration
infrastructure would maintain the service binding between M1’s
medic application and the casualty service of casualty c.

As described above, we are able to detect incompatibilities
in advance. However there is still a major drawback of the

runtime-testing approach: Since we are testing the interaction
between service users and service providers at runtime, we need
to ensure that test case execution has no side-effects on our
running system. Our approach therefore integrates a so-called
testing mode.

Before runtime tests are executed, all involved service
providers and service users5 are notified and can transition into
testing mode. Service users respectively providers in testing
mode know, that they cannot rely on the interaction with other
service providers until this mode is deactivated after test execu-
tion. This enables service users respectively providers to restore
their state after test execution and to simulate effects (consider
the airbag example sketched before: you do not want, that the
airbag is inflated due to a test execution, therefore the code
inflating the airbag must be substituted by simulation code in

5A service user respectively provider is involved, if it is directly or
transitively connected by service bindings to the service user respectively
provider, which drives the test or which is currently under test
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b:Casualty

CasualtySIf

M2:Medic

CasualtySIf

c:Casualty

CasualtySIf

a:Casualty

CasualtySIf

M1:Medic

CasualtySIf

MedicSIfMedicSIf

ContextSIf ContextSIf ContextSIf

Figure 6. Considered Situation After the Check of Syntactical and
Semantical Compatibility.

testing mode).
Moreover we need to consider, that test-cases may be erro-

neous. This risk can be limited, if developers of service users use
the same test-cases already during development to test mock-ups
representing the third-party service providers. This enables the
identification of erroneous test-cases at development time.

The runtime testing approach has been implemented within
our DAiSI orchestration infrastructure. It enables us to detect
incompatibilities and remove incorrect bindings at runtime. The
scenario has been exhibited at CeBIT 2009. If you are interested
in the application example, you can find a more detailed descrip-
tion at the exhibit’s webpage [22]. A more detailed description
of our approach and its reference implementation within DAiSI
can be found in [23].

B. Context Awareness
In the section before we introduced a method for checking

the syntactical and semantical compatibility of services. Another
challenge is to use this information to bind those compatible
services to useful context-aware applications. One solution for
the aforementioned challenge is described in this section.

1) Challenge: After restricting the set of services and bind-
ings with respect to syntactical and semantical compatibility,
context information has to be considered, in order to bind the
services to useful applications. A cutout of the situation after
eliminating incompatible services is depicted in Figure 6.

We consider three service providers (the casualties a, b and
c), and two service users (the medics M1 and M2) as shown in
Figure 4. The depicted bindings between service providers and
service users mean that they are syntactically and semantically
compatible. Thus, the shown situation is a result of our runtime
testing approach introduced in the previous section.

This binding is not useful in all applications respectively in
all situations. A useful application in our scenario is to show
only those casualties in the medic application which are located
close to a medic and which are seriously injured. In Figure 4 you
can see that casualty b is located out of range of medic M2 and
that casualty e is only slightly injured. Therefore, the only valid
binding regarding context awareness is to bind M2 to casualty a,
as a is seriously injured and within range of M2. To constraint the
service bindings on application level is the challenge we focus on
in the following.

2) Approach: As indicated before, additional information
about services is needed in order to refine the service binding.
To get this information, we use the methods defined in the

CasualtySIf

M

CasualtySIf

C

MedicSIf

MedicSIf.getID() = „idM2“

CasualtySIf.getTriageClass()=
„SeriouslyInjured“

ContextSIf

ContextSIf

distance(C.ContextSIf, M.ContextSIf)< 20

*

*

1

*

Figure 7. Two Placeholders Defining the Two Required Sets of Services.

according service interfaces shown in Figure 3. Additionally we
define a service interface called ContextSIf depicted in Listing
4 containing context information relevant for service binding. In
our example this interface contains positioning information.

1 package de . c a d a i s i . r e p o s i t o r y . s e r v i c e ;
2

3 import j a v a . awt . P o i n t ;
4

5 p u b l i c i n t e r f a c e C o n t e x t S I f {
6 p u b l i c P o i n t g e t P o s i t i o n ( ) ;
7 }

Listing 4. The ContextSIf service interface.

We will now have a look at how to choose relevant services for
a specific application considering this information first. Later we
will introduce how the distance between medic and casualties
can be taken into account, too. First we want to define that
only those casualties should be connected to the medic which
are injured seriously. To do this, we first define two sets of ser-
vices, one which realizes the medic functionality, and the other
realizing the casualty functionality. Figure 7 shows a graphical
representation of the two sets of services.

Each dashed rectangle represents a set of services with com-
mon properties. We call these rectangles placeholder. During
runtime these placeholders will be filled with services which
meet specific constraints. In the upper-left corner of the rectan-
gles an identifier for each placeholder is given, and in the upper-
right corner the required cardinality.

The set of appropriate services is defined by several con-
straints. First it is given, that a service in placeholder M has
to implement the MedicSIf and ContextSIf service interfaces
and that it should require the CasualtySIf service interface.
Furthermore, a call of the method MedicSIf.getID() should re-
turn a value equal to ‘idM2’. In that way we pick a specific
medic (M2) for the application. For the placeholder C we define
similar requirements. A service placed here has to implement the
CasualtySIf and ContextSIf service interface and the triage class
has to be ‘SeriouslyInjured’. Thus, only casualties remain which
are seriously injured.

Because properties of services may change over time, the
services filling the placeholders also change periodically. Our
infrastructure is able to observe these properties during runtime
and updates the sets of services accordingly. We call a place-
holder activatable, if the number of required services, defined by
the cardinality in the upper-right corner of each placeholder, is
available.
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Having defined these two sets of services, their bindings have
to be defined next. In Figure 7 you can see a binding between
M and C. In this case we define that each service in M can
be bound to an arbitrary number of services in C and that each
service in C can be bound to an arbitrary number of services
in M . Because we already restricted the set M to exactly one
service, the resulting application consists of one medic which is
bound to an arbitrary number of casualties.

Furthermore, the binding defines one additional restriction,
that is, the maximum distance between services in M and C. We
call a binding activatable, if all defined restrictions are fulfilled
by a binding. Our middleware considers these bindings as first
class entities. It observes their properties and compares them
with the according requirements during runtime.

The resulting application is runnable, if all defined place-
holders and bindings are activatable. Again, our infrastructure
automatically establishes the required bindings as soon as the
user starts the application and the application is runnable. In the
next section we describe our realization of this infrastructure in
more detail.

3) Evaluation: Our infrastructure is able to handle the re-
strictions described before while considering the syntactic and
semantic compatibility of the services. To do this, our developed
infrastructure reads an XML based application descriptor where
all constraints can be specified by the application developer.
Such a descriptor looks like depicted in Listing 5.

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2

3 <a p p l i c a t i o n>
4 <p l a c e h o l d e r name=”M” c a r d i n a l i t y =” 1 ”>
5 <p r o v i d e s name=” MedicSI f ”>
6 <c o n s t r a i n t p r o p e r t y =” ge t ID ( ) ” v a l u e

=” idM2” c o m p a r a t o r =” de . c a d a i s i .
Compara tor . e q u a l ” />

7 < / p r o v i d e s>
8 <p r o v i d e s name=” C o n t e x t S I f ” />
9 < r e q u i r e s name=” C a s u a l t y S I f ” />

10 < / p l a c e h o l d e r>
11

12 <p l a c e h o l d e r name=”C” t y p e =” C a s u a l t y ”>
13 <p r o v i d e s name=” C a s u a l t y S I f ”>
14 <c o n s t r a i n t p r o p e r t y =” g e t T r i a g e C l a s s

( ) ” v a l u e =” S e r i o u s l y I n j u r e d ”
c o m p a r a t o r =” de . c a d a i s i .
Compara tor . e q u a l ” />

15 < / p r o v i d e s>
16 <p r o v i d e s name=” C o n t e x t S I f ” />
17 < / p l a c e h o l d e r>
18

19 <b i n d i n g s e r v i c e =” C a s u a l t y S I f ”>
20 <s o u r c e name=”M” c a r d i n a l i t y =”∗” />
21 < t a r g e t name=”C” c a r d i n a l i t y =”∗” />
22 <c o n s t r a i n t p r o p e r t y =” de . c a d a i s i .

C o n t e x t . g e t D i s t a n c e (M, C) ” v a l u e =”
20 ” c o m p a r a t o r =” de . c a d a i s i .
Compara tor . l e s s T h a n ” />

23 < / b i n d i n g>
24 < / a p p l i c a t i o n>

Listing 5. An Application Descriptor for the Emergency Management
System.

In this XML file, two placeholders are defined which rep-
resent the placeholders described in the previous section. One
requirement for services to fill placeholder M is that they have

to implement CasualtySIf. Furthermore, a constraint is given
which says that only services can fill this placeholder that return
‘idM2’ if calling the getID() method. A constraint consists of
three parts: a property, a comparator, and a comparative value.
Our infrastructure will call this method periodically on services
of consideration and check whether the return value meets the
condition.

We implemented some predefined comparators in our middle-
ware, but the set of comparators can be enhanced by application
developers in order to provide comparison of more complex
objects. Finally, the required cardinality for this placeholder
to become activatable is given. The placeholder C is defined
similarly to M .

Additionally, one binding between these two placeholders is
defined within the application descriptor. Here, first the service
interface is given which should be bound. The source and target
tag define the service user and the service provider, respectively.
And finally, it is defined that the distance between service user
and service provider should not be larger than 20. Our infras-
tructure calls the given method getDistance() and compares the
return value with the given value, again using the predefined
comparator class.

V. CONCLUSIONS

Binding service users to service providers in dynamic adaptive
service-based systems at runtime is a hard task. Due to the
diversity of service users and services, we usually have several
options, how we may bind a specific dynamic adaptive service-
based system from them. Dependability and specific usage situa-
tions help us, to filter meaningful bindings from these options.
Thus we can derive meaningful service bindings by applying
some simple mechanisms. As we did not encounter performance
problems within our application examples, we did not evaluate
the performance impact of our approach, yet.

We discussed two aspects of service bindings: semantical
compatibility and context awareness. To identify semantical
incompatible service bindings, we proposed a runtime testing
approach. It is based on test cases defined by a service user.

The semantical compatibility of service bindings may change
during runtime as the internal state of a service provider respec-
tively service user. Since runtime testing only gives a snapshot
of semantical compatibility at the time of test case execution,
we propose to define equivalence classes for a service binding.
An equivalence class states, that equivalent behavior of the
associated service is provided respectively expected.

These equivalence classes are defined by the service users
as well as at the service providers side. An orchestration in-
frastructure can monitor the equivalence classes and repeat test
execution when one of those equivalence classes changes at run-
time. Thus we can identify service bindings which are semantical
incompatible and prevent that they are established at system
runtime by our orchestration infrastructure.

The second aspect we discussed in this article was the context-
aware service binding. Based on the identified syntactical and
semantical compatible service bindings, a useful application has
to be built which is able to react on context changes. To do this,
we introduced the placeholder concept, where each placeholder
defines a set of services based on common characteristics. These
characteristics are on the one hand provided and required service
interfaces. On the other hand we showed how we make use
of information provided by service interfaces in order to refine
the according set of services. Additionally, possible bindings
between services have been restricted also using information
provided by service interfaces.
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Based on our existing infrastructure DAiSI [6] we realized
an orchestration infrastructure, which is capable of deriving and
establishing valid and meaningful service bindings regarding
dependability [23] and context awareness. Using DAiSI we can
establish service bindings in dynamic adaptive service-based
systems automatically at runtime. Thus a vendor of a service-
oriented application does not need to deal with service discovery
and binding anymore, since this task is performed by our infras-
tructure.

An open issue regarding service binding is the involvement of
the user. Despite considering dependability and context aware-
ness, our orchestration infrastructure may determine multiple
valid service bindings. Our infrastructure cannot reason about
the quality of these bindings any further and thus will establish
any of these bindings. However the user might be able to chose
a service binding based on his specific goals. One of these
situations occurs in our scenario; the medic M3 is injured and
has to decide if he either wants to be displayed as a casualty or
as a medic. Since the infrastructure cannot decide this, it makes
a user-driven decision indispensable. This user-integration into
the binding process is only at a conceptual stage at the moment.
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Ecosystems. NTH (Niedersächsische Technische Hochschule) is
a joint university consisting of Technische Universität Braun-
schweig, Technische Universität Clausthal, and Leibniz Univer-
sität Hannover. Furthermore, the work was partly funded by
OPEN (Open Pervasive Environments for migratory iNteractive
services), an VII Framework EU STREP project.

Many thanks to the reviewers for their helpful comments
enabling us to improve this paper.

REFERENCES

[1] O. Alliance, OSGi Service Platform Core Specification, 2007.

[2] SOPERA, “Sopera enterprise service bus,”
http://www.sopera.com [Online; accessed 17-November-
2009].

[3] Microsoft, “Managed extensibility framework,”
http://www.codeplex.com/MEF [Online; accessed 17-
November-2009].

[4] K. Herrmann, K. Geihs, and G. Mühl, “Ad hoc service grid
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and J. Sochor, “Component-interaction automata approach
(coin),” pp. 146–176, 2008.

[13] A. Both and W. Zimmermann, “Automatic protocol confor-
mance checking of recursive and parallel component-based
systems,” in CBSE, 2008, pp. 163–179.
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