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Abstract—The development of self-optimizing software
systems usually requires developers to apply optimization
techniques manually, which is time consuming and prone to
error. The application of model-driven software development
combined with models at runtime takes this burden from
developers by generating optimization problems using model
transformations. In this paper, we present two such ap-
proaches applying integer linear programming and pseudo-
boolean optimization. Furthermore, we provide a scalability
analysis of both approaches showing their feasibility for pipe-
and-filter applications.

Keywords—self-adaptive systems; integer linear program-
ming; pseudo-boolean optimization; MDSD

I. Introduction

The future of software systems is predicted to be
characterized by ubiquitous, interconnected software com-
ponents, running on several heterogenous resources that
are subject to frequent changes and optimize themselves
w.r.t. their non-functional behavior [1], [2].

In this paper, we address a particular problem of such
self-optimizing software systems: the burden of developers
to apply optimization techniques manually, which is time
consuming and prone to error. We propose to generate
optimization problems from models, being more natural to
the developers. Thus, we propose the application of model-
driven software development, especially model transforma-
tions, and the models at runtime paradigm [3] to develop
self-optimizing software systems.

We present two approaches: an Integer Linear Program-
ming (ILP)-based and a Pseudo-Boolean Optimization
(PBO) [4]-based solution. Both techniques belong to com-
binatorial optimization [5]. They are suited, because the
system configurations, amongst which the best is searched,
are combinations of decisions (e.g., which implementation
to choose). We compare both approaches and evaluate
them w.r.t. scalability, showing their applicability despite
their high complexity.

The core contributions of this paper are:

• A runtime optimization approach using ILP.

• A runtime optimization approach using PBO.

• A scalability analysis of both approaches.

The remainder of this paper is structured as follows.
In Sect. II a model-driven architecture for self-optimizing
software systems is presented being the basis for both the
ILP-based solution discussed in in Sect. III and the PBO-
based solution discussed in Sect. IV. The scalability of both
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Fig. 1. VideoPlayer SW components and implementations.

approaches is examined in Sect. V. Finally, in Sect. VI we
outline related work and conclude the paper in Sect. VII.

II. A Contract-based Architecture for
Self-Optimizing Systems

To design and model self-optimizing systems, we de-
veloped the non-functional property (NFP)-aware Cool
Component Model (CCM) [6] and the Quality Contract
Language (QCL) [7]. The CCM provides concepts to model
hierarchical system architectures, covering both software
components and hardware resources, because most NFPs
base on the software’s interaction with hardware resources
(e.g., execution time and energy consumption). QCL pro-
vides concepts to express dependencies between CCM
components based on NFPs. This implies dependencies
between software components as well as software and
hardware components. In the following, we introduce CCM
and QCL, by means of a video application scenario.

A. Capturing Software and Hardware Components

The CCM distinguishes between modeling the system
structure of hardware resource types, software components
and variants of both. In the scope of this paper, variants
of resource types are concrete hardware resources; variants
of software components are concrete implementations. The
system structure defines how a system looks like and,
thus, represents type declarations for specific variants. For
instance, consider the upper part of Figure 1 showing
the types for a video application. It consists of three
software components, namely a Player, a Decoder and
a DataProvider. Each component may have one or more
port types representing interfaces of the component. Port
types can be used to connect different components. A set
of connected components describes a software system.

Concrete implementations of software components
(cf. Figure 1) have to correspond to their type. In the
given example two variants of Players, the VLC (Video
LAN Client) and Quicktime (QT) implementation exist.
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Fig. 2. Top: CCM Structure Model for hardware landscapes. Bottom:
CCM Variant Model for a hardware landscape of 2 servers.

For Decoders, a free (Free) and a commercial (Com.)
implementation are available. Finally, the DataProvider
is implemented as a local file reader (File) and a remote
URL reader (URL).

To capture types available in the hardware landscape,
resource types are specified. The upper part of Figure 2
defines resource types, on which our video application shall
be executed. The Infrastructure consist of one or more
Servers, whereas each server contains one or more CPUs,
network interfaces (Net), RAM chips and hard disks (HDD).
For reasons of simplicity, we omit port types of resource
types in the given example.

For each component type (software and hardware),
NFPs can be defined. For instance, the Player type defines
a property framerate in fps (frames per second) whereas
the HDD type defines a property used (disk space) in GByte.

The lower part of Figure 2 shows a hardware instan-
tiation of the resource type system mentioned above. It
consists of two servers with specific resources according
to the definitions at the type level. NFPs defined at type
level, are available at variant level with concrete values.
Each resource variant can provide behavior models to
further specify its NFPs (e.g., the correlation of energy
consumption and CPU utilization).

B. Specification of QCL contracts

QCL is used to define dependencies between CCM com-
ponents as contracts, specified for each variant. Therefore,
a QCL contract represents a specific view on a variant
regarding its dependencies to other types. A contract
defines one or more modes, whereas each mode indepently
(from other modes) defines dependencies to other com-
ponents. Software components can depend on other soft-
ware components as well as hardware resources, whereas
resources can depend on other hardware resources only.
Each dependency relates to a component type and defines
bounds for required values of NFPs at runtime. In addition
to property requirement constraints, provided NFPs are
specified as well.

Figure 3 shows a contract for the VLC video player as a
concrete implementation of the VideoPlayer component.
As defined, the player can be used in two modes: high-

1 contract VLC implements VideoPlayer {
2 mode highQuality {
3 //required resources
4 requires resource CPU {
5 max cpuLoad = 50 percent
6 min frequency = 2 GHz
7 }
8 requires resource Net {
9 min bandwidth = 10 MBit/s

10 }
11 //dependencies on other SW components
12 requires component Decoder {
13 min dataRate = 50 KB/s
14 }
15 //what is provided in turn
16 provides min frameRate 25 Frame/s
17 provides min resolution 1080 p
18 }
19 mode lowQuality { ... }
20 }

Fig. 3. Example Contract for VLC Video Player.

and lowQuality. For highQuality the contract specifies
requirements for a CPU and a Net device. The CPU needs
to be utilized at most to 50% and to have a frequency
of at least 2GHz. The Net device has to offer at least a
10 MBit/s bandwidth. Furthermore, another component
is required—a Decoder. Any implementation of this type,
which is able to provide a data rate of at least 50 KB/s
can be used. Finally, the contract defines that in the
highQuality mode a minimum framerate of 25 fps and
a resolution of 1080p is provided.

To determine the hardware requirements, micro-
benchmarks written by the component developer, evalu-
ating the non-functional properties of interest, are used. A
more detailed discussion on how to create these contracts
has been published in [8].

In summary, a system modeled with CCM and QCL
is highly variable in terms of multiple implementations of
component types, multiple quality modes per implementa-
tion and, according to resource requirements of each qual-
ity mode, multiple possible mappings of implementations
to hardware resources.

III. Self-Optimization with ILP

The central task of self-optimizing systems is to de-
termine optimal system configurations. In this section, a
model-based approach using an exact optimization tech-
nique called ILP is shown. In contrast to many existing
approaches to self-optimization, the presented approach
does not require the developer to apply the optimiza-
tion technique itself, but generates the formulation of
the optimization problem using the existing development
artifacts. In this work, a system configuration denotes a
set of software component implementations deployed on
component-containers, which run on servers (or, more gen-
eral, computing entities). Thus, the optimization problem
is, which implementations of which component types need
to be mapped onto which containers in order to reach the
optimal trade off between user satisfaction and execution
costs.

To solve this problem, a variety of information is re-
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quired. Namely, variant models of hard- and software rep-
resenting the currently running system, structure models
of hard- and software representing the architecture of the
system, QCL contracts characterizing the non-functional
behavior of the software and a user request with the user’s
Quality of Service (QoS) demands.

As ILP is a mathematical formalism with its own
language, a transformation from the structure and variant
models as well as the contracts and the request to ILP
is required. Figure 4 depicts the general approach of this
ILP generation, which can be characterized as a model-to-
text transformation in terms of Model-Driven Architecture
(MDA) [9].

On the left upper side of Figure 4, the structure of the
optimization problem formulated as an ILP is shown. An
ILP comprises a set of objective functions, a set of decision
variables and a set of constraints (as highlighted by the
dashed lines). The objective functions depend on the user
request (declaring objectives important for the user, e.g.,
response time) and on the variant (i.e., runtime) model.
Decision variables depend on QoS contracts and variant
models, too. Finally, the constraints of the ILP depend
on all available input information. In the following, the
generation of decision variables, objective functions and
constraints is discussed in more detail.

A. The Rational of Decision Variables

In this work, the decision variables directly follow
the characterization of system configurations: they denote
which implementation is to be run in which quality mode
on which container. They encompass a selection problem
(i.e., which implementations to select) and a mapping
problem (i.e., to which container the selected implementa-
tions shall be mapped). This information is comprised by
the name of the variable seperated by hashtags, whereas
the type of the decision variables is of boolean nature
(meaning each of these variable being solved having the
value 1 denotes the deployment of a specific component
implementation in a specific mode on a specific resource).
Equation 1 shows the general form of decision variables as
used in the presented approach. The prefix b# is meant to
highlight the boolean type of this variable.

b#implementation#mode#container ∈ B (1)

Additional variables express the resource utilization
and resulting NFP values implied by a certain implementa-
tion (as specified in QCL contracts). These variables have
a real value (i.e., are in R) and have the prefix u# for
utilization. The naming of these variables fully qualifies
an NFP of a certain resource of a component container
(i.e., server). As resources are hierarchically structured,
subresources, subsubresources, etc. can be specified. For
example, a resource CPU1 can comprises the subresources
Core1, Core2 and so on. Equations 2 and 3 denote the
general forms of these variables.

u#container#resource#subres.#...#NFP ∈ R (2)

implementation#NFP ∈ R (3)

Solving an ILP working on these variables, leads to an
assignment of values, representing the optimal system con-
figuration. Thus, the solution provides information about
the optimal selection of implementations, modes, their
mapping to containers and additional information on the
resulting NFPs of the participating components.

B. Generation of Objective Functions

All objective functions in the context of this work, base
on assessment functions of system configurations. That
is, an objective function assesses system configurations in
terms of the respective objective (e.g., energy, performance
or reliability) and aims to determine that configuration,
which is assessed to be minimal or maximal w.r.t. the
current objective.

A straightforward objective function based on the vari-
ables explained in the previous subsection is resource min-
imization as shown in Equation 4. However, this objective
function does not consider the interplay between selected
components instances there, required and provided NFPs
and the available resources. Thus, constraints are used to
restrict the ILP to correct solutions. Anyhow, the objective
function of Equation 4 does not lead to the intended result
(i.e., minimum resource consumption), because the units
and the semantics of each resource usage variable are not
considered. For example, the formula does not differentiate
between utilizing 10 MB of main memory in contrast to
utilizing 10 MB of hard disk drive (HDD) space.

min :
∑

u#container#res.#subres.#...#NFP (4)

A practical solution towards more sophisticated objec-
tive functions is the application of utility theory to map
each variable to a utility expressed as a real value between
zero and one. In the case of resource usage the utility func-
tions can reflect the difference between using space of main
memory and an HDD by putting the requested amount of
space in relation to the totally available space. The general
form of objective functions according to utility theory is
shown in Equation 5. The objective is to maximize the
overall utility.

max :
∑

utility(vardecision) (5)

An even more sophisticated objective is the combi-
nation of the previous two types of objectives (i.e., cost
minimization and utility maximization): efficiency max-
imization. The general form of this type of objective is
depicted in Equation 6.

max : η(vardecision) =
utility(vardecision)

cost(vardecision)
(6)

Finally, an important aspect of objective functions in
the context of reconfigurable systems is the need to con-
sider the reconfiguration and decision making itself.
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This is, because both processes require time and resources
and, thus, effect the objective functions. Hence, a general
objective function should look as depicted in Equation 7,
which aims for maximum efficiency. Notably, the costs
implied by reconfiguration and decision making need to
be assessed w.r.t. the quality of interest for the respective
objective function.

max :

n∑
i=1

utili
costi

∗ utilreconf + utildecide
costreconf + costdecide

(7)

The assessment of costreconf as well as costdecide (and
the negative utilities) is a non-trivial task, which has to be
investigated for each NFP individually. A closer discussion
exceeds the scope of this paper.

C. Constraint Generation

As mentioned above, the ILP must be constrained by
a set of constraints to allow the computation of sensible
solutions only. In general, three classes of constraints are
generated in the presented ILP approach: constraints ne-
gotiating software NFPs, constraints negotiating resource
requirements, and architectural constraints. In the follow-
ing each class is explained in more detail.

Software NFP Negotiation: The negotiation of software
NFPs covers the interdependencies between NFPs of dif-
ferent software components expressed by their provisions
and requirements in QCL contracts. The selection of an
implementation of a software component type in a certain

quality mode induces a set of NFP provisions (by the
implementation) and requirements (to other components).
To determine an optimal selection includes to find a bal-
ance between provided NFPs and required NFPs across
all required components to fulfill the user’s request. This
problem is reflected in the ILP by two types of constraint
clauses, which are generated for each NFP. First, NFP
provisions are expressed as equality constraints as depicted
in Equation 8. Depending on the assignment of the decision
variables, the available amount of the respective NFP
results.

NFPi =

c∑
provba ∗ b#impla#modeb#container (8)

Second, the NFP requirements implied by selecting a
certain implementation in a quality mode are expressed as
inequality constraint as depicted in Equation 9. Notably,
the relation between NFPi and the aggregated NFP re-
quirements is only ”less or equal”, if the respective NFP
is of ascending order. For example, the NFP memory is
of ascending order, whereas the NFP response_time is of
descending order. Thus, for response_time, the inequality
is of ”greater or equal than” type.

NFPi ≤
c∑
reqba ∗ b#impla#modeb#container (9)

58Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Resource Negotiation: Besides NFPs provided and re-
quired by implementation, the selection of implementa-
tions implies resource requirements, too. In contrast to
software NFPs, the provision of resources is fixed by the
available hardware. Similar to software NFP negotiation,
two types of constraints are generated for resource ne-
gotiation. First, the provision of resources as depicted
in Equation 10. The provided property naturally needs
to be greater or equal than zero and less or equal than
the maximum offered by the resource. In addition, the
granularity of the resource can be restricted. For example,
the amount of disk space can only be utilized in blocks of a
certain size (e.g., 4KB). In the constraints of Equation 10,
the terms maximum and granularity are replaced by
the respective concrete values. The term x remains a
free variable, which is to be found by the solver of the
optimization problem. The restriction of x to be binary
(i.e., ∈ B) enforces the restriction of the resource property
to be a multiple of granularity.

ResourcePropertyi ≥ 0 (10)

ResourcePropertyi ≤ max

ResourcePropertyi = granularity ∗ x
x ∈ B

The second type of constraint covers the resource re-
quirements by selecting an implementation. The resulting
constraint is depicted in Equation 11.

ResourcePropertyi ≤ (11)
c∑
reqba ∗ b#impla#modeb#container

For each resource property, constraints of these types
are generated, whereby the search for valid assignments to
the decision variables is further restricted.

Architectural Constraints: Finally, constraints based on
the knowledge about the software’s architecture and the re-
quested software component are translated into constraints
of the ILP. The simplest possible constraint of this type
is the necessity to select exactly one implementation of a
component type whose port is requested by the user. The
corresponding constraint is depicted in Equation 12.

∑
b#impla#modeb#container = 1 (12)

∀a ∈ T ∧ b ∈ modesof(a)

For all modes b of all implementations available for
the component type T , the sum of the corresponding
decision variables needs to be exactly one. This constraint
suffices, if no other component types exist or the requested
component type does not use any other component type.
If another component type is used, the need to select an
implementation of this type needs to be expressed, too. In
the general case, constraints have to be generated, which

express that the selection of an implementation of compo-
nent type T1 implies the need to select an implementation
of type T2. Equation 13 depicts this kind of constraint.

∑
b#impla#modeb#container = (13)∑
b#implc#moded#container

∀a ∈ T1 ∧ b ∈ modes of(a) ∧ c ∈ T2 ∧
d ∈ modes of(c) ∧ depends(T1, T2)

The above described three types of constraints, restrict-
ing the possible assignments to the decision variables, so
only valid configurations are investigated for their optimal-
ity. In addition, corresponding to the decisions, values are
assigned to the resource usage and NFP variables. In the
next section we describe a lean variant of this approach,
which avoids the use of resource and NFP variables.

IV. Self-Optimization with PBO

The key aspect of the configuration problem expressed
for the ILP-based solution presented above, is denoted
by boolean decision variables, encompassing the decision
to select certain implementations and their mapping to
certain resources. The remaining variables used in the ILP-
based solution comprise resource usage and resulting NFP
values. In this section, the ability to omit non-boolean vari-
ables is shown. The intended goal is to apply more efficient
solving techniques to the generated optimization problems,
which leverage on the restriction to use boolean variables
only. Due to the exclusive use of boolean variables in an
ILP a special type of ILP results: a 0-1 ILP. This type of
ILP can be handled by PBO, which applies techniques used
to solve satisfiability problems in propositional logics (e.g.,
DPLL [10]). These techniques have polynomial complexity,
whereas algorithms used to solve ILPs (e.g., simplex) have
exponential complexity. Hence, we investigate PBO for
self-optimization.

A. Reformulation of the Configuration Problem in PBO

To apply techniques of PBO to the configuration prob-
lem to be generated, all non-boolean variables from the
ILP solution need to be expressed in a different way.
Namely, a new way to express resource negotiation, NFP
negotiation including user requirements and the objective
function is required. Notably, the architectural constraints
defined for the ILP solution can remain unchanged, be-
cause they only refer to decision variables. In the following,
a solution for each of the constraints subject to adjustment
is given.

Resource Negotiation without Usage Variables: The
expression of resource negotiation in ILP with usage
variables has been shown in the previous section. All
these constraints, except for the granularity restriction,
can be expressed by a single PBO constraint, which im-
plicitly represents the respective resource property (i.e.,
ResourcePropertyi) as shown in Equation 14. The term
creqba denotes the implied resource requirements by the
respective implementation a in the specified mode b on
a given container c.
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∑
creqba ∗ b#impla#modeb#containerc ≤ max (14)

NFP negotiation: Alongside with the restriction of
resource usage, the dependencies between offered and re-
quired NFPs has to be expressed by constraints. In the
ILP solution explicit variables for each NFP have been
used to connect separate constraints for their provisions
and requirements. The same principle, as for resource
usage negotiation can be applied for NFP negotiation,
too. Namely, the implicit expression of each NFP variable.
Thus, for PBO, the provision and requirement constraints
are merged into a single constraint which implicitly rep-
resents the possible expressions of the NFP. For the gen-
eration of these constraints the user request needs to be
considered, too. This can be accomplished by incorporating
the respective NFP requirements expressed by the user in
his request as minimum value of the respective NFP. The
resulting constraint is shown in Equation 15.

∑
(requser +c reqba ∗ b#impla#modeb#containerc) (15)

≤
∑

cprovba ∗ b#impla#modeb#containerc

Reformulation of Objective Function: The objective
function in PBO can only rely on decision variables,
because only these variables exist. In contrast, the ILP
solution allowed for the application of resource usage and
NFP variables. Thus, the minimization or maximization of
resource usage and NFPs cannot be directly expressed in
PBO. The general form of the objective function in PBO
is shown in Equation 16.

min :
∑

weight ∗ b#impla#modeb#containerc (16)

Thus, the major issue to generate meaningful objec-
tive functions in PBO is the computation of the weight
constants for each decision variable. This weight has to
express the impact the decision represented by the decision
variable on the overall objective.

V. Evaluation

The above described approach, applying generated
ILP- or PBO-based optimization for self-adaptive systems,
is not likely to scale. This is, because solving an ILP or
PBO is known to be an NP-hard problem, where the
processing time required by the solver grows exponentially
with number of decision variables of the ILP/PBO. In
the following, we show how ILP/PBO generation and
solving perform and that both approaches are feasible
for typical pipes-and-filter applications. We compare the
performance of both approaches, showing that the ILP
solution outperforms the PBO solution.

A. Generation of Test Systems for Empirical Evaluation

To empirically evaluate the performance of the ap-
proaches, a set of test systems has been generated. As
the ILP/PBO generation relies on the models of the
system only (and not the system itself), it is possible to
evaluate the approaches against a variety of system types
without the need for their physical presence. Thus, we
developed a parameterizable system generator, which is
capable of generating models as usually derived by the
runtime environment. This includes hard- and software
structure models, hardware and software variant models
and QoS contracts.

The generator is configured with several parameters:

• Number of servers S,

• Number of resources per server Nres,

• Number of properties per resource NresProp.

• Number of component types, C

• Maximum depth of dependency chains δ,

• Number of NFPs defined per component type
Nnfp,

• Number of implementations per component type
Nimpl,

• Number of modes per implementation Nmode,

• Number of hardware requirements per mode,

• Number of NFPs required per software dependency
per mode and

• Number of provided NFPs per mode.

Note that it is impossible to generate systems leading
to worst case execution times of the solver as the solvers
internally use heuristics. But, for proper evaluation results
using generated systems, each generated system should
allow at least one valid configuration. Randomly gener-
ating NFP provisions and requirements obviously leads to
infeasible systems in most cases. To ensure the existence of
at least on feasible system configuration, a random request
is generated, which serves as reference request for which a
feasible system configuration is to be ensured. The process
of system generation keeps track of how the random re-
quest transforms between dependent software component
types. For the directly requested component type at least
one (randomly chosen) quality mode Q1 is selected to fulfill
the request. Then, for all dependent component types at
least one quality mode is chosen to fulfill the requirements
of Q1. The same process is performed for all dependent
types of the dependent types and so on. The generated user
request to ensure feasibility is reusedlater as test request
for evaluation.

B. Measurements for Pipe-and-Filter Style Systems

The pipes-and-filter architectural style is common
across many data processing applications. For example,
in early detection of Alzheimer’s disease, magnetic res-
onance tomography (MRT) pictures are processed by a
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pipes-and-filter architecture comprising data preparation,
Alzheimer’s indicator search and data postprocessing. An-
other example is audio processing as performed, e.g., by
auphonic (http://auphonic.com/), where audio files are
processed by a chain of processing steps. In general, the
pipes-and-filter style is characterized by a chain of compo-
nent types. There are n component types, where the first
component type requires the second, which in turn requires
the third component type and so on. For this architectural
style the parameter n, denoting the number of component
types or the depth of the chain is of interest. In addition,
the number of containers c is to be considered, because the
number of possible configurations grows exponentially with
the number of available containers. Thus, a test system in
pipes-and-filter style is characterized as an n × c system
having n component types and c containers.

For the server landscape, we assume each server (i.e.,
container) to have one central processing unit (CPU), one
random access memory (RAM) module, on HDD and a
network device. Each software component type has one
provided and one required port type, except the last
component type in the chain, which only has a provided
port type. Moreover, each software component type has
two NFPs and two implementations, having two modes,
which each have four resource requirements, two software
requirements and two provisions.

To assess pipes-and-filter type applications, all variants
of C x S systems for C = [2..100] and S = [2..100] have
been generated and the generation and solving time of the
respective ILPs and PBO formulations has been measured.
For each generated system, two measurements were taken.
First, the time required to generate the respective ILP
or PBO problem. Second, the time required to solve the
problem using a standard solver. For the ILP solution the
solver LP Solve [11] (version 5.5.20) has been used. For
PBO the OBPDB [12] solver (v. 1.1.3) has been used.
All measurements were taken on a DELL Alienware X51
desktop PC running Windows 7 64bit and containing a
solid state disk, 8 GB DDR1600 RAM and an Intel Core
i7-2600 CPU running at 3.4 GHz having 4 physical cores
and 8 virtual cores by hyperthreading.

Analysis of the ILP Solution: Figure 5(a) shows a
boxplot of the ILP generation time and Figure 6 depicts
this generation time in relation to the number of soft-
ware components. The median generation time is 156 ms
and 75% of all ILPs were generated in at most 260 ms.
The longest generation took 2028 ms. Notably, the 99%-
quantile is 437 ms, meaning that in 99% of all cases, the
maximum generation time is less or equal to 468 ms. A
natural hypothesis is that the number of components and
servers correlates to the generation time; which indeed
exists: Tgen(C) = 0.0291C2 + 1.4429C + 5.3851 with an
R2 of 0.8956.

Figure 5(b) depicts a boxplot of the ILP solving time. It
reveals the random nature of worst and best case runtime
of ILP solving, depicted by the vast amount of outliers.
For only 121 out of 9801 generated ILPs the solver was
not able to return any solution within two minutes for all
measurements taken (i.e., in 1.2% of all cases). Please note,
that the solving time had an upper limit at 2 minutes, as
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Fig. 5. ILP generation and solving time in milliseconds.

for a some ILPs the solving time can increase to multiple
hours or even days, which is the worst case, where the
complete problem space has to be explored. Surprisingly,
the median solving time is only 478.5 ms. Thus, half of
the ILPs could be solved in less than a second. The third
quantile (i.e., 75%-quantile) is at 26.58 s. 79% of all ILPs
were solved in less than a minute. Notably, if the (manually
configured) timeout of two minutes was reached, the ILP
solver returned the best solution found so far.

In the following, a closer investigation of the solving
time is presented. The aim is to investigate if and how
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Fig. 6. ILP generation time in relation to number of components.
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Fig. 7. ILP solving time in relation to number of components.

the system parameters correlate with the solving time
of the generated ILP. The hypothesis is, that there is a
correlation between the number of component types and
the solving time. Figure 7 depicts this correlation. On each
axis a boxplot of the corresponding variable is shown to
highlight the high density of solutions in low solving times.
An interesting conclusion from this figure is, that the
predictability of solving time decreases at approximately
25 component types. Most ILPs are solved in a few seconds,
though the more component types, the more likely are
longer solving times.

The correlation between the number of component
types and the solving time for scenarios is statisti-
cally poor. The linear regression has an adjusted R2

of only 0.4286. Exponential regression (i.e., Tsolve =
f(Components) = a · ex) reveals a residual standard error
of 1.911 · 1013. Thus, there is no statistically significant
correlation between the number of components and the
solving time. The reason is the random nature of ILP
solving, i.e., solving random ILPs can randomly lead to
worst and best case situations.

Analysis of the PBO in Comparison to the ILP Solution:
The same measurements have been done for the PBO
solution. Figure 8 depicts the PBO generation and solving
times. In addition, Figure 9 depicts the generation time in
relation to the number of components. Please note that for
the PBO solution only systems with up to 30 component
types have been measured, because the approach does not
scale beyond this number of component types.

In comparison to the ILP solution, the generation of
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Fig. 8. PBO generation and solving time in milliseconds.

PBOs looks comparably performant at a first glance. ILPs
for systems of up to 100 component types are generated
in up to 2 seconds. PBOs for systems of only up to 30
component types require up to 2 s, too. But, whilst the
median for ILP generation was at 156 ms, for PBO gen-
eration it is at 31 ms. Also for the 99%-quantile, the ILP
solution looks worse than the PBO solution, as for ILP the
99%-quantile is at 468 ms, whereas for PBO it is at 94 ms.
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Fig. 9. PBO generation time in relation to number of components.
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Fig. 10. PBO solving time in relation to number of components.

But, because for the PBO solution only systems of up to
30 component types have been used, the ILP generation
times for up to 100 components cannot be used as a
reference. An investigation of ILP generation for systems
of up to 30 component types reveals a median of 32 ms
and a 99%-quantile of 78 ms. Thus, PBO generation is
even slower than ILP generation, although less constraints
and less variables have to be generated. The reason for
the better performance of ILP generation is the required
program format for the applied solvers. The ILP solution
can use long variables names to encode information (i.e.,
the decision variables encode their meaning in their name),
whereas the PBO solution has to use enumerated variables
(i.e., xn). In consequence, the PBO generation has to
handle the mapping of decision variables to their short
versions, which consumes time and, hence, leads to the
measured performance loss.

An investigation of the solving time of the PBO solu-
tion reveals surprising results. The rational for using PBO
instead of ILP was the hypothesis that PBO performs
better in many cases as it has polynomial complexity only.
But, for the optimization problem discussed in this paper
it apparently does not as Figure 10 depicts. The solving
time has been limited to two minutes, too. But, in contrast
to the ILP solution, the PBO solver does not deliver a
suboptimal solution if the timeout is reached. Starting at
15 component types (compared to 25 in the ILP solution)
the predictability of the solving time drastically decreases.
Most interesting is the lack of fast solutions starting at
25 component types. In comparison, the ILP solution was
able to deliver solutions in a few milliseconds even for
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Fig. 11. Percentage of found solutions for ILP and PBO within 2
minutes of solving time.

systems with more than 80 component types. Moreover,
the number of determined solutions in a timeframe of less
than 2 minutes significantly reduces starting already at 20
component types. For example, the measurements taken
for 28 component types and 2 to 100 servers (i.e., 99
measurements) only lead to 4 solutions. For the remaining
95 systems the PBO solver could not find a configuration.
For this reason, only measurements for up to 30 component
types have been collected.

The measurements of the solving time indeed bench-
mark the used solver. Unfortunately, for PBO only one
solver could be investigated, because all other solvers do
not support the specification of equalities with variables
on both sides of the equation. Therefore, OPBDP [12] was
the only publicly available, working solver which could be
investigated.

Thus, in conclusion, the PBO solution performs much
worse than the ILP solution for the optimization problem
at hand. This is because, in the average case the algorithms
used to solve ILPs perform better than those used for
PBO. Whereas the ILP solution is feasible for systems of
up to 100 component types, the PBO solution can handle
at most 25 component types. The generation of ILPs is
below 437 ms for up to 100 component types and PBO
generation takes less than 100 ms in 99% of all cases for
systems of up to 30 component types. Solving of ILPs
is below 500 ms in 50% of all cases and below 27 s in
75% of all cases. PBO solving is below 2.6 s in 50% of all
cases, but reaches the timeout of 2 minutes already in 70%
of all cases. Most notably, the PBO solution is not able
to find configurations starting already at 25 component
types in most of the cases, whereas the ILP solution is
able to determine configurations even for 100 component
types. Figure 11 depicts the percentage of solutions found
by the ILP and PBO approach in correlation with the
number of component types. The execution time of the ILP
solution is predictable up to 25 component types, whereas
the execution time of the PBO solution only up to 15
component types.

The reason for the decreasing predictability in the ILP
solution is the growing span between best and worst case
execution time of the solver. The best case execution time
grows linearly with the number of variables, whereas the
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worst case execution time grows exponentially. Both curves
are very near to each other in the beginning, but depart
more and more (exponentially) from each other the bigger
the systems are. Notably, the numbers presented above are
specific to the machine used for measurements. Thus, also
the number of component types where predictability starts
to worsen has to be determined for each machine.

VI. Related Work

The application of model-driven software development
to self-adaptive systems has been studied by various groups
throughout the last years.

In [13], Zeller et al. address the problem of determining
a valid mapping of software components to electronic con-
trol units (ECU) by SAT solving and simulated annealing.
The solving techniques do not guarantee optimality, but
ensure the determination of a valid system configuration.
The SAT problem is generated from the system’s models.
Zeller et al. evaluated their approach and showed that the
runtime of their SAT solving approach is below 4s for
40 ECUs, 60 Sensors, 60 Actuators and 2000 Functions.
For less than 1600 functions SAT solving takes less than
2 seconds. The biggest setup evaluated by Zeller et al.
comprised 100 ECUs, 120 Sensors, 120 Actuators, 2500
Functions and took 18 seconds [13].

Another approach using model-driven software devel-
opment for self-adaptive systems has been developed in
the DiVA research project and presented in [14], where
Fleurey and Solberg introduce a quality grading framework
for software variants. The developer rates available imple-
mentations in different quality dimensions (e.g., energy or
performance) using a model-based framework. To identify
valid system configurations these models are transformed
to Alloy [15]. Unfortunately, no empirical study of the
approach’s scalability has been published.

In contrast to the approaches presented in this paper,
the previously discussed approaches do not search for
optimal configurations, the constraints of the optimization
problem are not generated, the notion of contracts is
not utilized and only the mapping [13] or the selection
problem [14] is considered, respectively.

VII. Conclusion and Future Work

In this paper, we propose the application of model-
driven software engineering and generation of optimization
problems to automatically compute optimal system config-
urations for self-adaptive software systems. We presented
two approaches, an ILP-based and a PBO-based solution.
The rational for investigating the applicability of PBO
was the hypothesis that PBO could perform better than
ILP for the investigated optimization problem. However,
based on a large set of systems to be optimized, our
scalability analysis rejected this hypothesis and revealed
the feasibility of the ILP solution for systems of up to
100 component types to be distributed on 100 servers. As
typical data processing applications like audio processing
usually comprise a few tens of processing steps, the ILP-
based approach has been shown to be applicable. For
future work, we plan to investigate the feasibility and
scalability of further optimization techniques.
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