
Real-time Processor Interconnection Network for
FPGA-based Multiprocessor System-on-Chip (MPSoC)

Stefan Aust, Harald Richter

Department of Computer Science
Clausthal University of Technology

Julius-Albert-Str. 4
38678 Clausthal-Zellerfeld, Germany

e-mail: stefan.aust|harald.richter@tu-clausthal.de

Abstract—This paper introduces a new approach for a network
on chip (NOC) design which is based on a NlogN interconnect
topology. The intended application area for the NOC is the
real-time communication of multiprocessors that are hosted by
a single Field Programmable Gate Array (FPGA). The
proposed NOC is an on-chip multistage interconnection
network for which an upper limit can be guaranteed that is at
most needed for the latency while delivering data between
sending and receiving processors. The reason for the
deterministic interprocessor communication is the constant
path length from input to any output port of the NOC. In
contrast to contemporary NOCs, no intermediate routers exist.
Thus, no overloaded router with hot spot problems can occur,
and the proposed NOC can be used for real-time applications.
Example NoCs of size 4x4 and 8x8 were implemented in
VDHL, together with their softcore processors on Spartan3
and Virtex-4 and -5 FPGAs from Xilinx.

Keywords–network on chip; multistage interconnection network;
softcore processor; real-time multiprocessor; FPGA-
based multiprocessor

I. INTRODUCTION
The increasing quantity of logic cells that can be

integrated into a single FPGA allows novel solutions by
using the system on chip (SoC) paradigm. Just recently,
multiprocessor system on chip (MPSoC) applications have
become feasible that are hosted by a single FPGA [1,2]. In
such MPSoCs, each processor exists only as Verilog or
VDHL [3] description that can be extended or modified as
needed, and that is afterwards synthesized for a target FPGA
such as Spartan3 or Virtex-4/-5/-6 from Xilinx, for example.
Because of the adaptability of the processor architecture to
the demands of the real-time system, such computing devices
are called soft-core or soft processors.

MPSoCs with soft processors exhibit both, the high
performance of parallel computers and the flexibility of
reconfigurable hardware [4]. In real-time systems, data- and
computing-intensive applications can make use of this
technological progress. For instance, driver assistant systems
in cars require to service more sensors and actuators than
ever. Such applications demand higher computing power and
less electrical power at the same time, while the system size
has to be minimized. To match such demands, the proposed
network on chip (NoC) design can be used in MPSoCs. In

the future, we believe that MPSoCs will replace in part
conventional electronic controller units in automobiles as
well as in complex machinery [5].

The majority of embedded systems are located in real-
time applications. Amongst others, the real-time
performance of multiprocessor computers relies on the
predictability of the interprocessor communication. For an
MPSoC, deterministic behaviour of the interconnection
network has to be guaranteed. This requirement is hardly to
implement with conventional packet routing that takes place
in direct, i.e. static networks. In static networks, adaptive
multi-hop routing together with packet prioritization induces
an undesirable indeterminism to network latency. The
formation of hotspots due to excessive data traffic in router
nodes excludes predictability also. We therefore propose, a
new paradigm for MPSoCs, which makes use of multistage
interconnection networks (MINs) as a network on chip.

This paper is organized as follows: in section 2, the state
of the art in NoCs is given. Section 3 makes a recap of
MINs. Their utility and their problems in on-chip usage are
investigated in section 4. In section 5, the topology of the
proposed NoC is presented, and in section 6 its chosen
implementation is described, together with the MPSoC for
which it was developed. The paper ends with conclusion and
literature reference in section 7.

II. STATE-OF-THE ART IN NETWORKS ON CHIP
Interprocessor communication in MPSoCs with tens of

cores or more is no longer feasible by using shared buses due
to their low intrinsic scalability in bandwidth and latency
[6,7]. Also crossbar structures are no longer practicable due
to their O(N2) complexity if N becomes large. To overcome
the von Neumann bottleneck and the O(N2) increase in
hardware, alternative architectures have been introduced by
NoCs as the new paradigm in SoC design [8]. Since then
considerable number of NoC designs have been proposed
which provide diverse communication types and network
topologies [7,9]. NoCs with direct (static) networks have
been proposed by [10,11,12,13] such as mesh, tree, torus or
hypercube. Some examples of these static topologies are
given in Fig. 1. The basic principle of direct network
topologies is that each processor is connected directly to a
smaller number of neighbour processors where each
processor acts in addition as a switch or router node for

47

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Figure 1. Toplogies of direct networks: a) mesh; b) tree; c) hypercube.

frames or packets, respectively. Routing is performed
either statically or dynamically via the source and target
information contained in the frame/packet headers. The
communication channels between the processor nodes are
operating on layer 3 of the ISO 7-layer model. Finally, some
nodes provide additional communication channels for the
necessary I/O.

A desirable property of NoCs for MPSoCs is scalability,
which means that for small and large processor numbers as
well, the same basic interconnect structure, can be used in
principle. Another property which is mandatory for real-time
systems is that the achievable bandwidth and the maximum
latency for data transfer is deterministic i.e. predictable. This
means that an upper limit for the latency must be guaranteed
that is at most needed for data transfer, as well as a lower
limit for the bandwidth. This is required to build and
program systems that can react in due time.

However, all direct networks have the potential hazard of
hot spots that are overloaded router nodes. Hot spots result in
unpredictable bandwidth and latency, which in turn is not
tolerable for real-time systems. Furthermore, scalability is
also not possible if hot spots occur.

This is why we propose an alternative to direct networks
that can be used for NoCs in MPSoCs and that is based on
indirect networks. In indirect networks, computing nodes are
connected via a cascaded set of switches. Because of the
switch arrangement, each path from source to target is of the
same length, and every switch has to serve only a fixed
number of traffic streams. Thus, hot spots cannot occur, if
the rearrangable non-blocking subtype of indirect networks
is used. Indirect networks are described in the next section.

III. MULTISTAGE INTERCONNECTION NETWORK (MIN)
By origin, MINs were proposed for telephone exchange

systems, and later for parallel computers. Vector
supercomputers, multiprocessors and multicomputers with
processors on individual silicon chips were introduced two
decades ago for high-performance computing. MINs have
been designed to match their bandwidth and latency
constraints and to support effective execution of parallelized
algorithms. Therefore, MINs are known from parallel
computers, and we have adopted these structures to provide
for deterministic on-chip interprocessor communication.

MINs connect computing nodes through a set of
elementary switches that are organized in 1, 3 or logN stages,
where N is the number of the ports the network features. The
mathematical patterns between the switch stages are
permutation functions, such as perfect shuffle, butterfly or bit
reversal [14]. The Omega network, for example, which was

introduced by Lawrie [15], consists of shuffle and exchange
permutations in logN stages and can be defined by

�

Ωn = σ n E()n (1)

where n is the total number of stages, σ is the shuffle
permutation over n bits, and E is an exchange stage [16]. An
example for an Omega network of size 8x8 is given in Fig. 2.

By using the smallest possible switch size of 2x2, the
construction of a MIN needs (N/2)log2N switches only,
which is the minimum number possible at all. For
comparison, a crossbar network requires N2 switches.
Typical representatives for logN-MINs are Omega, Baseline
and Butterfly networks [16,17,18,19]. They belong to the so-
called delta subclass of MINs which means that routing
through the logN-MIN is easily accomplished by using bit
after bit of the target port address in order to set each switch
so that it routes data either „=“ (parallel) or „x“ (cross).
Because of the constant number of switches that data has to
pass from the network input port to output port, a constant
routing time or at least an upper limit for the routing canbe
guaranteed. MINs are therefore beneficial for interprocessor
communication with respect to latency, which is important
for real-time applications. However, constant routing time
cannot be guaranteed for transfers that take place at all input
ports simultaneously. The reason is that each output can be
reached from every input in principle, but there are
permutations of inputs to outputs that can not be realized
which is why MINs are called fully reachable but blocking.
This is the main disadvantage of logN-MINs.

There are two other categories of MINs, which are called
Clos and Benes networks that do not belong to the logN type
and that are non-blocking [19]. Unfortunately, the Clos
network has a switch complexity of (3/2)N√N, and the Benes
network has Nlog2N complexity which is both not the
minimum logN-MINs have. This means for the applicability
of Clos and Benes MINs as on-chip networks that they
consume more chip area as needed, and that they need more
electrical power as logN-MINs do. Both are disadvantages
for VLSI integration. Furthermore, Clos and Benes networks
are non-blocking only for the price of rearranging already
existing internal paths through the network, which is a
problem for ongoing real-time transmissions. During path
rearrangement, no data transfer can take place. Finally, path

Figure 2. Omega topology of size 8x8.

48

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

rearrangements require a central control instance that
executes the rearranging algorithm. However, a central
control unit prevents from scalability, and the rearranging
algorithm is so complex that it consumes a processor by its
own, together with considerable computing time.

IV. IDEAL ON-CHIP MIN
In general, we can state that there is no ideal on-chip

interconnection network with good scalability, deterministic
routing latency for real-time capability, minimum chip area
and minimum power consumption at the same time.
However, with the introduction of FIFO buffers, each
disadvantage of the above networks could be solved, at least
for many practical applications. In the case of logN-MINs for
example, FIFOs at all switch stages are needed as temporary
storage for incoming data to hold them until the blocking
situation is managed. Blocking management has to be made
every time when the MPSoC requests a forbidden
permutation from input to output ports. Delaying and
serializing the needed transfers via FIFO accomplish this.
Data is then delayed until blocking is over, and afterwards
data is read out from the FIFO one after the other. A positive
aspect is that blocking management can be achieved in a
fully decentralized manner.

In the case of Clos and Benes MINs, FIFOs are required
only at the input ports to store incoming data until the
internal path rearrangements have been accomplished. If a
permutation from input to output needs rearrangement, then
the input FIFOs are filled while the network is drained.
When all network-internal paths are empty, rearrangement
can take place by setting switches newly. After that, data is
let again into the network.

In both cases, the FIFO solution is not perfect because it
introduces indeterministic delays in the MPSoC
interprocessor communication. Depending on the filling state
of a FIFO and depending on the needed transfers per time
unit, more or less data frames or packets have to be
temporarily stored in the FIFOs. Only by means of a fixed
FIFO depth, an upper limit for the maximum latency can be
stated for data delivery. However, this is sufficent in practice
for many real-time applications. FIFO overflow can occur,
but it is considered as a programming fault of the MPSoC. It
has to be mentioned here also that is not the fault of the
network but of the programmer if two input ports want to
deliver data to the same output port at the same time. This is
comparable to writing the same variable in a shared memory
from two processors at the same time.

To summarize, the state of the art in on-chip networks is
that logN-MINs are the best option because of their
O(NlogN) scalability and their minimum chip and power
consumption compared to busses, crossbars, Clos and Benes
networks. Therefore, we propose a logN-MIN as the
preferred NoC for MPSoC. In the next section we will
explain which type of logN-MIN is best suited, and what we
did to improve its real-time behaviour.

V. TOPOLOGY OF THE PROPOSED MINOC
The network topology we decided for is known as

Baseline network [20]. In Fig. 3, a Baseline network of size
16x16 is presented, together with two routing examples. This
topology has been introduced in 1980 by C. Wu and T. Feng
to proof equivalence among logN-MINs. The stages in the
Baseline network are connected via an unshuffle wiring. The
topology of the Baseline network is mathematically
isomorphic to other networks of the log2N class but the
network has technological advantages compared to other
logN-MINs. The production of the Baseline network is
characterized by a recursive construction. Each stage is of
1,2,4,... sub-networks of the same type. From the view-point
of the first stage, the Baseline consists of one switch block

Figure 3. Baseline topology of size 16x16.

of size NxN. The second stage contains two switch
blocks of size (N/2) x (N/2) and so forth. That iterates down
to the smallest blocks of size 2x2 as atomic elements. In
addition, each stage has the minimum possible number of
crossing wires, and the wires have minimum lengths [14].
Both features, recursive construction and minimum wiring,
are advantages for implementation in VLSI or FPGA that are
not found in other logN-MINs. In Baseline networks, the
routing algorithm evaluates the most significant bit of the
n=logN bits of the target address first [16]. With every bit
evaluation, the interval of possible output ports is halved.
After n steps, the target output port is exactly specified. This
routing algorithm is a good example of the divide-and-
conquer principle known from theoretical informatics.
Finally, the recursive construction of the Baseline network
eases its definition in VHDL. The VHDL code of a 2x2
switch is for example:
signal A, B, C, D: std_logic_vector(0 to 31);
shared variable S: boolean;

C <= A when S = false -- parallel connection
else B; -- cross connection
D <= A when S = true -- parallel connection
else B; -- cross connection

49

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

where A and B are inputs, C and D are outputs and S is
the switch state. Not shown are FIFO buffers, but as we have
learned from practice, the FPGA synthesis of the switch
controller is much more complex than the switches and the
FIFO. With our preferred MINoC, we yield a MPSoC of the
symmetric multiprocessor type that is depicted in Fig. 4. Its
architecture includes softcore processors P, local memory MP
and shared memory MS.

Figure 4. Block diagram of the resulting MPSoC Architecture.

With this architecture, both programming paradigms of
message passing and shared memory are supported
simultaneously.

VI. IMPLEMENTATION OF THE MINOC
The MINoC is implemented by adding a custom VHDL

core to the existing description of a Xilinx Microblaze soft
processor [21]. The block diagram of the so enhanced
MicroBlaze is shown in Fig. 5.

Our custom IP core realizes the MINoC for the MPSoC.
It consists of three components: 1.) switches 2.) network
interface, and 3.) network controller. The first component
(switches) implements the described Baseline topology. The
second component is the network interface. It connects the
MicroBlaze via its proprietary FSL bus [22,23] to the
MINoC input ports and output ports. The third component is
the network controller, which we have introduced to improve
real-time behaviour. The network controller allows for
interprocessor communication only in fixed points in time.
This can guarantee a better upper limit for latency in data
delivery.

Figure 5. Block diagram of the soft processor enhanced by a MINoC.

A. Switches and Wiring
In the following sections of this paper we refer to

message-based interprocessor communication. However,
with the network coupling of shared memory (MS)
interprocessor communication via shared variables becomes
feasible as well.

As seen before, the switches feature two states for direct
and crossed connection paths, but for parallel computing
mechanisms for task synchronization are needed also. These
can be implemented by two additional switch states called
upper and lower broadcast (Fig. 6). Direct and crossed
connection paths are used in point-to-point communication

Figure 6. States of the switch: a) straight and cross b) upper and lower

broadcast.

between sender/receiver pairs via message passing.
Broadcast communciation is needed for synchronous task
start and stop and for distributing input data to processors.
Both types of communication are required in the intended
application domain of real-time embedded systems.

The wire patterns between the stages are implemented
via bidirectional communication channels that are defined as
signals in VHDL. With bidirectional channels, handshake
protocols between sender and receiver are implemented.

B. Network Interface
The soft processors are connected to the interconnection

network via the Fast Simplex Link (FSL) from Xilinx [23].
Each FSL interface provides an uni-directional point-to-point
communication channel that includes a FIFO buffer. The
FIFO buffer decouples the processor clock from the network
but it introduces indeterminism as described that cannot be
avoided. However, the network controller reduces the jitter
in message latency during data transfer. Since the FSL
interface is an internal part of the soft processor,
communication takes 2 processor cycles only for transferring
a 32-bit word from sender to receiver if the FIFO buffers are
free. Therefore, the FSL enables a high-speed interprocessor
communication. When the FSL interface is added to the soft
processor, the MicroBlaze instruction set is augmented with
four additional instructions:

• Blocking Read (get)
• Non-blocking Read (nget)
• Blocking Write (put)
• Non-blocking Write (nput)

These instructions are for reading from and writing data
to the FIFO of the FSL interfaces. As soon as data are
written to FIFO, the put instruction terminates and the NoC
moves all data from source to destination FIFO. Finally, a
get instruction reads the data out of the receive FIFO.

50

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

C. Network Controller
The MIN operates not by packet- or message switching

but circuit switching. This provides a direct connection
between sender and receiver and delivers maximum speed
for interprocessor communication since no frame or packet
header is required that would be overhead only. Thus all data
are received in sent order.

Furthermore, a time-slot that is returning periodically is
granted to each processor according to a scheduling policy
where messages can be sent. The scheduling policy has been
implemented in the network controller in hardware by means
of VHDL. When the network controller schedules a data
transfer, a communication time-slot opens, and the network
controller establishes a physical path between a pair of
processors. As long as the time-slot stays open, data can be
sent directly from sender to receiver with full speed of the
processor interfaces. After a time-slot has closed, the next
path will be opened round-robin. In our tests we have used
preemptive scheduling with a fixed slot time. For this
purpose, a central network controller was implemented and
tested. This network controller serves all connection requests
from the processors. Preemption is made if a processor
whose time slot has arrived does not want a data transfer
through the network. The desribed scheduling policy is
identical to task scheduling in real-time operating systems.
The usage of a scheduling algorithm for data transfer results
in better predictability to the network latency which suffers
from the indeterminism of the FIFOs. Furthermore, several
scheduling algorithms are possible, such as priority
scheduling or earliest-deadline-first which are known from
real-time operating systems.

D. Overall Architecture
The entire MPSoC including the MINoC has been

implemented and tested with evaluation boards carrying
FPGAs from Xilinx of the Spartan-3, Virtex-4 and Virtex-5
types. As boards have been used the ML 505 from Xilinx
with a Virtex-5 FPGA, the XpressFX100 from PLDA with a
Virtex-4 and the Spartan-3 starter kit board from Digilent
with a Spartan-3 chip. With Spartan-3, a 4x4 network was
implemented together with 4 MicroBlazes on the same

Figure 7. Overall architecture of the MPSoC.

FPGA. On the Virtex-4 and the Virtex-5 board, an
MPSoC with a MINSoC of size 8x8 has been implemented.
All processors are Xilinx MicroBlaze softcores that emulate

a 32-bit RISC processor. Each soft processor features private
local memory with Block RAM for instructions and data.
Multiple Block RAMs are linked to processors via the Local
Memory Bus (LMB) [21]. All MicroBlazes in turn are
coupled to the interconnection network via the FSL-MIN
interface as shown in Fig. 5. An overview of the system
architecture as it was implemented is given in Fig. 7.

With using the FSL processor interface we can measure
that it takes two clock counts of the processor to write or
read a single 32-bit data to or from the network interface.
Once the connection from sender to receiver has been
established no additional latency of the circuit-switched
network exists, so that a network clock rate of 100 MHz
induces a real data transfer rate of 1.6 Gbit/s per connection.
Depending on the topology of the network multiple
connections between sender/receiver pairs can be established
at the same time without additional latencies. Higher
network clock rates are feasible because the FSL can be
operated in asynchronous mode. The maximum frequency
depends on the FPGA chip that is used for implementation.

Our design studies have shown, that the network
topology can be implemented in FPGA hardware without
problems. The challenge is the implementation of the
network controller with its routing algorithm in an efficient
way. But, once the network is fully implemented in FPGA
hardware, the MINoC provides a deterministic high-
performance network for interprocessor communication in
MPSoCs.

VII. CONCLUSION AND FUTURE WORK
This paper proposes an on-chip multistage inter-

connection network with the least possible number of
hardware, the minimum amount of wiring between stages
and the minimum wire lengths. It can be used for high-
performance interprocessor communication in real-time
applications. Although logN-MINs have been already
researched and used in parallel super computers, they can be
adapted also for network-on-chips as well. High bandwidth
and low latency are combined with a deterministic behavior
of interprocessor communication in the proposed NoC. The
objective is to use MPSoCs in high-performance embedded
systems with hard real-time constraints that can be found in
electronic control units for cars or for production machinery.

In future work we want to discuss the pros and cons of
blocking and non-blocking MINs for real-time computing
and their implementation in FPGA hardware. Blocking
networks such as the Baseline network minimize the costs in
hardware but they require a suitable scheduling strategy
because not all permutations of sender/receiver pairs can be
realized. Therefore further scheduling algorithms such as
priority scheduling or earliest-deadline-first have to be
considered for hardware implementation. In comparison with
blocking networks, non-blocking networks as the Benes
network can be operated without complex scheduling
strategies since messages can be sent to each free receiver
port at any time. On the other hand non-blocking networks
exhibit extra costs in hardware plus they require complex
routing algorithms due to the rearrangement of alternative
connection paths.

51

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

REFERENCES
[1] A. Jerraya and W. Wolf, “Multiprocessor Systems-on-Chip,” San

Francisco, CA: Morgan Kaufmann, 2005.
[2] M. Grant, “Overview of the MPSoC design challenge,” in

Proceedings of the 43rd annual Design Automation Conference, San
Francisco, CA, July 2006, pp. 274-279.

[3] U. Heinkel, M. Padeffke, W. Haas, and T. Buerner, “The VHDL
Reference,” Cichester, England: John Wiley & Sons, 2000.

[4] C. Bobda, T. Haller, and F. Muehlbauer, “Design of Adaptive
Multiprocessor on Chip Systems,” in SBCCI 2007, Rio de Janeiro,
Sept. 2007, pp. 177-183.

[5] S. Aust and H. Richter, “Space Division of Processing Power For
Feed Forward and Feed Back Control in Complex Production and
Packaging Machinery,” in WAC 2010, Kobe, Japan, Sept. 2010

[6] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet
switched interconnections,” in DATE2000, March 2000, pp. 250-256.

[7] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration: A quantitative evaluation of
point-to-point, bus, and network-on-chip approaches,” in ACM
Transactions on Design Automation of Electronic Systems, Vol. 12,
No. 3, Article 23, August 2007.

[8] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” in IEEE Computer magazine, vol. 35, no. 1, Jan. 2002, pp.
70-78.

[9] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, and G. De
Micheli, “Network-on-Chip design and synthesis outlook,” in
Integration, the VLSI Journal, 41(2), Feb. 2008.

[10] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J.
Öberg, K. Tiensyrjä, and A. Hemani, “A Network on Chip
Architecture and Design Methodology,” in Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2002, pp.
105–112.

[11] T. Bjerregaard and S. Mahadevan, “A Survey of Research and
Practices of Network-on-Chip,” in Integrated Circuits and Systems
Design (SBCCI) 2003, pp. 169-174.

[12] C. A. Zeferino and A. A. Susin, “SoCIN: A Parametric and Scalable
Network-on-Chip,” in ACM Computing Surveys (CSUR), vol. 38,
issue 1, 2006.

[13] L. Benini and G. De Micheli, “Networks on Chips: Technology and
Tools,” San Francisco, CA: Morgan Kaufmann, 2006.

[14] H. Richter, US-Patent 5,175,539 ”Interconnection Network”.
[15] D. H. Lawrie, “Access and Alignment of Data in an Array

Processor,” in IEEE Transactions on Computers, vol. C-24, no. 12,
December 1975, pp. 1145-1155.

[16] H. Richter, “Verbindungsnetzwerke für parallele und verteilte
Systeme,” in German, Heidelberg: Spektrum, 1997.

[17] J. L. Hennessy and D. A. Patterson, “Computer Architecture. A
Quantitve Approach,” 4th edition, San Francisco, CA: Morgan
Kaufmann, 2007.

[18] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection Networks. An
Engineering Approach,” San Francisco, CA: Morgan Kaufmann,
2003.

[19] W. Dally and B. Towles, “Principles and Practices of Interconnection
Networks,” San Francisco, CA: Morgan Kaufmann Publishers Inc.,
2003.

[20] C.-L. Wu and T.-Y. Feng, “On a Class of Multistage Interconnection
Networks,” in IEEE Transactions on Computers, Vol. C-29, No. 8,
August 1980, pp. 694-702.

[21] Xilinx Inc., “MicroBlaze Processor Reference Guide,” Product
Specification: UG081, v9.0, Jan. 2008

[22] Xilinx Inc., “Fast Simplex Link (FSL) Bus (v2.11b),” Product
Specification: DS449, June 2009

[23] H. P. Rosinger, “Connecting Customized IP to the MicroBlaze Soft
Processor Using the Fast Simplex Link (FSL) Channel,” Xilinx
Application Note: XAPP529, v1.3, May 2004

52

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

