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Abstract—This paper introduces a new approach for a network 
on chip (NOC) design which is based on a NlogN interconnect 
topology. The intended application area for the NOC is the 
real-time communication of multiprocessors that are hosted by 
a single Field Programmable Gate Array (FPGA). The 
proposed NOC is an on-chip multistage interconnection 
network for which an upper limit can be guaranteed that is at 
most needed for the latency while delivering data between 
sending and receiving processors. The reason for the 
deterministic interprocessor communication is the constant 
path length from input to any output port of the NOC. In 
contrast to contemporary NOCs, no intermediate routers exist. 
Thus, no overloaded router with hot spot problems can occur, 
and the proposed NOC can be used for real-time applications. 
Example NoCs of size 4x4 and 8x8 were implemented in 
VDHL, together with their softcore processors on Spartan3 
and Virtex-4 and -5 FPGAs from Xilinx. 

Keywords–network on chip; multistage interconnection network; 
softcore processor; real-time multiprocessor; FPGA-
based multiprocessor 

I.  INTRODUCTION 
The increasing quantity of logic cells that can be 

integrated into a single FPGA allows novel solutions by 
using the system on chip (SoC) paradigm. Just recently, 
multiprocessor system on chip (MPSoC) applications have 
become feasible that are hosted by a single FPGA [1,2]. In 
such MPSoCs, each processor exists only as Verilog or 
VDHL [3] description that can be extended or modified as 
needed, and that is afterwards synthesized for a target FPGA 
such as Spartan3 or Virtex-4/-5/-6 from Xilinx, for example. 
Because of the adaptability of the processor architecture to 
the demands of the real-time system, such computing devices 
are called soft-core or soft processors. 

MPSoCs with soft processors exhibit both, the high 
performance of parallel computers and the flexibility of 
reconfigurable hardware [4]. In real-time systems, data- and 
computing-intensive applications can make use of this 
technological progress. For instance, driver assistant systems 
in cars require to service more sensors and actuators than 
ever. Such applications demand higher computing power and 
less electrical power at the same time, while the system size 
has to be minimized. To match such demands, the proposed 
network on chip (NoC) design can be used in MPSoCs. In 

the future, we believe that MPSoCs will replace in part 
conventional electronic controller units in automobiles as 
well as in complex machinery [5]. 

The majority of embedded systems are located in real-
time applications. Amongst others, the real-time 
performance of multiprocessor computers relies on the 
predictability of the interprocessor communication. For an 
MPSoC, deterministic behaviour of the interconnection 
network has to be guaranteed. This requirement is hardly to 
implement with conventional packet routing that takes place 
in direct, i.e. static networks. In static networks, adaptive 
multi-hop routing together with packet prioritization induces 
an undesirable indeterminism to network latency. The 
formation of hotspots due to excessive data traffic in router 
nodes excludes predictability also. We therefore propose, a 
new paradigm for MPSoCs, which makes use of multistage 
interconnection networks (MINs) as a network on chip. 

This paper is organized as follows: in section 2, the state 
of the art in NoCs is given. Section 3 makes a recap of 
MINs. Their utility and their problems in on-chip usage are 
investigated in section 4. In section 5, the topology of the 
proposed NoC is presented, and in section 6 its chosen 
implementation is described, together with the MPSoC for 
which it was developed. The paper ends with conclusion and 
literature reference in section 7. 

II. STATE-OF-THE ART IN NETWORKS ON CHIP 
Interprocessor communication in MPSoCs with tens of 

cores or more is no longer feasible by using shared buses due 
to their low intrinsic scalability in bandwidth and latency 
[6,7]. Also crossbar structures are no longer practicable due 
to their O(N2) complexity if N becomes large. To overcome 
the von Neumann bottleneck and the O(N2) increase in 
hardware, alternative architectures have been introduced by 
NoCs as the new paradigm in SoC design [8]. Since then 
considerable number of NoC designs have been proposed 
which provide diverse communication types and network 
topologies [7,9]. NoCs with direct (static) networks have 
been proposed by [10,11,12,13] such as mesh, tree, torus or 
hypercube. Some examples of these static topologies are 
given in Fig. 1. The basic principle of direct network 
topologies is that each processor is connected directly to a 
smaller number of neighbour processors where each 
processor acts in addition as a switch or router node for  
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Figure 1.  Toplogies of direct networks: a) mesh; b) tree; c) hypercube. 

frames or packets, respectively. Routing is performed 
either statically or dynamically via the source and target 
information contained in the frame/packet headers. The 
communication channels between the processor nodes are 
operating on layer 3 of the ISO 7-layer model. Finally, some 
nodes provide additional communication channels for the 
necessary I/O. 

A desirable property of NoCs for MPSoCs is scalability, 
which means that for small and large processor numbers as 
well, the same basic interconnect structure, can be used in 
principle. Another property which is mandatory for real-time 
systems is that the achievable bandwidth and the maximum 
latency for data transfer is deterministic i.e. predictable. This 
means that an upper limit for the latency must be guaranteed 
that is at most needed for data transfer, as well as a lower 
limit for the bandwidth. This is required to build and 
program systems that can react in due time. 

However, all direct networks have the potential hazard of 
hot spots that are overloaded router nodes. Hot spots result in 
unpredictable bandwidth and latency, which in turn is not 
tolerable for real-time systems. Furthermore, scalability is 
also not possible if hot spots occur. 

This is why we propose an alternative to direct networks 
that can be used for NoCs in MPSoCs and that is based on 
indirect networks. In indirect networks, computing nodes are 
connected via a cascaded set of switches. Because of the 
switch arrangement, each path from source to target is of the 
same length, and every switch has to serve only a fixed 
number of traffic streams. Thus, hot spots cannot occur, if 
the rearrangable non-blocking subtype of indirect networks 
is used. Indirect networks are described in the next section. 

III. MULTISTAGE INTERCONNECTION NETWORK (MIN) 
By origin, MINs were proposed for telephone exchange 

systems, and later for parallel computers. Vector 
supercomputers, multiprocessors and multicomputers with 
processors on individual silicon chips were introduced two 
decades ago for high-performance computing. MINs have 
been designed to match their bandwidth and latency 
constraints and to support effective execution of parallelized 
algorithms. Therefore, MINs are known from parallel 
computers, and we have adopted these structures to provide 
for deterministic on-chip interprocessor communication. 

MINs connect computing nodes through a set of 
elementary switches that are organized in 1, 3 or logN stages, 
where N is the number of the ports the network features. The 
mathematical patterns between the switch stages are 
permutation functions, such as perfect shuffle, butterfly or bit 
reversal [14]. The Omega network, for example, which was 

introduced by Lawrie [15], consists of shuffle and exchange 
permutations in logN stages and can be defined by 

 
  

� 

Ωn = σ n  E( )n  (1) 

where n is the total number of stages, σ is the shuffle 
permutation over n bits, and E is an exchange stage [16]. An 
example for an Omega network of size 8x8 is given in Fig. 2. 

By using the smallest possible switch size of 2x2, the 
construction of a MIN needs (N/2)log2N switches only, 
which is the minimum number possible at all. For 
comparison, a crossbar network requires N2 switches. 
Typical representatives for logN-MINs are Omega, Baseline 
and Butterfly networks [16,17,18,19]. They belong to the so-
called delta subclass of MINs which means that routing 
through the logN-MIN is easily accomplished by using bit 
after bit of the target port address in order to set each switch 
so that it routes data either „=“ (parallel) or „x“ (cross). 
Because of the constant number of switches that data has to 
pass from the network input port to output port, a constant 
routing time or at least an upper limit for the routing canbe 
guaranteed. MINs are therefore beneficial for interprocessor 
communication with respect to latency, which is important 
for real-time applications. However, constant routing time 
cannot be guaranteed for transfers that take place at all input 
ports simultaneously. The reason is that each output can be 
reached from every input in principle, but there are 
permutations of inputs to outputs that can not be realized 
which is why MINs are called fully reachable but blocking. 
This is the main disadvantage of logN-MINs. 

There are two other categories of MINs, which are called 
Clos and Benes networks that do not belong to the logN type 
and that are non-blocking [19]. Unfortunately, the Clos 
network has a switch complexity of (3/2)N√N, and the Benes 
network has Nlog2N complexity which is both not the 
minimum logN-MINs have. This means for the applicability 
of Clos and Benes MINs as on-chip networks that they 
consume more chip area as needed, and that they need more 
electrical power as logN-MINs do. Both are disadvantages 
for VLSI integration. Furthermore, Clos and Benes networks 
are non-blocking only for the price of rearranging already 
existing internal paths through the network, which is a 
problem for ongoing real-time transmissions. During path 
rearrangement, no data transfer can take place. Finally, path 

 

 
Figure 2.  Omega topology of size 8x8. 
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rearrangements require a central control instance that 
executes the rearranging algorithm. However, a central 
control unit prevents from scalability, and the rearranging 
algorithm is so complex that it consumes a processor by its 
own, together with considerable computing time. 

IV. IDEAL ON-CHIP MIN 
In general, we can state that there is no ideal on-chip 

interconnection network with good scalability, deterministic 
routing latency for real-time capability, minimum chip area 
and minimum power consumption at the same time. 
However, with the introduction of FIFO buffers, each 
disadvantage of the above networks could be solved, at least 
for many practical applications. In the case of logN-MINs for 
example, FIFOs at all switch stages are needed as temporary 
storage for incoming data to hold them until the blocking 
situation is managed. Blocking management has to be made 
every time when the MPSoC requests a forbidden 
permutation from input to output ports. Delaying and 
serializing the needed transfers via FIFO accomplish this. 
Data is then delayed until blocking is over, and afterwards 
data is read out from the FIFO one after the other. A positive 
aspect is that blocking management can be achieved in a 
fully decentralized manner. 

In the case of Clos and Benes MINs, FIFOs are required 
only at the input ports to store incoming data until the 
internal path rearrangements have been accomplished. If a 
permutation from input to output needs rearrangement, then 
the input FIFOs are filled while the network is drained. 
When all network-internal paths are empty, rearrangement 
can take place by setting switches newly. After that, data is 
let again into the network. 

In both cases, the FIFO solution is not perfect because it 
introduces indeterministic delays in the MPSoC 
interprocessor communication. Depending on the filling state 
of a FIFO and depending on the needed transfers per time 
unit, more or less data frames or packets have to be 
temporarily stored in the FIFOs. Only by means of a fixed 
FIFO depth, an upper limit for the maximum latency can be 
stated for data delivery. However, this is sufficent in practice 
for many real-time applications. FIFO overflow can occur, 
but it is considered as a programming fault of the MPSoC. It 
has to be mentioned here also that is not the fault of the 
network but of the programmer if two input ports want to 
deliver data to the same output port at the same time. This is 
comparable to writing the same variable in a shared memory 
from two processors at the same time. 

To summarize, the state of the art in on-chip networks is 
that logN-MINs are the best option because of their 
O(NlogN) scalability and their minimum chip and power 
consumption compared to busses, crossbars, Clos and Benes 
networks. Therefore, we propose a logN-MIN as the 
preferred NoC for MPSoC. In the next section we will 
explain which type of logN-MIN is best suited, and what we 
did to improve its real-time behaviour. 

V. TOPOLOGY OF THE PROPOSED MINOC 
The network topology we decided for is known as 

Baseline network [20]. In Fig. 3, a Baseline network of size 
16x16 is presented, together with two routing examples. This 
topology has been introduced in 1980 by C. Wu and T. Feng 
to proof equivalence among logN-MINs. The stages in the 
Baseline network are connected via an unshuffle wiring. The 
topology of the Baseline network is mathematically 
isomorphic to other networks of the log2N class but the 
network has technological advantages compared to other 
logN-MINs. The production of the Baseline network is 
characterized by a recursive construction. Each stage is of 
1,2,4,... sub-networks of the same type.  From the view-point 
of the first stage, the Baseline consists of one switch block 

 

 
Figure 3.  Baseline topology of size 16x16. 

of size NxN. The second stage contains two switch 
blocks of size (N/2) x (N/2) and so forth. That iterates down 
to the smallest blocks of size 2x2 as atomic elements. In 
addition, each stage has the minimum possible number of 
crossing wires, and the wires have minimum lengths [14]. 
Both features, recursive construction and minimum wiring, 
are advantages for implementation in VLSI or FPGA that are 
not found in other logN-MINs. In Baseline networks, the 
routing algorithm evaluates the most significant bit of the 
n=logN bits of the target address first [16]. With every bit 
evaluation, the interval of possible output ports is halved. 
After n steps, the target output port is exactly specified. This 
routing algorithm is a good example of the divide-and-
conquer principle known from theoretical informatics. 
Finally, the recursive construction of the Baseline network 
eases its definition in VHDL. The VHDL code of a 2x2 
switch is for example: 
signal A, B, C, D: std_logic_vector(0 to 31); 
shared variable S: boolean; 
 
C <= A when S = false -- parallel connection 
else B;               -- cross connection 
D <= A when S = true  -- parallel connection 
else B;               -- cross connection 
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where A and B are inputs, C and D are outputs and S is 
the switch state. Not shown are FIFO buffers, but as we have 
learned from practice, the FPGA synthesis of the switch 
controller is much more complex than the switches and the 
FIFO. With our preferred MINoC, we yield a MPSoC of the 
symmetric multiprocessor type that is depicted in Fig. 4. Its 
architecture includes softcore processors P, local memory MP 
and shared memory MS. 

 

 
Figure 4.  Block diagram of the resulting MPSoC Architecture. 

With this architecture, both programming paradigms of 
message passing and shared memory are supported 
simultaneously. 

VI. IMPLEMENTATION OF THE MINOC 
The MINoC is implemented by adding a custom VHDL 

core to the existing description of a Xilinx Microblaze soft 
processor [21]. The block diagram of the so enhanced 
MicroBlaze is shown in Fig. 5. 

Our custom IP core realizes the MINoC for the MPSoC. 
It consists of three components: 1.) switches 2.) network 
interface, and 3.) network controller. The first component 
(switches) implements the described Baseline topology. The 
second component is the network interface. It connects the 
MicroBlaze via its proprietary FSL bus [22,23] to the 
MINoC input ports and output ports. The third component is 
the network controller, which we have introduced to improve 
real-time behaviour. The network controller allows for 
interprocessor communication only in fixed points in time. 
This can guarantee a better upper limit for latency in data 
delivery. 

 

 
Figure 5.  Block diagram of the soft processor enhanced by a MINoC. 

A. Switches and Wiring 
In the following sections of this paper we refer to 

message-based interprocessor communication. However, 
with the network coupling of shared memory (MS) 
interprocessor communication via shared variables becomes 
feasible as well. 

As seen before, the switches feature two states for direct 
and crossed connection paths, but for parallel computing 
mechanisms for task synchronization are needed also. These 
can be implemented by two additional switch states called 
upper and lower broadcast (Fig. 6). Direct and crossed 
connection paths are used in point-to-point communication 

 

 
Figure 6.  States of the switch: a) straight and cross b) upper and lower 

broadcast. 

between sender/receiver pairs via message passing. 
Broadcast communciation is needed for synchronous task 
start and stop and for distributing input data to processors. 
Both types of communication are required in the intended 
application domain of real-time embedded systems. 

The wire patterns between the stages are implemented 
via bidirectional communication channels that are defined as 
signals in VHDL. With bidirectional channels, handshake 
protocols between sender and receiver are implemented. 

B. Network Interface 
The soft processors are connected to the interconnection 

network via the Fast Simplex Link (FSL) from Xilinx [23]. 
Each FSL interface provides an uni-directional point-to-point 
communication channel that includes a FIFO buffer. The 
FIFO buffer decouples the processor clock from the network 
but it introduces indeterminism as described that cannot be 
avoided. However, the network controller reduces the jitter 
in message latency during data transfer. Since the FSL 
interface is an internal part of the soft processor, 
communication takes 2 processor cycles only for transferring 
a 32-bit word from sender to receiver if the FIFO buffers are 
free. Therefore, the FSL enables a high-speed interprocessor 
communication. When the FSL interface is added to the soft 
processor, the MicroBlaze instruction set is augmented with 
four additional instructions: 

• Blocking Read (get) 
• Non-blocking Read (nget) 
• Blocking Write (put) 
• Non-blocking Write (nput) 

These instructions are for reading from and writing data 
to the FIFO of the FSL interfaces. As soon as data are 
written to FIFO, the put instruction terminates and the NoC 
moves all data from source to destination FIFO. Finally, a 
get instruction reads the data out of the receive FIFO. 
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C. Network Controller 
The MIN operates not by packet- or message switching 

but circuit switching. This provides a direct connection 
between sender and receiver and delivers maximum speed 
for interprocessor communication since no frame or packet 
header is required that would be overhead only. Thus all data 
are received in sent order. 

Furthermore, a time-slot that is returning periodically is 
granted to each processor according to a scheduling policy 
where messages can be sent. The scheduling policy has been 
implemented in the network controller in hardware by means 
of VHDL. When the network controller schedules a data 
transfer, a communication time-slot opens, and the network 
controller establishes a physical path between a pair of 
processors. As long as the time-slot stays open, data can be 
sent directly from sender to receiver with full speed of the 
processor interfaces. After a time-slot has closed, the next 
path will be opened round-robin. In our tests we have used 
preemptive scheduling with a fixed slot time. For this 
purpose, a central network controller was implemented and 
tested. This network controller serves all connection requests 
from the processors. Preemption is made if a processor 
whose time slot has arrived does not want a data transfer 
through the network. The desribed scheduling policy is 
identical to task scheduling in real-time operating systems. 
The usage of a scheduling algorithm for data transfer results 
in better predictability to the network latency which suffers 
from the indeterminism of the FIFOs. Furthermore, several 
scheduling algorithms are possible, such as priority 
scheduling or earliest-deadline-first which are known from 
real-time operating systems. 

D. Overall Architecture 
The entire MPSoC including the MINoC has been 

implemented and tested with evaluation boards carrying 
FPGAs from Xilinx of the Spartan-3, Virtex-4 and Virtex-5 
types. As boards have been used the ML 505 from Xilinx 
with a Virtex-5 FPGA, the XpressFX100 from PLDA with a 
Virtex-4 and the Spartan-3 starter kit board from Digilent 
with a Spartan-3 chip. With Spartan-3, a 4x4 network was 
implemented together with 4 MicroBlazes on the same  

 

 
Figure 7.  Overall architecture of the MPSoC. 

FPGA. On the Virtex-4 and the Virtex-5 board, an 
MPSoC with a MINSoC of size 8x8 has been implemented. 
All processors are Xilinx MicroBlaze softcores that emulate 

a 32-bit RISC processor. Each soft processor features private 
local memory with Block RAM for instructions and data. 
Multiple Block RAMs are linked to processors via the Local 
Memory Bus (LMB) [21]. All MicroBlazes in turn are 
coupled to the interconnection network via the FSL-MIN 
interface as shown in Fig. 5. An overview of the system 
architecture as it was implemented is given in Fig. 7. 

With using the FSL processor interface we can measure 
that it takes two clock counts of the processor to write or 
read a single 32-bit data to or from the network interface. 
Once the connection from sender to receiver has been 
established no additional latency of the circuit-switched 
network exists, so that a network clock rate of 100 MHz 
induces a real data transfer rate of 1.6 Gbit/s per connection. 
Depending on the topology of the network multiple 
connections between sender/receiver pairs can be established 
at the same time without additional latencies. Higher 
network clock rates are feasible because the FSL can be 
operated in asynchronous mode. The maximum frequency 
depends on the FPGA chip that is used for implementation. 

Our design studies have shown, that the network 
topology can be implemented in FPGA hardware without 
problems. The challenge is the implementation of the 
network controller with its routing algorithm in an efficient 
way. But, once the network is fully implemented in FPGA 
hardware, the MINoC provides a deterministic high-
performance network for interprocessor communication in 
MPSoCs. 

VII. CONCLUSION AND FUTURE WORK 
This paper proposes an on-chip multistage inter-

connection network with the least possible number of 
hardware, the minimum amount of wiring between stages 
and the minimum wire lengths. It can be used for high-
performance interprocessor communication in real-time 
applications. Although logN-MINs have been already 
researched and used in parallel super computers, they can be 
adapted also for network-on-chips as well. High bandwidth 
and low latency are combined with a deterministic behavior 
of interprocessor communication in the proposed NoC. The 
objective is to use MPSoCs in high-performance embedded 
systems with hard real-time constraints that can be found in 
electronic control units for cars or for production machinery. 

In future work we want to discuss the pros and cons of 
blocking and non-blocking MINs for real-time computing 
and their implementation in FPGA hardware. Blocking 
networks such as the Baseline network minimize the costs in 
hardware but they require a suitable scheduling strategy 
because not all permutations of sender/receiver pairs can be 
realized. Therefore further scheduling algorithms such as 
priority scheduling or earliest-deadline-first have to be 
considered for hardware implementation. In comparison with 
blocking networks, non-blocking networks as the Benes 
network can be operated without complex scheduling 
strategies since messages can be sent to each free receiver 
port at any time. On the other hand non-blocking networks 
exhibit extra costs in hardware plus they require complex 
routing algorithms due to the rearrangement of alternative 
connection paths. 
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