
A Software Infrastructure for Executing Adaptive
Daily Routines in Smart Automation Environments

Estefanı́a Serral
Christian Doppler Laboratory

for Software Engineering Integration (CDL)
Vienna University of Technology
Email:estefania.serral@tuwien.ac.at

Pedro Valderas and Vicente Pelechano
ProS Research Center

Universitat Politècnica de València
Email:{pvalderas, pele}@pros.upv.es

Abstract—Since the advent of Pervasive Computing, the ex-
ecution of user daily routines in an adaptive way has been a
widely pursued challenge. Its achievement would not only reduce
the tasks that users must perform every day, but it would also
perform them in a more convenient way while optimizing natural
resource consumption. In this work, we meet this challenge by
providing a software infrastructure. It allows users’ routines to
be automated in a non-intrusive way by taking into account
users’ automation desires and demands. We demonstrate this by
performing a case-study based evaluation.

Index Terms—adaptive routine automation; models at runtime;

I. INTRODUCTION

In recent decades, computers have become more and more
common in many items such as ovens, refrigerators, coffee
makers, mobile phones, tablets, etc. This proliferation of
technology brings the building of smart environments closer
to becoming a reality. Smart environments provide services to
control the items that are used in our daily activities [1]. For
instance, there are pervasive services for controlling lights, air
conditioner and heating, windows, coffee makers, etc.

One of the final goals of developing smart environments
is to automate user daily routines by using these services. A
routine is a set of tasks characterized by habitual repetition
in similar contexts. For instance, a typical routine could be
the following. Every working day at 8 o’clock, Bob’s alarm
clock goes off. Bob wakes up, switches the lights on and stops
the alarm. Then, to take a shower, Bob turns on the bathroom
heating if it is cold. Finally, after getting dressed, Bob goes
to the kitchen and makes a coffee for breakfast.

Due to the fact that people are creatures of habit, we
perform numerous daily routines such as the one presented
above. Several works, such as [2][3][4] [5], have dealt with
performing these routines on the users’ behalf; however, their
solutions may lead to intrusive systems that automate tasks
that users do not necessarily want automated. In this work,
we present a software infrastructure capable of automating
users routines in a non-intrusive way. Due to the complexity
of human behaviour, user participation is necessary in order to
avoid intrusiveness when attempting to fulfill user demands.
For this reason, the infrastructure that we propose makes use
of models during runtime. These models allow routines to
be represented by using high-level concepts that are close to

user knowledge. This helps users to understand the routines
to be automated and to participate in their design. By simply
interpreting the models at runtime, the infrastructure can
automate the routines as described.

With this infrastructure, we could make users’ lives easier
and provide them with a higher quality of life: they would
not have to waste their time or worry about the tasks that
could be automated (e.g., Bob will never oversleep in the
morning because the alarm clock is set automatically). In
addition, these tasks could be performed more efficiently and
in a more convenient way for users since tasks can be analyzed
before being automated using the models (e.g., heating could
be turned on 10 minutes early so that the bathroom is already
hot when Bob takes a shower; instead of the alarm clock going
off, Bob’s preferred radio channel could be used). Moreover,
routines could self-adapt according to context (e.g., blinds
could be raised if it is a sunny day instead of switching lights
on) and could help to reduce natural resource consumption
by applying the advice provided by experts on controlling
lighting, heating and air conditioning, taps, and so on (e.g., all
lights could be automatically switched off when the inhabitants
leave home; blinds could be lowered in summer when nobody
is at home so that it is not so hot when the inhabitants arrive).

The rest of the paper is organized as follows. Section II
describes the related work. Section III explains essential
requirements for routine automation. Section IV presents the
software infrastructure that automates routines in a context-
adaptive way. Section V validates the approach using a case
study based evaluation. Section VI concludes the paper.

II. RELATED WORK

Related work can be subdivided into machine-learning
approaches, context-aware rule-based approaches, end-user
centered approaches, and task-oriented computing.

Machine-learning approaches have attempted to deal with
the automation of user routines by automatically inferring
them from past user actions [2][3]. These approaches have
done excellent work by automatically learning from user
behaviour; however, they have some drawbacks. They may
be intrusive for users because they do not usually take into
account users’ desires (e.g., the repeated execution of an action
does not imply that the user wants this automation). Also, they

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

reproduce the actions that users have frequently executed in
the past and in the same manner that they were executed. This
prevents user tasks from being carried out in a more efficient
and convenient way and does not allow tasks to be automated
if they were not performed by users (e.g., closing windows
when users are not at home and it starts to rain).

Context-aware rule-based approaches have made great ad-
vances in introducing context into software systems. To auto-
mate user tasks, they program rules that trigger the sequential
execution of actions when a certain context event is produced
[4] [5]. However, although context information is taken into
account, these works do not usually consider the personal
desires of each user; therefore, they may still be annoying. Fur-
thermore,these techniques are only appropriate for automating
relatively simple tasks [6]; hence, they usually require large
numbers of rules. If we also consider that these rules have to be
manually programmed [6], the understanding and maintenance
of the system may become very difficult.

End-user centered approaches provide alternatives for end-
users to program their environments [7][8]. Most of these ap-
proaches are focused on end-user programming by presenting
particular UIs and languages. These approaches generally pro-
vide better user control. However, they have limited capacities
to help end-users build the automations. Therefore, they are
only appropriate for developing simple tasks commonly de-
scribed in the literature, such as controlling lights or doorbells.

Task-oriented computing uses task modelling to facilitate
the interaction of users with the system. These systems have
proven that task modelling is effective in several fields such
as user interface modelling [9], assisting end-users in the exe-
cution of tasks [10], etc. These works show the growing usage
of task modelling and its remarkable results and possibilities
to model system behaviour. However, none of these works at-
tempt to automate adaptive daily routines. Hence, they neither
provide enough expressiveness to specify adaptive routines nor
enough accuracy to allow their subsequent automation.

III. REQUIREMENTS FOR ROUTINE AUTOMATION

The users’ tasks automation is a delicate matter. The execu-
tion of an undesired task will be intrusive for users, and may
bother them, interfere in their goals, or even be dangerous; all
of which would eventually cause the loss of user acceptance
of the system. For instance, consider that the outside door and
the security system have been programmed so that the door is
automatically locked and the security system is automatically
activated when the inhabitants leave home. This can be useful
because they will not have to do these tasks anymore, but it
can also be a burden if the inhabitants are absent-minded: they
will have to unlock the outside door and deactivate the alarm
every time they forget something. To prevent these intrusive
situations, the following aspects are required:

• The routines must be automated according to the
users’ desires and demands. This is essential so that
the routines to be automated are those that users want
and are automated the way they want them to be. Due to
the technical context, and the imprecise and ambiguous

nature of human behaviour, it is very difficult for a
system to sense or infer this information. Therefore, the
participation of the users is necessary in order to fulfill
their automation desires and demands [11].

• The routines must be adaptive to context. Context
information is essential to be able to execute the routines
in the opportune situation. For instance, in the routine
used as the example, it would be intrusive if the bathroom
heating is switched on when the temperature is high or if
the radio is turned on anytime. Therefore, routines must
be described in a context-adaptive way (e.g., the bathroom
heating must be automatically switched on at 7:50 on
working days only if the temperature is low, and the radio
must be turned on 10 minutes later).

• Routine adaptation must be facilitated at runtime.
Some routines might never change in user life; however,
most of them will. Users’ behaviour usually changes over
time and the automated routines need to be adapted to
these changes. Otherwise, the system may become useless
and intrusive. Since these types of changes cannot be
anticipated at design time, the automation of routines
must be performed in such a way that their adaptation
after system deployment is facilitated at runtime.

IV. THE SOFTWARE INFRASTRUCTURE

A smart environment is developed to provide pervasive
services that serve people in their everyday life. These services
are in charge of interacting with physical devices in order to
change the state of the environment and to sense context. On
top of these services, we develop a software infrastructure (see
Figure 1) that is designed to properly automate user routines
satisfying the requirements explained in the previous section:

• To facilitate user participation, the software infrastruc-
ture makes use of design models at runtime. It provides a
task model that describes the routines by using concepts
of a high-level of abstraction that are close to the domain
and to user knowledge (concepts such as task, preference,
location, etc.). This helps end-users to participate in the
routine description since it allows them to focus on the
main concepts (the abstractions) without being confused
by low-level details [12].

• To execute the described routines in a context-adaptive
way, the task model describes each routine as a co-
ordination of pervasive services that are performed in
the opportune context, i.e., in a context-adaptive way. In
addition, in order to be aware of the current context and to
be able to automate the routines accordingly, the software
infrastructure provides a context manager. It dynamically
manages the context changes produced at runtime by
using a context repository.

• To automate the described routines in such a way that
their adaptation after system deployment is facilitated,
the software infrastructure has an automation engine that
directly interprets the task model at runtime. The model
is machine-processable and precise enough to provide the
infrastructure with all the information needed to execute

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Automation
Engine

Lamp Blind
Actuator

Movement
Detector

User
Location

Alarm Lighting

DoorControl
Window
Control Services

Devices

Task Model

Calendar

Personal
data

Context Repository

Context
Manager

BlindControl

Window
Actuator

Alarm

Interpret InterpretUpdate

Monitor Execute

Inform

1.

2.

3.

4.

5.

Door

Fig. 1. Runtime infrastructure

the routines. Therefore, when a context change is detected
by the context manager, it informs the engine. The
engine then reads the routine information from the task
model and executes the corresponding pervasive services
according to context. With this strategy, the task model is
the only representation of the routines to be automated.
This allows the routines to be adapted by simply updating
the model. As soon as it is changed to adapt the routines,
the changes are also taken into account by the engine.

Thus, the infrastructure provides the following main compo-
nents (see Figure 1): the context-adaptive task model, which
describes each routine as a context-adaptive coordination of
pervasive services; the context manager, which is in charge of
monitoring context changes at runtime, updating the context
repository accordingly, and informing the automation engine
about the changes; and the automation engine, which is in
charge of automating the routines in the opportune context by
interpreting the models.

A. The Software Infrastructure in Execution

The software infrastructure executes the routines as de-
scribed in the task model. This model allows the routines to
be described precisely and at a high level of abstraction. As an
example, Figure 2 shows the modelling of the routine used in
the introduction (the WakingUp routine). The root task of the
hierarchy represents the routine and is associated to a context

situation, which indicates the context conditions whose ful-
filment starts the execution of the routine (WorkingDay=true
AND CurrentTime=7:50). The root task is broken down into
simpler tasks (turn on bathroom heating, turn on the radio,
illuminate the room and make coffee). An intermediate task
must be broken down until the leaf tasks can be executed by
an available pervasive service. Each leaf task must be related to
a pervasive service that can carry out the task. For instance, the
turn on the radio task is associated to a pervasive service that
interacts with the radio to turn it on. This relation is established
by simply indicating the service identifier.

If the tasks of the same parent are related to each other, they
are carried out in a sequential order according to the indicated
temporal relationships. These relationships may depend on
context. Thus, in the example, the heating is turned on first;
ten minutes later, the radio is turned on and the room is
illuminated; and finally, a coffee is made when the user enters
the kitchen.

A task can have a context precondition (represented between
brackets), which defines the context conditions that must be
fulfilled so that the task is performed (e.g., the turn on
bathroom heating task is only executed if the temperature
is low). If the tasks of the same parent are not related to
each other, only the first task whose context precondition is
satisfied is executed; e.g., to illuminate the room, if the outside
brightness is low, lights will be switched on; otherwise, blinds
will be raised.

To automate the routines as described in the task model,
the software infrastructure performs the following steps (see
Figure 3):

1) Detecting context changes: A context change is phys-
ically detected by a sensor, which is controlled by a
pervasive service in the smart environment. The context
manager monitors all these services to check context
changes. For instance, the context manager monitors the
Clock service to detect the time changes. When a change
is detected (e.g., it is 7:50 a.m.), the manager updates
the current context in the context repository and notifies
the engine about this change.

2) Checking context situations: After receiving the no-
tification of a context change, the engine analyzes the
context situations of the routines specified in the Task
Model to check if any of them depend on the context
change. Then, by making use of the context manager,
the engine checks if any of those context situations are

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

|=|
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
the radio

Fig. 2. Routine task for waking up the user

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

CurrentTime=7:50

CurrentTime=7:50

CurrentTime=7:49
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

CurrentTime=7:50

CurrentTime=7:50
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

CurrentTime=7:50
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

Task Model

1. Detecting context changes
Current Context

Current Context

Current Context

2. Checking context situations

3. Executing the routine tasks

interpret

interpret tasks
and context

execute
services

1. detect
context
change

2. update
context

3. inform about
 the change

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

turn on
the radio

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>>

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

turn on
the radio

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>>

Task Model

Fig. 3. A possible execution of the WakingUp routine

fulfilled. For instance, when the context manager notifies
the engine that it is 7:50 a.m., the engine gets the context
situations that depend on time, such as the one for the
WakingUp routine, and checks them. On a working day,
the engine checks that the context situation of the the
WakingUp routine is satisfied.

3) Executing the routine tasks: The engine executes
the routines whose context situation is satisfied. The
engine uses the context manager to check the con-
text conditions. To execute each routine, the engine
executes its leaf tasks according to their refinements,
their context conditions in the current context, and their
temporal relationships. For instance, to automate the
WakingUp routine, the engine gets the first subtask (turn
on bathroom heating) and checks its precondition (Bath-
roomTemperature=low). If it is true, the engine executes
its related service. The engine then waits 10 minutes,
as its relationship with the next task indicates. After

that, the engine executes the service related to the turn
on the radio task. The engine then gets the next task,
which is the illuminate the room task. To execute it, the
engine gets its first subtask (switch light off) and checks
its context precondition (OutsideBrightness=low). If it
is satisfied, the engine executes the service related to
the task for switching lights on. Otherwise, the engine
executes the service related to the raise blinds task
because its context precondition is the opposite one
(OutsideBrightness!=low).
Finally, the engine gets the last task. This is related to
the previous task by the >>[UserPresence=Kitchen]>>
relationship; therefore, the engine waits until Bob enters
in the kitchen and then executes the makeCoffee service.

B. Implementation Details

To describe the task model, we have developed a graphical
editor using the Eclipse platform, and the EMF and GMF
plugins. By using this editor, the model can be graphically
edited as shown in Figure 2. These descriptions are stored
in XMI (XML Metadata Interchange), which is machine-
interpretable at runtime. The context repository is represented
as an OWL (Web Ontology Language) ontological model.
OWL is an ontology markup language W3C standard that
greatly facilitates runtime interpretation and reasoning.

The context manager and the automation engine are im-
plemented in Java/OSGi technology and are run in an OSGi
server together with the pervasive services. Note that the
infrastructure is decoupled from the service implementation
since we only need to indicate a service identifier.

Using OSGi, the context manager can listen to the changes
produced in the services to detect context changes and can
also inform the engine when a change is detected. To execute
a task, the engine searches for the pervasive service associated
to the task in the OSGi server by using its service registry.
Then, the engine executes the corresponding service by using
the Java Reflection capabilities.

To manage the task model at runtime, the engine uses the
EMF Model Query plugin that allows a system to work with
any model by querying its structure at runtime. To manage
the context repository at runtime, the context manager uses
the OWL API 2.1.1, which provides facilities for creating,
examining, and modifying an OWL model; and the Pellet
reasoner 1.5.2., which allows the OWL model to be queried.

More technical details can be found in [13].

V. VALIDATION OF THE PROPOSAL

In order to validate the presented software infrastructure,
we have applied a case-study based evaluation by following
the research methodology practices provided in [14].

The purpose of the evaluation was to validate that our
software infrastructure supports the execution of adaptive
routines and only automates the routines that users want and
in the way they want them. To validate this, we evaluated
the following research questions according to the requirements
presented in Section III:

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

1) Does the infrastructure facilitate user participation to
take into account user automation desires and demands?

2) Does the infrastructure correctly automate the routines
in a context-adaptive way?

3) Does the infrastructure allow routines to be adapted by
changing the task model at runtime?

We now summarize the results of this evaluation. More
details can be found in [13]. Also, we have recorded several
videos that show the software infrastructure in execution. They
can be found at http://www.pros.upv.es/art.

A. User Participation

We designed and developed 14 case studies in the smart
home domain, covering different set of inhabitants (families,
couples and single people). We selected smart homes because
this a is fertile ground for offering products and services to
improve people’ lives. Specifically, the overall purpose of the
developed case studies was to make inhabitants’ lives more
efficient and comfortable and to save energy consumption. A
total of 18 subjects between 26 and 57 years old participated
as the clients of the case studies (8 female and 10 male). Ten
of them had a strong background in computer science, while
the rest only had basic computer knowledge.

We identified from 6 to 12 routines to be automated in
each case study resulting in a total of 97 routines. It took us
between 40 and 90 minutes to specify the routines of each case
study using the task model. We then briefly taught the subjects
about the main components of the task model notation and
evaluated their comprehension to determine if the task model
facilitated user participation. To do this, we used a short semi-
structured interview in which we asked the subjects questions
to make them reason about the task model. For instance, some
of these questions were: how many tasks will be executed in
this routine?; when will this routine be activated?; when will
this task be executed?.

We found that 14 of the 18 subjects understood the routines
specified in the task model perfectly. The other 4 users, those
with little mathematics and computer skills, understood the
structure of the model (task hierarchy and task relationships)
very well; however, they had difficulty knowing what the used
context conditions meant. To solve this problem, we added a
new view in the task model editor to show these conditions
in natural language. For instance, instead of showing [Out-
sideBrightness=low] switch lights on in the model, we show:
if the outside brightness is low, switch lights on, or instead
of showing >> [UserPresence = Kitchen] >>, we show
when you arrive to the kitchen.

After checking the subjects’ comprehension of the model,
we explained the specified routines to them. We found that
the task model is very useful in discussing and validating the
routines to be automated. If something was not specified the
way the users wanted it to be automated, we refined the model
to fulfil their requirements. We repeated this process until the
users agreed with the specification. This allowed us to describe
the routines by taking into account the automation desires and
demands of the users.

B. Context-Adaptive Routine Automation

Once the task models were validated, we put the system
into operation to automate the described routines. We used a
scale environment with real devices (see http://pros.upv.es/art)
to represent the Smart Home. This execution environment was
made up of a PC and a network of KNX devices connected
to the PC by a USB port. An Equinox distribution (which is
the OSGi implementation of Eclipse) was run in the PC. The
software infrastructure together with the pervasive services
required to execute the leaf tasks of the routines (a total of
26 services) were installed and started in Equinox.

By using JUnit tests, we validated that the routines were
correcly automated in a context-adaptive way. Specifically, the
following aspects were validated:

• All the routines were triggered only when its context
situation was fulfilled.

• When a routine was executed, all the required services
were executed in the correct order and in the correct
context conditions.

The proposed validation consisted in: (1) simulating the
fulfilment of specific context conditions in order to trigger
the execution of several routines, and (2) checking that all the
services that must be executed were registered by the context
manager in the correct order, respecting the corresponding
temporal relationships between the tasks.

We performed this process in an iterative way, which
allowed us to detect and solve some mistakes. For instance,
we realized that the routines dependent on time, made the
system enter into a loop. This was because the system updated
time every second and the smallest time unit considered in
the routines was minutes. Thus, the context situation of these
routines was continuously fulfilled until a minute went by. To
solve this problem without overloading the system, we updated
the context manager to update time every minute.

C. Routine Adaptation after System Deployment

We validated that the routines could be easily evolved by
changing the task model at runtime. Specifically, we changed
the task model to perform the following types of adaptation:
delete routines; modify routines by changing their context
situation and their tasks (task order, context preconditions,
temporal relationships, etc.); and add new routines.

After each adaptation, we simulated the fulfilment of the
context situations of the routines and applied the JUnit tests
again to check that the routines were correctly executed ac-
cording to the performed evolution. For instance, we modified
the WakingUp routine. We changed the second task in order
to wake Bob up with relaxing music; we removed the lighting
task, and added a new task so that the system informed Bob
about the weather when he was in the kitchen. Figure 4 shows
these modifications in the task model and the execution trace
of the WakingUp routine before and after evolving it.

VI. CONCLUSION

In this work, we have presented and evaluated a sofware
infrastructure that achieves the automation of adaptive daily

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
the radio

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
relaxing music

inform about
the weather

>>

Modifying a task
Removing a task

Creating a new task

The new task is executed

The Illuminate the room task

 is not executed any more

Fig. 4. Execution traces before and after evolving the WakingUp routine

routines. These routines are represented in high-level abstrac-
tion context-adaptive models that are directly interpreted at
runtime. This considerably facilitates the further adaptation
of the routines by changing the models (i.e., at the modelling
level) at runtime, which is one of the top challenges in software
evolution research [15]. As soon as the models are changed
to adapt the routines, the changes are also taken into account
by the automation engine.

Further work will be dedicated to extending the approach
with machine-learning algorithms in order to provide more
automation in the requirements capture and the routine adapta-
tion after system deployment. When the system is running, the
context manager stores the user actions in the context reposi-
tory. Machine-learning algorithms can use this information to
detect new routines or changes in the ones already specified
and adapt the models accordingly.

ACKNOWLEDGMENT

This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria.

REFERENCES

[1] F. Mattern, “The vision and technical foundations of ubiquitous com-
puting,” Upgrade European Online Magazine, pp. 5–8, 2001.

[2] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,
and H. Duman, “Creating an ambient-intelligence environment using
embedded agents,” IEEE Intelligent Systems, vol. 19, no. 6, pp. 12–20,
2004.

[3] P. Rashidi and D. J. Cook, “Keeping the intelligent environment resident
in the loop,” in IE 08, 2008, pp. 1–9.

[4] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Using context and
preferences to implement self-adapting pervasive computing applica-
tions,” Software: Practice and Experience, vol. 36, no. 11-12, pp. 1307–
1330, 2006.

[5] M. Garcı́a-Herranz, P. Haya, and X. Alamán, “Towards a ubiquitous
end-user programming system for smart spaces,” Journal of Universal
Computer Science, vol. 16, no. 12, pp. 1633–1649, 2010.

[6] D. Cook and S. Das, Smart environments: Technology, protocols and
applications. Wiley-Interscience, 2004, vol. 43.

[7] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a cappella:
Programming by demonstration of context-aware applications,” CHI
2004, pp. 33–40, 2004.

[8] J. Chin, V. Callaghan, and G. Clarke, “A programming-by-example
approach to customising digital homes,” in IE 08, 2008, pp. 1–8.

[9] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt, “Task modelling for
context-sensitive user interfaces,” Interactive Systems: Design, Specifi-
cation, and Verification, pp. 49–68, 2001.

[10] R. Huang, Q. Cao, J. Zhou, D. Sun, and Q. Su, “Context-aware active
task discovery for pervasive computing,” in International Conference on
Computer Science and Software Engineering, 2008, pp. 463–466.

[11] F. M. Reyes, “Issues of sensor-based information systems to support
parenting in pervasive settings: A case study,” Emerging Pervasive
and Ubiquitous Aspects of Information Systems: Cross-Disciplinary
Advancements, p. 261, 2011.

[12] F. Paternò, “From model-based to natural development,” HCI Interna-
tional, pp. 592–596, 2003.

[13] E. Serral, “Automating routine tasks in smart environments. a context-
aware model-driven approach,” Ph.D. dissertation, Technical University
of Valencia, DSIC, 2011.

[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[15] T. Mens, “The ercim working group on software evolution: the past and
the future,” in IWPSE-Evol workshops. ACM, 2009, pp. 1–4.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

