
Interface Roles for Dynamic Adaptive Systems

Holger Klus

ROSEN Technology & Research Center GmbH
Am Seitenkanal 8

49811 Lingen (Ems), Germany
email: hklus@rosen-group.com

Dirk Herrling and Andreas Rausch

Technical University Clausthal
Julius-Albert-Straße 4,

38678 Clausthal-Zellerfeld, Germany
email: dirk.herrling@tu-clausthal.de
andreas.rausch@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior according to the needs of the user at run time.
Since it is not feasible to develop these systems from scratch every
time, a component model enabling dynamic adaptive systems
is called for. Moreover, an infrastructure is required that is
capable of wiring dynamic adaptive systems from a set of
components in order to provide a dynamic and adaptive behavior
to the user. To ensure a wanted, emergent behavior of the
overall system, the components need to be wired according to
the rules an application architecture defines. In this paper, we
present the Dynamic Adaptive System Infrastructure (DAiSI). It
provides a component model and configuration mechanism for
dynamic adaptive systems. To address the issue of application
architecture conform system configuration, we introduce interface
roles that allow the consideration of component behavior during
the composition of an application.

Keywords–dynamic adaptive systems; component model; adap-
tation; interface roles; application architecture awareness.

I. INTRODUCTION

Software-based systems are present at all times in our daily
life. This ranges from our private life where nearly everyone
owns and uses a smart mobile phone to large scale business
applications and the public administration that is managed
entirely by software systems. In every household, dozens of
devices run software and a modern car will not even start its
engine without the proper software. Some software systems
have grown to be among the most complex systems ever made
by mankind [1], due to their increase in size and functionality.

Through smaller mobile devices with accurate sensors and
actuators and the ubiquitous availability of the Internet, the
number of integrated devices in a large scale application has
increased drastically within the last twenty years. These de-
vices and the software running on them are used in organically
grown, heterogeneous, and dynamic information technology
(IT) environments. Users expect them not only to provide their
primary services, but also to collaborate with each other and
provide some kind of emergent behavior. The challenge is
therefore to be able to build systems that are robust enough to
withstand changes in their environment, deal with a steadily
increasing complexity, and match requirements that might be
defined in the future [2].

Due to the increasing complexity of large systems, be it in
size or in functionality, those systems are no longer developed
from scratch by one company. While the development usually
takes place in a component-based way [3], it is usually split
among a number of companies. Additional components for

mobile devices are often developed against documented or
reverse-engineered interfaces by independent developers.

To ease the development of dynamically integrateable
components, a common component model is called for. The
development of the DAiSI started in 2004 to address this issue
[4]. Over the years a component model was defined that allows
developers to implement a component for a dynamic adaptive
system easily. In this DAiSI component model, every com-
ponent contains an ordered set of component configurations
which each map a set of required services to a set of provided
services.

Additionally, a run-time infrastructure was described and
implemented that can run and integrate DAiSI components by
linking required services with compatible provided service and
thus forming one ore more DAiSI applications. Compatibility
has been only syntactical at first, requiring that for every
method in the required service, a method with the same signa-
ture (name, parameters, return types, etc.) is defined [5]. The
aspect was later extended to support semantic compatibility by
additionally requiring equivalent behavior of each method [6].

Obviously, an application is more than just the sum of
its components. This already becomes evident in very small
examples. Consider cross country skiers and their trainer. A
dynamic adaptive application connects vital data monitoring
devices of the athletes to the management system of their
trainer. In a competition with a competing team on the track,
obviously not every athlete should be connected to every
trainer. Also, the connection should not be made randomly.
Each athlete should only be connected to the trainer that
belongs to the same team. While it is possible to work around
this issue by, e.g., ensuring in the implementation of the
component that only athletes exchange data with trainers from
the same team, this is just that – a work around.

An application architecture that is enforced by the infras-
tructure can define rules that can address the problem our
athletes and trainers have. It can specify that only components
of members of the same team are allowed to be bound to each
other. More generically, the consideration of an application ar-
chitecture during system configuration helps to ensure wanted,
emergent behavior of dynamic adaptive systems. It does that by
enabling application architects to limit the configuration space
and thus prevent the connection of components that should
not be connected. This paper will show a first step towards
the introduction of an application architecture into the field of
dynamic adaptive systems and how we integrate it with the
DAiSI infrastructure.

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

The rest of this paper is structured as follows: In Section
II, we will present an overview of other works in the field of
dynamic adaptive systems. This is followed by an introduction
to the DAiSI component model and the notation of DAiSI
components in Section III. As a first step towards architecture
conform configuration, we introduce interface roles in Section
IV. The paper ends with a conclusion in Section V.

II. RELATED WORK

Component-based development is one of the state-of-the-
art techniques in modern software engineering. Components as
units of deployment and their component frameworks provide
a well-understood, solid approach for the development of
large-scale systems. This is not surprising, considering that
components can be added to, or removed from the system
at design-time easily. This allows high flexibility and easy
maintenance [3].

If components should be added to, or removed from a
system at run-time things get a little bit more difficult, as
techniques for this were not implemented in early component
models. However, service oriented approaches allowed the
dynamic integration of components at run-time. Those systems
usually maintain a service directory and components entering
the system register their provided, and query their required
services at the directory. Once a suitable service provider is
found for a required service, it can be easily connected to the
component [7].

Service-oriented approaches are capable of handling dy-
namic behavior. Components that have not necessarily been
previously known to the system can be integrated into the
system. However, they have the uncomfortable characteristic
that the system itself does not care for the dynamic adaptive
behavior. The component needs to register and integrate itself.
Also, it has to monitor itself if the used services are still
available and adapt its behavior accordingly, if that is no longer
the case. To address these issues a couple of frameworks have
been developed to support dynamic adaptive reconfiguration.

CONIC was one of the first frameworks for dynamic
adaptive, distributed applications. It provided a description
technique that could be used to change the structure (and thus
the architecture) of the integrated modules of an application.
It was maintained through a central configuration manager
[8]. With this description techniques, new component instances
could be spawned and linked to each other.

Another framework, building on the knowledge gained
through the CONIC development, was a framework for Re-
configurable and Extensible Parallel and Distributed Systems
(REX). It provided support for dynamic reconfiguration in
distributed, parallel systems. It visioned those systems as con-
nected component instances with interfaces for which an own
interface description language was defined. Components were
considered as types, allowing multiple instances of any com-
ponent to be present at run-time. The framework allowed the
dynamic change of the number of running instances and their
wiring [9], [10]. Both, the CONIC and the REX framework
allowed the dynamic adaptation of distributed applications,
but only through explicit reconfiguration programs for every
possible occurring change.

This issue was addressed in [11]. They took a more
abstract approach and defined valid application configurations.

The system can then adapt itself from one valid application
configuration to another, whenever the system changes. The
declaration of reconfiguration steps became obsolete.

Another framework to build dynamic adaptive systems
upon is ProAdapt. It is set in the field of service-oriented
architectures and reacts to four classes of situations:

• Problems that stop the execution of the application
• Problems that require the execution of a non-optimal

system configuration
• Arising of new requirements
• Providing of services with a better service quality

ProAdapt is capable of replacing certain services and can,
together with its service composition capabilities, replace
composed services [12].

In [13], [14], a framework for the dynamic reconfiguration
of mobile applications on the basis of the .NET framework was
introduced. Applications are composed of components, and
application configurations are specified initially in XML. A
centralized configuration manager interprets this specification
and instantiates and connects the involved components. The
specification can include numerous different configurations
which are distinguished through conditions under which they
apply. The framework monitors its surroundings with the help
of a special Observer component and evaluates which appli-
cation configuration is applicable. The framework allows the
dynamic addition and removal of components and connections.

In [15] the authors presented a solution to ensure syn-
tactical and semantical compatibility of web services. They
used the Web Service Definition Language (WSDL) and
enriched it with the Web Service Semantic Profile (WSSP)
for the semantical information. Additionally they allowed an
application architect to further reduce the configuration space
through the specification of constraints. While their approach is
able to solve the sketched problem of preventing the wiring of
components that should not be connected, they only focus on
the service definition and compatibility. Our DAiSI approach
defines an infrastructure in which components are executed
that implement a specific component model. We do want to
compose an application out of components that can adapt
their behavior at run-time. We achieve this by mapping sets
of required services to sets of provided services and thus
specifying which provided services depend on which required
services. The solution presented in [15] does not offer a
component model. All rules regarding the relation between
required and provided services would have to be specified as
external constraints. The authors in [16] provided a different
solution to ensure semantic compatibility of web services.
However, the same arguments as for [15] regarding the absence
of a high level component model hold true.

III. THE DAISI COMPONENT MODEL

This section will introduce the foundations of the DAiSI
component model. As already briefly mentioned in the in-
troduction of this paper, DAiSI components communicate
with each other through services. Different component con-
figurations map which required services are needed by the
associated provided services. Figure 1 shows a sketch of a
DAiSI component with some explanatory comments for an
athlete in the biathlon sports domain.

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. Example notation of a DAiSI component with explanatory
comments.

A component is depicted as a rectangle, in this example
of a light blue color. Component configurations are bars that
extend over the borders of the component and are depicted
in yellow here. Associated to the component configurations
are the provided and required services. The notation is similar
to the Unified Markup Language (UML) lollipop notation
[17] with full circles resembling provided, and semi circles
representing required services. A filled circle indicates that
the associated service is directly requested by the end user
and thus should be provided, even if no other service requires
its use.

Figure 1 shows the CAthlete component, consisting of
two component configurations: conf1 and conf2. The first
component configuration requires exactly one service variable
r1 of the IPulse interface. The second component configuration
does not require any services to be able to provide its service p2
of IPerson. The service could be used by any number of service
users (the cardinality is specified as ∗). The other component
configuration (conf1) could provide the service p1 of the type
IAthlete, which could again be used by any number of users.

Figure 2 shows the DAiSI component model as an UML
class diagram [17]. The component itself, represented as the
light blue box in the notation example, is represented by
the DynamicAdaptiveComponent class. It has three types of
associations to the ComponentConfiguration class, namely
current, activatable, and contains. The contains association
resembles the non-empty set of all component configurations.
It is ordered by quality from best to worst, with the best com-
ponent configuration being the most desirable, e.g., because
of best service qualities of the provided services. The order is
defined by the component developer. A subset of the contained
are the activatable component configurations. These have their
required services resolved and could be activated. An active
component configuration produces its provided services. At
run-time, only one or zero component configurations per com-
ponent can be active. The active component configuration is
represented by the current association in the component model,
with the cardinality allowing one or zero current component
configurations for each component.

The required services (represented by a semi circle in
the component notation in Figure 1) are represented by the
RequiredServiceReferenceSet class. Every component config-
uration can declare any number of required services. Those
that are resolved are represented by the resolved association.
The cardinalities of the required service are stored in the
attributes minNoOfRequiredRefs and maxNoOfRequiredRefs.
Provided services (noted as full circles on the left hand side in

Figure 2. DAiSI component model.

Figure 1) are represented by the ProvidedService class. They
can be associated to more than one component configuration,
if more than one component configuration provides the same
service. The runRequestedBy association is relevant at run-time
and resembles the component configuration that actually wants
the provided service to be produced.

Not all provided services can be used any number of times.
The attribute maxNoUsers indicates the maximum number
of allowed users. The flag requestRun, represented by the
full circle being filled with black in the component notation,
indicates that the service should be produced, even if no other
service requires its use. This is typically the case for services
that provide graphical user interfaces or that provide some
functionality directly requested by the end user.

The provided and required service, more precisely their
respective classes in the component model, are associated with
each other through three associations. The first association
canUse represents the compatibility between two services. If
a provided service can be bound to the service requirement
of another class, these two are associated through a canUse
association. A subset of the canUse association is wantsUse.
At run-time, it resembles a kind of reservation of a particular
provided service by a required service reference set. It does
not already use the provided service, but would like to use it.
After the connection is established and the provided service

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

satisfies the requirement, they are part of the uses association
which represents the actual connections. All classes covered
to this point implement a state machine to maintain the state
of the DAiSI component. If you want to know more about the
state machines and the configuration mechanism, please refer
to our last years paper [18].

To this point, we have covered the building blocks of
a DAiSI component. An application in a dynamic adaptive
environment is composed of any number of such components
that are linked with each other through services. Those ser-
vices are defined through DomainInterfaces. Required services
(represented by the RequiredServiceReferenceSet class) refer
to exactly one domain interface, while provided services (rep-
resented by the ProvidedService class) implement a domain
interface. The set of all defined domain interfaces composes
the DomainArchitecture. The interface roles, which will be
presented in the next section, are contained by the domain
architecture. They refine domain interfaces and are required by
any number of required service reference sets. Any provided
service can conform to an interface role. However, this is not
a static information, but changes during run-time. The next
section will explain why.

IV. INTERFACE ROLES

With the RequiredServiceReferenceSet class many compo-
nent local requirements can be specified. However, this is not
sufficient for self-organizing systems.To illustrate the problem,
let us consider Figure 3. It shows a DAiSI component for
an athlete in the biathlon sports domain. It does specify one
component configuration which provides a service of the type
IAthlete and requires two IStick services to be able to do so.
The provided service calculates the current skiing technique
and needs measurement data of the sticks movements, which
is provided by the two required services. However, with the
component model as presented in the previous paragraphs a
binding between only the left ski stick with both required
service reference sets would be possible and allow the com-
ponent to run. Of course the domain interface IStick does
provide a method to query at which side a ski stick is
being used. However, this information is not considered in the
configuration process. Obviously, the IAthlete service can not
perform as expected as the measurement data of the right ski
stick are missing.

Figure 3. A DAiSI component for a biathlon athlete.

There are numerous other examples in which return values
of domain services have to be considered in order to establish
the desired system configuration. For that reason, we extended
the component model by the class InterfaceRole. In our
previous understanding, provided and required services were
compatible, if they referred to the same domain interface.
Those interfaces can be seen as a contract between service
provider and service user. We now extended this contract by
interface roles. An interface role references exactly one domain

interface and can define additional requirements regarding
the return values of specific methods defined in that domain
interface. A provided service only fulfills an interface role if
it implements the domain interface and as well complies to
the conditions defined in the interface role. Consequently, a
required service reference set not only requires compatibility
of the domain interface, but also of the interface role to be
able to use a provided service.

Figure 4 shows the same DAiSI component as Figure 3,
but with specified interface roles. With this addition it can be
ensured that the athlete component in fact is connected with
one left and one right stick. The LeftStickRole interface role
refines the IStick domain interface and compares the return
value of the method that returns the side of the ski stick is
used on against a reference value for left ski sticks. This could
be implemented by a method called getSide():String and the
return value would be compared against the string “left”. The
interface role RightStickRole can be implemented accordingly.

Figure 4. A DAiSI component for a biathlon athlete with interface roles.

This solution introduces new challenges for the configura-
tion process of dynamic adaptive systems. Was it previously
sufficient to connect a pair of required service reference set and
provided service, this decision has to be monitored now. As
the interface roles take return values of services into account,
the fulfillment of an interface role is not static. The provided
service supposedly conforming to the interface role has to be
evaluated either cyclically, or event based whenever relevant
return values change. For our implementation, we took a cyclic
approach, however in [6] we described a way to re-evaluate
the semantic compatibility of services whenever return values
change equivalence classes.

V. CONCLUSION

This paper presented an extended version of the DAiSI
framework. The key aspect that the developer does not need to
implement the adaption behavior himself, has been prevailed.
While the system configuration, more precisely the component
wiring, in older versions of DAiSI and other dynamic adaptive
systems was only considering syntactic and semantic com-
patibility, the newest findings enable the developer to specify
interface roles. These open the possibility to consider return
values of services during system configuration, which was
not possible before. We implemented the framework in Java
and a slightly limited version in C++. Components of both
framework implementations can be linked together, because
of an underlying CORBA layer.

Interface roles are obviously just the first step towards
application architecture conform system configuration. In the
near future, we will extend the approach to support an archi-
tecture description that allows the specification of constraints
that are not component local, as the interface roles are.

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

REFERENCES
[1] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough,

R. Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt,
K. Sullivan, and K. Wallnau, “Ultra-Large-Scale Systems - The
Software Challenge of the Future,” Software Engineering Institute,
Carnegie Mellon, Tech. Rep., June 2006. [Online]. Available:
http://www.sei.cmu.edu/uls/downloads.html

[2] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive
software engineering,” Journal of Computer Science and Technology,
vol. 24, no. 2, 2009, pp. 183–188.

[3] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[4] D. Niebuhr, C. Peper, and A. Rausch, “Towards a development
approach for dynamic-integrative systems,” in Proceedings of the
Workshop for Building Software for Pervasive Computing, 19th
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Nov 2004. [Online]. Available: http://sse-
world.de/index.php/download file/view inline/157/

[5] H. Klus, D. Niebuhr, and A. Rausch, “A component model for dynamic
adaptive systems,” in Proceedings of the International Workshop on
Engineering of software services for pervasive environments (ESSPE
2007), A. L. Wolf, Ed. Dubrovnik, Croatia: ACM, sep 2007,
pp. 21–28, electronic Proceedings. [Online]. Available: http://sse-
world.de/index.php/download file/view inline/79/

[6] D. Niebuhr, Dependable Dynamic Adaptive Systems. Ver-
lag Dr. Hut, 2010. [Online]. Available: http://www.dr.hut-
verlag.de/9783868536706.html

[7] M. P. Papazoglou, “Service-oriented computing: Concepts, characteris-
tics and directions,” in Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth International Conference on.
IEEE, 2003, pp. 3–12.

[8] J. Magee, J. Kramer, and M. Sloman, “Constructing distributed systems
in conic,” Software Engineering, IEEE Transactions on, vol. 15, no. 6,
1989, pp. 663–675.

[9] J. Kramer, “Configuration programming-a framework for the devel-
opment of distributable systems,” in CompEuro’90. Proceedings of
the 1990 IEEE International Conference on Computer Systems and
Software Engineering. IEEE, 1990, pp. 374–384.

[10] J. Kramer, J. Magee, M. Sloman, and N. Dulay, “Configuring object-
based distributed programs in rex,” Software Engineering Journal,
vol. 7, no. 2, 1992, pp. 139–149.

[11] I. Warren and I. Sommerville, “Dynamic configuration abstraction,” in
Software EngineeringESEC’95. Springer, 1995, pp. 173–190.

[12] R. R. Aschoff and A. Zisman, “Proactive adaptation of service composi-
tion,” in Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop on. IEEE, 2012, pp. 1–10.

[13] A. Rasche and A. Polze, “Configurable services for mobile users,”
in Object-Oriented Real-Time Dependable Systems, 2002.(WORDS
2002). Proceedings of the Seventh International Workshop on. IEEE,
2002, pp. 163–170.

[14] ——, “Configuration and dynamic reconfiguration of component-based
applications with microsoft. net,” in Object-Oriented Real-Time Dis-
tributed Computing, 2003. Sixth IEEE International Symposium on.
IEEE, 2003, pp. 164–171.

[15] T. Kawamura, J.-A. De Blasio, T. Hasegawa, M. Paolucci, and
K. Sycara, “Public deployment of semantic service matchmaker with
uddi business registry,” in The Semantic Web ISWC 2004, ser.
Lecture Notes in Computer Science, S. McIlraith, D. Plexousakis, and
F. van Harmelen, Eds. Springer Berlin Heidelberg, 2004, vol. 3298,
pp. 752–766. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
30475-3 52

[16] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and M. Zaremba,
“Wsmx: A semantic service oriented middleware for,” in B2B In-
tegration, International Conference on Service-Oriented Computing.
Springer, 2006, pp. 4–7.

[17] OMG, OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1, Object Management Group Std., Rev. 2.4.1, August
2011. [Online]. Available: http://www.omg.org/spec/UML/2.4.1

[18] H. Klus and A. Rausch, “Daisi - a component model and decentralized
configuration mechanism for dynamic adaptive systems,” in ADAP-
TIVE 2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, 2014, pp. 27–36.

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

