
Towards Systematic Model-based Testing of Self-adaptive Software

Georg Püschel, Sebastian Götz, Claas Wilke, Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Email: {georg.pueschel, sebastian.goetz, claas.wilke, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive software reconfigures automatically at run-
time to environment changes in order to fulfill its specified goals. Thereby,
the system runs in a control loop which includes monitoring, analysis,
adaptation planning, and execution. To assure functional correctness and
non-functional adequacy, testing is required. When defining test cases, the
control loop’s tasks have to be validated as well as the adapted system
behavior that spans a much more complex decision space than in static
software. To reduce the complexity for testers, models can be employed
and later be used to generate test cases automatically—an approach called
Model-based Testing. Thereby, a test modeler has to specify test models
expressing the system’s externally perceivable behavior. In this paper, we
perform a Failure Mode and Effects Analysis on a generic perspective
on self-adaptive software to figure out the additional requirements to be
coped with in test modeling.

Keywords—self-adaptive software; problem statement; model-based test-
ing; failure mode and effects analysis

I. INTRODUCTION

Self-adaptive software (SAS) reconfigures automatically at
run-time according to sensed environment changes. Thus, it
is able to effectively and efficiently fulfill its specified goals
in the changed conditions. SAS runs in a control loop that
frequently operates four tasks: monitoring, analysis, planning,
and execution (MAPE, [1]).

Quality assurance for SAS includes validation or verification
of the control loop’s tasks. While, for instance, run-time self-
testing of SAS was researched (e.g., in [2]), there still is a
lack of black box testing approaches. However, such concepts
are or will be required by the software industry, e.g., due to
the need for certification. Systems are delivered and left to the
customer and have to be reliable and evaluated in advance as
far as possible under the respective project conditions. Hence,
not only fault-tolerance but also fault-prevention is desirable.

The crucial challenge of SAS black box testing [3, p. 17]
is to handle its complexity. The behavioral decision space
is extensively expanded due to the impact of adaptation on
adapted system structures and interacting running processes. A
further problem is error propagation: errors produced in one
component can be transformed into errors which manifest in
other components [4] and—due to the looped control flow—as a
permanent inner system state. Thus, manifold information have
to be considered by testers, injected into the tested system,
monitored, and evaluated for determination of behavioral
correctness. In consequence, manual test case definition for an
SAS is mostly hard to manage for test engineers.

In constructive phases of SAS engineering, this complexity
is dealt with by using models. Modeling takes advantage of
abstraction and convention (i.e., implicit information) to hide
details from designers. For testing, an equivalent concept was
developed: in model-based testing (MBT, [5]) the system under
test’s (SUT) interfaces are structually and behaviorally modeled
and later test cases are automatically generated. For limitation

and measurement of actually tested parts of the behavioral
space, a test coverage criterion can be specified. Due to the
focus on the SUT’s interface, MBT is a black box approach.

As we previously constructed test models for run-time vari-
able mobile systems [6], we are now focusing on generalization
of our experience and provide reasonable test models for SAS.
A prerequisite for the application of MBT methods is to gather
the following information:

1) Scenarios, how failures can occur, have to be found
such that the progress of system validation be can
estimated, effort predicted, and testers are aware of
the potential complexity of their task.

2) Properties that failures can comprise have to be
identified to provide meaningful verdicts.

3) Potential error propagation has to be investigated to
identify causal chains.

While the above points fit on arbitrary system types, it becomes
necessary to find more specific test modeling requirements for
SAS. To bypass the intuitive formulation of these requirements
we decided to perform a systematic analysis of critical failure
properties and scenarios based on Failure Mode and Effects
Analysis (FMEA, [7]), which was developed to investigate
potential failures in systems. The results of its analytic methods
provide a solid foundation for our formulation of MBT
requirements.

The contribution of this paper is twofold:

1) Failure analysis: We analyze which properties fail-
ures in adaptive systems can encompass and which
scenarios may occur by performing a FMEA-based
investigation process.

2) Requirements identification: We derive requirements
for test models based on the discovered failure
scenarios. The result is a reasonable foundation for
test research concerning adaptive systems.

The remainder of this paper is structured as follows: We
start with related work in Section II. In Section III, we perform
our FMEA-based investigation for SAS and in Section IV,
we state the resulting modeling requirements. We finish in
Section V and outline future work.

II. RELATED WORK

In this section, we present related approaches concerning
testing adaptive systems from the perspectives of different
research directions. On the one hand, Self-adaptive Soft-
ware (SAS) [3] and Models@run-time (MRT) communities
have to be considered as sources of adaptation concepts; on
the other hand Dynamic Software Product Lines (DSPLs) [8]
are an intersecting approach based on means like variability

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

management and features. Furthermore, context-adaptivity
has been a long-term research field. In all these directions,
several testing methods were established. In the following, we
concentrate on approaches with models which can help to build
up a reasonable information base for testing and on those which
propose fitting coverage concepts.

A conceptional discussion on challenges concerning veri-
fication and validation of SAS was done in [3]. The authors
proposed to focus on adaptive requirement engineering and run-
time validation to assure adaptive software’s quality. However,
they also constructed an abstract model of adaptive software’s
states consisting of an inner system state plus a mode or phase.
The latter ones describe in which variation/adaptation a system
works. Each transition concerning either mode or state changes
the overall configuration of the system and hast to maintain
certain local or global properties. It is also discussed that a
steady model as behavioral specification is insufficient such that
the configurations have to conform to a dynamic selection of
associated models. While these proposals are general enough to
abstract from specific self-adaptive systems, several problems
remain. Due to the enormous complexity in the behavioral
space of adaptive software, an exact limitation of possible
transitions to such which are correct and relevant for testing is
a very hard task. In consequence, a much more expressive and
usable model should be applied in test modeling.

Another approach by Munoz and Baudry is presented
in [9]. The authors formalize context and variant models and
generate sequences of context instances by using Artificial
Shake Table Testing (ASTT). Thus, an adequate set of dynamic
environment changes can be simulated. The case study’s
adaptation is designed by so-called policies, which also serve
as an oracle (i.e., a mapping between inputs and outputs) in
testing. Hence, with this approach testers are able to validate
the correctness of the adaptation decision and to produce a
sequence of re-configurations. While being a reasonable and
basic approach to testing adaptive software, it lacks the means
to deal with the discussed interaction challenge due to its
exclusive consideration of environment changes.

An advanced research framework for adaptive software
is provided by the DiVA project. DiVA had impact on both
SAS and DSPL research. It also includes a methodology
for testing [10][11]. DiVA’s validation process is split into
two phases: (1) The early validation is based on design time
models (adaptation logic and context model) and executed
as a simulation. A main focus in DiVA’s test method is to
generate reasonable context instances and associate ”partial”
solutions (using a test oracle), which can be used to find a
set of valid configurations. The following coverage criteria are
named: Simple (test each value of a variable), pair-wise (test
each two-wise combination of variable values), dependency-
based (reduce effort through constraints on variable values) and
compound (composition of all). (2) Additionally, an operational
validation method is proposed that also deals with context
changes/transitions. Therefore, DiVA uses Multi-dimensional
Covering Arrays (MDCA) including a temporal dimension.
These describe multiple context instances that are scheduled
as test sequences and provide a means for the definition of
coverage criteria on sequences of adaptations. There are also
fitness functions that help to minimize the test cases while
sustaining a good coverage. While DiVA contributes many

ideas for testing, it still does not consider interactions with the
application’s control flow.

Besides approaches from the DSPL and SAS research
field, other work focuses on context-awareness and test data
generation from context models [12][13]. For instance, Wang et
al. construct in [13] control flow graphs of context changes and
associate them by using point of high impact (Context-Aware
Program Points, CAPPS) with the core control flow. They also
provide three context-adequacy criteria. However, the proposed
models of this approach are not extensive enough to express
the behavior such that additional test coding is required.

III. FAILURE ANALYSIS

In this section, we analyze relevant failure characteristics
and scenarios. For this purpose, we use Failure Mode and
Effects Analysis (FMEA) [7]. FMEA is used in engineering
of safety-critical systems to find relevant failure sources.
The method was first applied for electrical and mechanical
systems and later extended for the usage in software engi-
neering [14][15]. Based on these experiences, our analysis is
separated into three steps:

1) identification of SAS-specific failure dimensions and
properties (presented as Failure Domain Model)

2) investigation of SAS-specific failure scenarios
3) visualization of error propagation among the found

scenarios as Fault Dependency Graph

Step (3) is not an actual part of FMEA, but usually a Fault Tree
analysis (FTA) [16] is performed to visualize the scenarios’
dependencies. As our system runs a control loop, we customize
the analysis process in this step by constructing a fault
dependency graph instead.

A. A Common Process of Self-adaptation: MAPE-K

Before starting the analysis, a level of detail has to be
specified to have a fix abstraction perspective on SAS and a
well-defined system boundary. FMEA is designed to be run
against an existing architecture, which we cannot assume to be
widely similar in all existing or future developed SAS. Hence,
we leave the strict understanding of FMEA by analyzing the
MAPE-K process as common concept of minimal necessary
data flows with the means of this investigation method. As seen
in the previous section, there are several intersecting research
directions coping with self-adaptivity. They have in common
that the process of information gathering and utilization can
be described in a known schema, mostly referred to as
the MAPE-K (Monitor/Analyze/Plan/Execute–Knowledge) [1]
control loop.

As illustrated in Figure 1, this process consists of four tasks
to be fulfilled by any self-adaptive system framework. The
system monitors a certain data source such as a sensor. The
captured information is then forwarded to the analysis part
where the system reasons about the necessity of adaptation.
After these first two process tasks the system is able to
determine if an adaption should be performed.

In the subsequent plan section, an adaptation plan is
generated and later applied in the following execute task.
Effectors may also manipulate external entities. The control

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Analyze

Plan

Execute

Monitor
Know-
ledge

Sensors

Effectors

Fig. 1. MAPE-K control loop (cf. [1]).

cycle is re-run from this point periodically such that a self-
adaptive system always has an optimal state (according to the
supposed utility or goal function, and available knowledge)
to fulfill its task. Analysis, planning, and execution interact
through data organized as a central knowledge model.

MAPE-K encompasses the adaptation according to environ-
ment changes such as context, user input and system utilization.
The sources of processed information can be abstracted by
leaving out the concrete objects sensors and effectors work
on. Hence, we use MAPE-K as common view point on SAS
architectures.

B. Step 1) Failure Domain Model (FDM)

In this section, we provide a set of properties that failures in
adaptive systems can comprise. As there are several classes of
adaptive software [17], we cannot assume that each property is
reasonable in every concrete system. Furthermore, we exclude
failures, which originate in sensors and effectors to create a
fixed boundary around the software’s scope.

Each of an SAS’ components provides a service (i.e., a
perceivable behavior) through its interface. In the system’s
specification an expected behavior is defined. According
to [4], a failure is an event of service deviation from this
expectation. An error is the inconsistent part of the total system
state (internal state plus perceivable external state) which lead
to this failure. The cause of an error is a fault. Error propagation
occurs if a failure causes a fault in another component.

The result is the fault-error-failure causal chain as presented
in the FDM in Figure 2. Each concept has up to three variable
dimensions. Although, in [4] several dimensions are listed,
here we limit our investigation on those which are relevant
to a development-independent tester who is not in charge of
repairing the system. In consequence, concerning faults, the
only relevant property is their persistence which may either be
permanent or transient. For instance, intent or objective play no
role when testers uncover and report defects. While persistence
is a rather general dimension, this classification has an extended
significance due to the cyclic nature of SAS. The source of a
fault can be in one of the control loop’s tasks and, additionally,
originate in the system’s knowledge. The latter case produces a
cyclic failure propagation: If a failure manifests in the system’s
knowledge model, it may have harmful influence on future
decisions such that the failure becomes a fault in following
cycles.

For errors we propose the dimensions type and localization.
Types may be one of three: The caused error either manifests

Failure

Fault

Error

Persistence

Type

functional

qualitative

internal

external

Type

transient

permanent

inner model

process-related

Appearance

false-positive

false-negative

semantical

Location
local

global

pr
op

ag
at

io
n

Manifestation

Fig. 2. Failure domain model.

as an inconsistency in (1) the knowledge representation of
the perceived environment does not reflect its physical nature,
(2) the model itself (e.g., it violates the model’s constraints), or
(3) as incorrect intermediate state in the computation process
(process-related). Furthermore, errors can localize either locally
or globally in the potentially distributed SAS.

Concerning failures, [4] distinguishes between content and
timing (early/late) correctness. In contrast, an SAS’ goal
definition may aim on other non-functional properties like
energy-usage. Thus, we alter the original distinction to qualita-
tive (the system performs non-optimal) or functional (incorrect
system behavior). Furthermore, failures in SAS can either
manifest internally or externally (e.g., by using the effectors).
The last dimension comprises the event-driven nature of
the system. The sensed and analyzed information may lead
to un-intentional (false-positive), missed (false-negative), or
semantically wrong adaptation attempts.

This FDM is a valuable source when classifying failures
in concrete adaptive systems. It describes abstract properties
of failures that can be instanciated for real world systems.
Verdicts (the classification of test results, for instance Pass,
Fail or Inconclusive) can be parameterized by these
information.

C. Step 2) Failure Scenarios

After defining all dimensions of failures, it is required to
identify scenarios of failure occurrence in adaptive software. We
cannot give a general method of priorization, as usually done in
FMEA. For testing one of these scenarios, this strongly depends
on domain specific conditions. As only general valuation
standard, criticality can serve. In this case, according to [17],
each adaptation operation can be either harmless, mission-
critical, or safety-critical.

We decompose the MAPE-K control loop in five com-
ponents: Monitor, Analyzer, Executor, Planner and
Scheduler. The latter two are separated to enable the
consideration of interaction between adaptation and running
processes. After the Analyzer found that the system has
to be adapted, the Planner decides how the adaptation is

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

processed. The Scheduler has the task to fill an Action
queue (however it may be implemented in concrete systems)
by arranging system process actions with adaptation actions.
An adaptive system designer has to be aware of how he
maintains consistency either through an actual implemented
scheduler component or a transaction-like behavior. This issue
also breaks the straight MAPE-K data flow because a scheduler
requires information about the system actions (retrieved from
the Executor) and composes them with adaptation intents.

All components are considered as black boxes. Components
are connected by data flow edges (black arrows). Additionally,
the process contains Sensors, Effectors and the central
knowledge Models. The latter one contains information about
the system structure adaptation logic and further knowledge
relevant for adaptation decisions. Sensors and Effectors
communicate with the external world (e.g., other systems or
the physical reality).

Based on this structure, we list our found failure scenarios
in Table I. It comprises Failure Identifier (FID), Component
Identifier (CID), Fault, Error, Failure, and a Propagation
column. All FIDs can be found in the architecture visualization
in Figure 3 as well. In the following, each scenario is described
in detail.

SENS: The first scenario comprises test input received
from the Sensors and misinterpreted by the Monitor
component (i.e., it does not produce corresponding events or
produces events without being indicated by sensor inputs). For
instance, a context reasoner could output an physically causeless
temperature change due to a poorly designed interference rule.

TRIG: An event produced by Monitor does not or
unintentionally lead to a corresponding adaptation initiation
or to a wrong one. Unintended initiations let the situation
appear (cf. appearance dimension of failures in the FDM,
Figure 2) as if an adaptation is necessary. TRIG may also
be caused by a propagated failure from SENS or EVENT in
integration testing. Here an example is a wrong implemented
adaptation rule condition.

PRE: Though the set of operated Models contains infor-
mation which (according to the adaptation logic) either leads to
a specific adaptation or prohibits one, the Analyzer decides
differently. At this point, potential failures in the adaptation
logic itself have to be considered—either due to a wrong
specification or adaptation (cf. POST scenario below). For
instance, consider a recorded sound level which is taken into
account while reasoning about rising a sound output of the
system itself. If the recorded information is erroneous, non-
intended adaptions may be initiated. Such failures can also be
observed while testing the Analyzer.

Both TRIG and PRE scenarios may interact, because we
did not decompose the analyzer in more detailed components.
Hence, these scenarios have to be tested together as both data
sources are required for each test case and just a probabilistic
estimation can be stated which one is actually defective.

ADAPT: The adaptation initiation may again be of false-
positive, wrong or missing appearance. Like TRIG and PRE,
this scenario relies on the assumption that the adaptation logic is
correct. Such an scenario may occur if the adaptation reasoning
mechanism misses to execute a rule’s adaptation directive.

PLAN: The Analyzer determines if an adaptation is
required but not how to perform it. This task is operated in
the planning phase. A Planner reasons over the variability
and the current system state. Its output have to be a correct
adaptation plan that can be applied in the system and leads to
a consistent state. The PLAN scenario encompasses that the
compiled plan is incorrect, e.g., its order.

SCHED: Reconfiguration actions potentially interact with
the system’s control flow. Such problems arise because vari-
ability cannot be completely orthogonal to the system’s inner
behavior. For instance, if the system is a database, there could
be a potential conflict when adapting to a situation where a
speedup is required by deactivating the transaction feature in
exactly the same time period when running a transaction. We
get an active SCHED scenario if the compiled action sequence
of the Scheduler is inconsistent.

The Executor is a complex interpretation engine that
produces multiple outputs and thus, has multiple potential
failure scenarios. All Executor-related scenarios may also
be the outcome of a propagated SCHED failure.

RECONF: The reconfiguration may run into a failure
itself. If any reconfiguration mechanism fails without being
recognized, the actual system structure is out of synchronization
with its model representation. Here failures can be constituted
that can be of both types: functional or qualitative (cf. FDM).

POST: On the other hand, the Model’s part that represents
the reconfigured systems may be inconsistent after the execution
because a model manipulation was performed erroneously by
the the Executor. For, instance if for further adaptation
decisions knowledge about past ones is required, a missed
recording causes problems. POST can have complex conse-
quences because the manipulated model is assumed to be correct
in PRE and PLAN. Hence, POST may propagate faults to these
two scenarios. Additionally, this scenario can also be a ”starting
point” failure because its semantics also resemble a defective
Model at the system’s start-up.

EFFECT: Another output of the Executor can be actions
that have to be run in external systems by physical Effectors.
If actions are not generated correctly and forwarded to the
effectors (e.g., due to corrupt drivers), the representation of these
externals lose synchronization with potential internal model
representations. As the Sensors may perceive data from the
manipulated system, we produce a possible propagation of this
failure to the SENS scenario.

EVENT: The last failure scenario is related to events that
are produced in the system (e.g., user interactions) and are
propagated to the Analyzer component. In this case, the
generated events can be erroneous.

D. Step 3) Failure Dependency Graph

As final FMEA artifact we construct a failure dependency
graph as depicted in Figure 4. The visualization illustrates the
potential cyclic failure propagation through inner system events,
model manipulation, or physical Effectors/Sensors cor-
relations (the latter one is visualized by the dashed edge).
Furthermore the PRE and TRIG scenarios may influence each
other in both directions, which makes them hard to test in
isolation.

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

check

System

Knowlege

Monitor Plan

Scheduler

Configuration
planner

(Planner)

Adaptation logic

Adaptation
logic execution

(Analyzer)

Event monitoring
& processing

(Monitor)

Analyse

Action queue

Abstract reconfiguration
actions

Concrete
reconf.
actions

synch

System actions

PRE

PLAN

SCHED

Sensors Effectors

SENS

EFFECT

POST

ADAPT

Execute

Executor
RECONF

TRIG

EVENT

Models

Fig. 3. Conceptional architecture of an adaptive system.

TABLE I. ADAPTIVE SOFTWARE’S FAILURE SCENARIOS.

FID CID Fault Error Failure Propagation
SENS Monitor corrupt sensor interpreter misinterpreted sensor data no/wrong/unintended event TRIG
TRIG Analyzer corrupt event interpreter misinterpreted event no/wrong/unintended adapt. PRE—ADAPT
PRE Analyzer corrupt model interpreter misinterpreted model no/wrong/unintended adapt. TRIG—ADAPT
ADAPT Analyzer corrupt reasoning wrong adaptation derived no/wrong/unintended adapt. PLAN
PLAN Planer corrupt planner inconsistent planning inconsistent plan SCHED
SCHED Scheduler corrupt scheduler inconsistent scheduling wrong order of actions POST—EVENT—

EFFECT—RECONF
POST Executor corrupt model manipulator corrupt model construction model inconsistent PRE—PLAN
RECONF Executor corrupt configurator reconfiguration fails configuration↔model unsynch –
EVENT Monitor corrupt event producer wrong event production no/wrong/unintended event TRIG
EFFECT Executor corrupt forwarding processing wrong effector oper-

ations
model↔externals unsynched (SENS)

TRIG

POST

PRE

SENS EFFECT

PLAN

SCHED

EVENT

ADAPT

RECONF

Fig. 4. Interdependencies of failure scenarios.

IV. REQUIREMENTS TO MODELS FOR SAS TESTING

All following requirements for adaptation correctness test
methods are based on one or more of the presented failure
scenarios. In the following, we list these mapped requirements
and give each one a name for later reference. The requirements
are formulated as assurance tasks that have to be fulfilled by
employing MBT methods.

1) Correct sensor interpretation: Assure that the sen-
sor data is correctly interpreted and transformed into
system events. Potential sensor data has to be specified

together with context identifications.(7→SENS)
2) Correct adaptation initiation: Assure that events

initiate the correct adaptation if all preconditions
in the model hold. Events, conditions, and adapta-
tion decisions (goals) have to be associated in the
models.(7→TRIG/PRE/ADAPT)

3) Correct adaptation planning: Assure that the genera-
ted adaptation plan is consistent w.r.t. target configura-
tion and action order. Build a model to map adaptation
goals to possible plans.(7→PLAN)

4) Consistent interaction between adaptation and
system behavior: Assure that the generated adap-
tation plan is correctly scheduled with the systems’
control flow. A model is required to define which
adaptation is allowed in which state of application
control.(7→SCHED)

5) Consistent adaptation execution: Assure that (1) the
generated adaptation schedule is applied to system
structure and (2) the synchronization between system
and models is consistent after adaptation. Thus, we
need a set of assertions to be checked after the
adaptation execution.(7→POST/RECONF)

6) Correct system behavior: Assure that the system
correctly commits events or actions to the effectors. As
in the previous requirement, here we need to specify
events to be observed in the system when running any
operation.(7→EVENT/EFFECT)

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Additionally, in testing, coverage criteria are required to
restrict the combinatorial search space of the system under
test and, nevertheless, have a reasonable and meaningful test
result. For less-complex systems, many criteria for test coverage
were found. Mostly, they refer to a graph representation like
a state machine. Known criteria are statement, branch or path
coverage. However, as we have seen, there is a complex set
of requirements and aspects to be tested in the context of
SAS. In consequence, we have to use multiple models which
are more expressive then state machines (as assumed in the
mentioned coverage criteria) to represent all testable aspects.
In consequence, the known criteria cannot be applied directly.
Hence, the last requirement is to find a set of proper coverage
criteria for adaptation mechanisms which can be composed:

7. Adaptive coverage criteria: Find constructive cover-
age criteria metamodels/languages to describe which,
when (in relation to system behavior), and in which
order adaptation scenarios have to be tested and
analytic coverage criteria to measure how adequate a
test suite is.

V. CONCLUSION AND FUTURE WORK

In this paper, we applied a customized Failure Mode
and Effects Analysis (FMEA) to a conceptional self-adaptive
software system based on the minimal structural assumptions
of MAPE-K. We derived a failure domain model to provide
a system in which faults, errors and failures can be classified.
Subsequently, we derived ten distinct failure scenarios that
occur in the process of adaptation. By building a fault
dependency graph we visualized potential cyclic propagation
of failures in such systems. In consequence, six founded
modeling requirements were stated that all can be mapped
to one or more of the described failure scenarios. A seventh
requirement is established by the coverage question. Based on
these foundations a systematic analysis of SAS is possible
comprising failure properties, occurrence, and propagation.
A well-designed MBT framework is comprehensive if all
presented requirements are fulfilled and the all respective
assurances are considered.

For further investigation, it is necessary to instantiate
the found requirements for a real-world adaptive software
infrastructure. If we can map this implementation to several
adaptivity frameworks and express the majority of necessary
test cases, our approach can be attested substantial and generic.
Despite our work on mobile software testing, we recently
started several research projects coping with adaptivity, namely
SMAGS[18] and VICCI[19]. SMAGS (Smart Application
Grids) proposes a role-based architecture, which is able of
adaptive composition. VICCI searches for approaches to build
adaptive Cyber-physical Systems (CPS) like Smart Homes
or robots to improve our daily live in an intelligent manner.
Both projects are possible test targets to our MBT strategy.
Furthermore, from our experience in software testing, we should
thereby sustain usability of used modeling concepts despite
the complexity of the process. Especially in adaptive software
this task is crucial due to the potentially huge complexity and
variability in configurability and behavior.

ACKNOWLEDGMENTS

This research has received funding within the
project #100084131 by the European Social Fund (ESF)
and the German Federal State of Saxony, by Deutsche
Forschungsgemeinschaft (DFG) within CRC 912 (HAEC) as
well as T-Systems Multimedia Solutions GmbH.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[2] T. M. King, D. Babich, J. Alava, P. J. Clarke, and R. Stevens, “Towards
self-testing in autonomic computing systems,” in Proceedings of the
Eighth International Symposium on Autonomous Decentralized Systems,
ser. ISADS ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 51–58.

[3] B. H. C. Cheng, D. Lemos, H. Giese, P. Inverardi, and J. M. et al.,
“Software engineering for self-adaptive systems: A research roadmap,”
in Dagstuhl Seminar 08031 on Software Engineering for Self-Adaptive
Systems, 2008.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, 2004, pp. 11–33.

[5] M. Utting, Practical model-based testing: a tools approach. Morgan
Kaufmann, 2007.

[6] G. Püschel, R. Seiger, and T. Schlegel, “Test Modeling for Context-
aware Ubiquitous Applications with Feature Petri Nets,” in Modiquitous
workshop, 2012.

[7] H. E. Roland and B. Moriarty, System Safety Egnineering and Man-
agemnent, 2nd edn. John Wiley & Sons, Chichester, 1990, ch. Failure
Mode and Effect Analysis.

[8] S. Hallsteinsen, M. Hichey, S. Park, and K. Schmid, “Dynamic software
product lines,” IEEE Computer, 2008, pp. 93–95.

[9] F. Munoz and B. Baudry, “Artificial table testing dynamically adaptive
systems,” 2009.

[10] V. Dehlen and A. Solberg, “DiVA methodology (DiVA deliverable D2.3),”
2010.

[11] A. Maaß, D. Beucho, and A. Solberg, “Adaptation model and validation
framework final version (DiVA deliverable D4.3),” 2010.

[12] T. Tse, S. Yau, W. Chan, H. Lu, and T. Chen, “Testing context-sensitive
middleware-based software applications,” 28th Annual International
Computer Software and Applications Conference, 2004, pp. 458–466.

[13] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated generation
of context-aware tests,” 29th International Conference on Software
Engineering (ICSE), 2007, pp. 406–415.

[14] H. Sozer, B. Tekinerdogan, and M. Aksit, Archtitecting dependable
systems IV. Springer, 2007, ch. Extending failure models and effects
analysis approach for reliability analysis at the software architecture
design level.

[15] B. Tekinerdogan, H. Sozer, and M. Aksit, “Software architecture
reliability analysis using failure scenarios,” Journal of Systems and
Software, vol. 81 (4), 2008, pp. 558–575.

[16] J. Dugan, Handbook on Software Reliability Engineering. McGraw-Hill,
New York, 1996, ch. 15. Software System Analysis Using Fault Trees,
pp. 615–659.

[17] J. Andersson, R. Lemos, S. Malek, and D. Weyns, “Software engineering
for self-adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch.
Modeling Dimensions of Self-Adaptive Software Systems, pp. 27–47.

[18] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann, “Using
Role-Based Composition to Support Unanticipated, Dynamic Adaptation
– Smart Application Grids,” in Proceedings of ADAPTIVE 2012, The
Fourth International Conference on Adaptive and Self-adaptive Systems
and Applications, 2012, pp. 93–102.

[19] D. B. Martin Franke and T. Schlegel, “Towards a flexible control center
for cyber-physical systems,” in Modiquitous workshop, 2012.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

	I Introduction
	II Related Work
	III Failure Analysis
	III-A A Common Process of Self-adaptation: MAPE-K
	III-B Step 1) Failure Domain Model (FDM)
	III-C Step 2) Failure Scenarios
	III-D Step 3) Failure Dependency Graph

	IV Requirements to Models for SAS Testing
	V Conclusion and Future Work
	References

