
A Novel Local Search Algorithm for Knapsack Problem

Mostafa Memariani
Department of Electrical Engineering,

Ferdowsi University of Mashhad
Mashhad, Iran

E-mail: mostafa.memariani@stu-mail.um.ac.ir

Ahmad Madadi
Department of Computer Engineering,

University of Amir Kabir
Tehran, Iran

E-mail: a.madadi@gmail.com

Kambiz Shojaee Ghandeshtani
Department of Electrical Engineering,

University of Tehran
Tehran, Iran

E-mail: k.shojaee@ece.ut.ac.ir

Mohammad Mohsen Neshati
Department of Electrical Engineering,

Ferdowsi University of Mashhad
Mashhad, Iran

E-mail: mohsen_neshati@stu-mail.um.ac.ir

Abstract— Knapsack problem is an integer programming that
is generally called "Multidimentional Knapsack". Knapsack
problem is known as a NP-hard problem. This paper is an
introduction to a new idea for solving one-dimentional
knapsack that with defining the "Weight Value Index",
"Sorting" and "Smart local search" forms a new algorithm.
This algorithm is mathematically formulated and has run on 5
sample problems of one-dimentional knapsack, that in most of
them the result is close to the optimum. The results show that
this method by comparison with the others recently published
in this field, despite of its simplicity, has enough required
functionality in order to get the result on the tested items.

Keywords-Artificial intelligence; NP-hard; Knapsack
problem; Combinational optimization.

I. INTRODUCTION
Knapsack problem is an integer programming that is in

general called "Multidimentional Knapsack". Knapsack
problem is known as a NP-hard problem [1]. One-
dimentional knapsack problem with "constant weight
group" is a special form of multidimensional knapsack. For
one-dimensional knapsack in comparison with
multidimensional knapsack, more precise evolutionary
algorithms have been studied. Most of the researches is
regarding to one-dimentional knapsack problem. For further
information about knapsack problem and different precise
algorithms, please refer to [2]-[4].

The reason for naming this problem to "knapsack" is
because of its similarity to making decision for a mountain
climber to pack his knapsack. The person should decide the
optimum combination in choosing his accessories for
knapsack in a way that according to the knapsack capacity,
he should select items with more value (profit). This kind of
problems is of combinational optimization problems family.

For several past years, precise methods such as Branch
and Bound have used for solving knapsack problem [22]. In
recent years, and with the development of smart
optimization and evolutionary algorithms, solving more
difficult problems is now possible, such that in addition to
reducing the time for achieving results close to the

optimum, it has increased the accuracy in solving knapsack
problem. Therefore evolutionary algorithms and more
definitely decoder-based evolutionary algorithms are widely
used in solving knapsack problem [5], [6]. Their advantage
over the more traditional direct representation of the
problem is their ability to always generate and therefore
carry out evolution over feasible candidate solutions, and
thus focus the search on a smaller more constrained search
space.

Many researchers have struggled in developing
evolutionary methods for knapsack problems. From them,
we can name some modern evolution methods like tabu
search [7], [8], genetic algorithm [9], [10] and simulated
annealing [11], [12] that in most cases show good results. In
recent years, genetic algorithms show that it is the best
method for solving large knapsack problems and in general
0-1 integer programming problems [13], [14].

The knapsack repeatedly is used in different processing
models like processor allocation in distributed systems [15],
manufacturing in-sourcing [16], asset-backed securitization
[17], combinatorial auctions [18], computer systems design
[19], resource-allocation [20], set packing [21], cargo
loading [22], project selection [23], cutting stock [24] and
capital budgeting (where project has profit and consume
units of resource. The goal is to determine a subset of the
projects such that the total profit is maximized and all
resource constraints are satisfied) [25].

Another type of knapsack is Quadratic Knapsack
Problem (QKP) [26]. In the Quadratic Knapsack Problem,
an object’s value density is the sum of all the values
associated with it divided by its weight. It can be used in
finance [27], VLSI design [28] and location problems [29].

In the second part of this paper, we will describe the
knapsack problem; in third part, the proposed algorithm will
be introduced. In the forth part, algorithm simulation and
comparison of results have been presented and we will
conclude in the final part.

II. PROBLEM DESCRIPTION

Suppose that some items are available and each item has
a weight of 'wi' and a value of 'vi'. In knapsack problem,

77

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

weight restriction is defined in a way that the total weight of
selected items should be less than knapsack capacity. The
goal in this problem is finding a subset of items in a way
that they have the most total value and also satisfy the
knapsack capacity constraint.

For mathematically defining the mentioned concepts, we
have:

⎭
⎬
⎫

⎩
⎨
⎧

==≤∑∑
==

n 1,...,i, 1or 0 xb,xw:xvmax i

n

1i
ii

n

1i
ii (1)

In formula (1), 'n', 'vi' and 'wi' are number of items, value
of item 'i' and weight of item 'i', respectively. In the above
formula, 'b' is the knapsack capacity and xi is the algorithm
input array. If the element is chosen, the xi is 1 and otherwise
is 0.

As formula (1) shows, the goal is to maximize the goal
function with the given conditions. In the next section, the
proposed algorithm for solving the knapsack problem will be
introduced.

III. PROPOSED ALGORITHM
 The presented method for solving the knapsack problem

is based on statistical operations on data and
combining it with artificial intelligence methods. In this
method we have a set of weight and value data groups that
are related in pairs and each of data shows the weight and
the value of an item. The goal of this method in first stage is
introducing each item with a new coefficient that would be a
combination of its value and weight. With the help of this
new index, the chance of selecting an item will be defined.
The proposed algorithm with enough experience and
iteration in changing the method of selecting based on the
weight-value index and in a converged evolutionary process
will provide results close to optimum. The stage of process
on data for achieving a real close result to optimum will be
as follows:

 According to the point that the goal of knapsack
problem is to take the sum of values to the maximum
and satisfy the weight constrain of knapsack, for
converting 2 item dependents to one dependent, we will
use the general form of (Value p1 / Weight p2) that the p1
and p2 are the power of values and weights,
respectively. The best value of them will be different
depending on the number of items and their dispersion
that with scanning the power of values and weights in
the above combinational index and calculating the sum
of selected item values until satisfaction of the weight
constrain, we can have the best selection for the powers
of mentioned formula in the beginning of the algorithm.
This value would be the "weight-value index" of items.

 Next step of solving the problem is sorting items based
on their weight-value index and generating initial result
that would be close to optimum. In this selection, the
items with higher weight-value prioritized for selection
and selection of items will continue until the knapsack
capacity is full.

 Because of the used method in first stage for generating
weight-value index is not precise. The probability of

error in the second stage would be existent as well. It is
important to know that the probability of the error in
selecting items based on proposed priority that is
weight-value index would increase as we get closer to
final stages. The probability of such errors is in the
moment that the knapsack is getting filled with lower
weight-value index of items. Therefore in this stage that
is the main part of algorithm, we will replace the items
with similar weight-value index in the final stages of
selecting items. In this stage we will gradually increase
the boundary of searching. In this part of algorithm we
will study different results to achieve the best one.

 In this intelligence searching algorithm, in addition to
previous stages, we achieved the better results by the helping
of some sort of modifications and corrections. For instance
we can find the minimum of the selected items by dividing
the knapsack capacity to the item with the highest weight.
We can get to the scope of weight-value index results or in
fact, items that their probability of being among the optimum
answer is very high.

The main foundation of this method has been introduced
above in 3 steps and the algorithm pseudocode would be as
follows.

IV. ALGORITHM FORMULA
s1- Determining optimum powers for achieving

optimum weight-value index by scanning from 0 to 2 with
the step of 0.1 and selecting the best powers for the
proportion of value to weight of items by selecting items
until the knapsack is completely full. This selection is based
on a way that the weight-value index priority, selected items
value should be higher than the other powers that has been
scanned for the proportion of value to weight.

s2- Random search around the selected power from s1
with the Radius boundary of α = 0.5.

s3- Sorting and selecting items based on weight-value of
s2 until the completion of knapsack capacity sequence
length accepting items l1 and rejected items the l2

s4- Fixing items from vector value of s3 that is higher
than Mean and standard deviation values of weight vector
elements as selected items and random replacement of the
rest selected items from s3 and rejected items as well around
the last selection of s3 with the radius of 0.1 items and l1
and l2.

s5- Studying selection rule of selecting minimum items
equal to dividing the maximum capacity of knapsack to the
highest weight of items value and increasing the length of
sequence of accepted items (l1) until satisfying the
minimum selection rule.

s6- comparing the answers and the results of the current
selections with the best achieved result and replacing it with
the previous if that is a better answer.

s7- =α 0.5 + α
s8- reduce the radius boundary of optimum power index

with a coefficient of 0.9.
s9- repeating s1 to s9 while α=1 and radius boundary has

reached to boundary interval.

78

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

V. RESULTS AND COMPARISON
In this part, the result of running algorithm on set of data

that was given in [32]-[33] is analyzed. Five sample
problems are proposed in [30]-[32] for testing the algorithm.
In [30], e2, e3 and e5 samples have been solved with the
different methods.

In [31], samples e1 to e4 and in [32], samples e1 and e2
have been studied. The samples e1 to e5 have 10, 20, 50,100
and 100 objects respectively. It is obvious that the samples
with a greater number of objects are more complicated than
samples with less number of objects and they are more
difficult and more time consuming to solve.

In Table 1, the best obtained results in the relevant
papers have been compared with the results of our proposed
algorithm. As it is clear in Table 1, the proposed algorithm
that is called Wise Experiencing Knapsack Problem
(WEKP) has resulted acceptable answers.

The algorithm that has been introduced in this paper has
improved the results of greedy and simple evolutionary
algorithms by rate of 0.9 and 1.9 percent to the best answer.
The algorithm of [31], which is a combination of greedy and
genetic algorithms, has been improved the results of e1-e4
problems by rate of 0.7 and 0.2. The algorithm mentioned in
[32] is an enhanced form of ACO that the results shows 0.2
percent improvement in e1 and e2 problems as well.

The results after simulating the proposed algorithm by
this paper show that the results have been improved by 0.16
percent regarding to [30], 0.05 percent to [31] and 0.9 %
regarding to [32].

In Table 1, we can see that for the 3rd sample problem
we have achieved a result that was never achieved in other
papers up to now.

In Table 2, the best, average and the worst answers for
20 times run for every sample has been given. Also, the
sequence of the best obtained results for every sample has
been determined as a string containing 0 and 1, where 0
means no selection and 1 stands for selecting the ith object.

As it is illustrated in Table 2, even the average of the
responses is very close to the optimum response and these
responses acquire in an acceptable time period.

The mean time for running every problem on a pentium4
and a processor of 1.8GHz speed and 512MB of ram with
the MATLAB 7.7 software is given answers.

VI. CONCLUSION
This paper is an introduction to a novel idea for solving

one-dimensional knapsack problem by defining weight-value
index and sorting; as a consequence, a new algorithm was
proposed. This algorithm is mathematically formulated and
has run on 5 samples regarding to one-dimensional knapsack
that in most of them the answers are near to optimum.

The results shows that this method in comparison with
the recent works published in this field, despite of its
simplicity is functional enough to achieve acceptable results
in tested problems.

ACKNOWLEDGMENT
This work is supported by Nano-Age Technology Group

in Mashhad, Iran (www.nanoage.ir).

REFERENCES
[1] M. Garey and D. Johnson, "Computers and intractability: a guide to

the theory of NPcompleteness," San Francisco: W. H. Freeman,
1979.

[2] S. Martello and P. Toth, “Knapsack Problems: Algorithms and
Computer Implementations,” Wiley, New York, 1990.

[3] S. Martello, D. Pisinger, and P. Toth, “New trends in exact algorithms
for the 0–1 knapsack problem,” European Journal of Operational
Research, vol. 123,No. 2, pp. 325–336, 1999.

[4] D. Pisinger, “Contributed research articles: a minimal algorithm for
the bounded knapsack problem”, ORSA Journal on Computing, vol.
12, No. 1, pp. 75–84, 2000.

[5] J. Gottlieb, “Permutation-Based evolutionary algorithms for
multidimensional knapsack problem,” Proc. of ACM Symp. on
Applied Computing, 2000.

[6] G. R. Raidl, “An improved genetic algorithm for the multiconstrained
0-1 knapsack problem,” Proc of 1998 IEEE Congress on Evolutionary
Computation, pp. 207 – 211, 1998.

[7] F. Glover and G. A. Kochenberger, "Critical event tabu search for
multidimensional knapsack problems," Kluwer Academic Publishers,
pp. 407–427, 1996.

[8] S. Hanafi and A. Fréville, "An efficient tabu search approach for the
0-1 multidimensional knapsack problem," European Journal of
Operational Research, vol. 106, pp. 659–675, 1998.

[9] Chu and J. Beasley, "A genetic algorithm for the multiconstrained
knapsack problem," Journal of Heuristics, vol. 4, pp. 63–86, 1998.

[10] G. R. Raidl, “Weight-Codings in a genetic algorithm for the
multiconstraint knapsack problem,” Proc of 1999 IEEE Congress on
Evolutionary Computation, pp. 596-603, 1999.

[11] C. Reeves, “Modern Heuristic Techniques for Combinatorial
Problems," McGraw-Hill Book Company Europe, 1995.

[12] A. Drexl. "A simulated annealing approach to the multiconstraint
zero-one knapsack problem". Computing, vol. 40, pp. 1–8, 1988.

[13] Y. Sun and Z. Wang, “The Genetic Algorithm for 0–1 Programming
with Linear Constraints,” Proc. of the 1st ICEC’94, Orlando,FL,
edited by D. B. Fogel, pp. 559–564, 1994.

[14] R. Hinterding, “Mapping, order-independent genes and the knapsack
problem”, Proc. of the 1st IEEE International Conference on
Evolutionary Computation 1994, Orlando, FL, edited by D. B. Fogel,
pp. 13–17, 1994.

[15] B. Gavish and H. Pirkul, “Allocation of data bases and processors in a
distributed computing system Management of Distributed Data
Processing,” vol. 31, pp. 215–231, 1982.

[16] N. S. Cherbaka, R. D. Meller, and K. P. Ellis, “Multidimensional
knapsack problems and their application to solving manufacturing
insourcing problems,” Proc. of the Annual Industrial Engineering
Research Conference, Houston,TX, May 16-19, 2004.

[17] R. Mansini and M. Speranza, “A multidimensional knapsack model
for the asset-backed securitization,” Journal of Operational Research
Society, vol. 53, pp. 822-832, 2002.

[18] S. DeVries, and R. Vohra, “Combinatorial Auctions: A Survey,”
Northernwestern University Technical Report, Evanston, IL (2000).

[19] C. Ferreira, M. Grotschel, S. Kiefl, C. Krispenz, A. Martin, and R.
Weismantel., “Some integer programs arising in the design of
mainframe computers,” ZORMethods Models Operations Research,
vol. 38, No. 1, pp. 77-110, 1993.

[20] E. Johnson, M. Kostreva, and U. Suhl, “Solving 0 – 1 integer
programming problems arising from large scale planning models,”
Operations Research, vol. 33, pp. 805-819, 1985.

79

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

[21] G. Fox and G. Scudder, “A heuristic with tie breaking for certain 0 –
1 integer programming models,” Naval Research Logistics, vol 32,
No. 4, pp. 613-623, 1985.

[22] W. Shih, “A branch and bound method for the multiconstraint zero-
one knapsack problems,” Journal of the Operations Research Society,
vol. 30, pp. 369-378, 1979.

[23] C. Peterson, “Computational experience with variants of the balas
algorithm applied to the selection of research and development
projects,” Management Science, vol. 13, pp. 736-750, 1967.

[24] P. Gilmore and R. Gomery, “The theory and computation of knapsack
 functions,” Operations Research, vol. 14, pp. 1045-1074 1966.

[25] J. Lorie and L. Savage, “Three problems in capital rationing,” journal
of business, vol. 28, pp. 229-239, 1955.

[26] B. A. Julstrom," Greedy, genetic, and greedy genetic algorithms for
the quadratic knapsack problem," GECCO’05, Washington, DC,
USA, pp.607-614, June 25–29, 2005.

[27] D. L. Laughhunn, "Quadratic binary programming with applications
to capital budgeting problems", Operations Research, vol. 18, pp.
454–461, 1970.

[28] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A.
Wolsey," Formulations and valid inequalities for node capacitated
graph partitioning," Mathematical Programming, vol. 74, pp. 247–
266, 1996.

[29] J. Rhys, "A selection problem of shared fixed costs and network
flows," Management Science, vol. 17, pp. 200–207, 1970.

[30] K. Li, Y. Jia, W. Zhang, and Y. Xie, "A new method for solving 0-1
knapsack problem based on evolutionary algorithm with schema
replaced," Proceedings of the IEEE, International Conference on
Automation and Logistics Qingdao, China, pp. 2569-2571, Sep. 2008.

[31] Y. Shao, H. Xu, and W. Yin, "Solve zero-one knapsack problem by
greedy GA," IEEE 2009 -International Workshop on Intelligent
Systems and Applications.

[32] P. Zhao, P. Zhao, and X. Zhang, "A new ant colony optimization for
the knapsack problem," Computer-Aided Industrial Design and
Conceptual Design, 2006, CAIDCD '06, 7th International Conference
on 17-19 Nov. 2006.

TABLE 1. COMPARATIVE RESULTS BY OTHER HEURISTIC METHODS

[30] [31] [32] WEKP

Greedy
algorithm

Simple
evolutionary

algorithm

evolutionary
algorithm

with schema
replace

Greedy
algorithm

(GA)

Standard
genetic

algorithm
(SGA)

Greedy
genetic

algorithm
(GGA)

Basic
ACO

Improved
ACO

Proposed
method
(Best

result)

e1 - - - 295 295 295 292 295 295

e2 1023 1042 1042 1024 1037 1042 1022 1024 1042

e3 3095 3077 3103 3077 3103 3112 - - 3119

e4 - - - 5372 5365 5375 - - 5372

e5 26380 25848 26559 - - - - - 26553

TABLE 2. BEST RESULTS FOR FIVE SAMPLE PROBLEM

 Example 1 Example 2 Example 3 Example 4 Example 5

No. of
Objects

10 20 50 100 100

Best 295 1042 3119 5372 26553
Mean (20

runs) 295 1040.5 3106 5367.4 26553

worst 295 1037 3115.1 5360 26553
Mean time

(s) 7.1 22.8 13.08 23.07 45.33

Best
chromosome 111000111 101111110

10111100000

110101011110100110
110111111111000010

11011000000010

111111111011111111111001110111011
000101001110111110010110101000001
0000100001100100101000011000000000

1111111111111111111111111111111111
1111111111110111111110100010110110

11111110001110111000000000000000

80

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

