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Abstract—Finding which triangle in a planar triangular
mesh contains a query point (so-called point location problem)
is one of the most frequent tasks in computational geome-
try. Therefore, using an algorithm with the lowest possible
complexity is appropriate. However, such complexity may be
achieved only by using additional data structures, leading into
algorithms that are more difficult to implement and have
additional memory demands. A possible solution is to use
walking algorithms, which are easier to implement. They either
do not require any additional memory, or require only a small
portion of it in order to achieve the lowest possible complexity
as well. In this paper, we propose a new walking algorithm
combining two existing approaches to provide speed, robustness
and easy implementation, and compare it with the fastest
representatives of walking algorithms. Experiments proved that
our algorithm is faster than the fastest existing visibility and
straight walk algorithms, and depending on the character of
input data, either as fast as the orthogonal walk algorithms or
faster.

Keywords-Algorithm design and analysis; Computational geom-
etry; Computer graphics.

I. INTRODUCTION

Point location problem is a very frequent task in computa-
tional geometry problems, such as triangulation construction,
morphing and terrain editing. In this text, we focus on point
location algorithms for triangular meshes, since triangular
meshes are the most common way of data representation
and its manipulation. Other representations, such as convex
or non-convex polygonal meshes, can be triangulated first
to use these algorithms. The algorithms can also be used
for terrain models represented by triangular meshes without
any preprocessing only by not using the height information
during the location.

The point location problem is defined as follows. For a
given planar triangular mesh and a query point, the task is to
find which triangle from the mesh geometrically contains the
query point. Algorithms solving this problem can be divided
into two groups: algorithms with and without additional data
structures. The former concentrate on having the lowest time
complexity possible, in this case O(log n) per query point
(n is the number of vertices in the mesh). Despite their low
complexity, these algorithms have some disadvantages: they

have additional memory demands, they are more difficult to
implement, and they are often problematically modified to
cover adding or deleting vertices. The latter group tries to
avoid these disadvantages, but has a slightly higher, but still
sublinear, complexity.

The name of walking algorithms has arisen from their
operating principle. They use the triangle neighborhood
relations to go via the triangles between the starting triangle
and the one containing the query point. Such point location
process is called a walk. The starting triangle may be
arbitrary, however, its clever selection may radically shorten
the length of the walk, therefore we will cover this topic as
well. Walking algorithms do not need any additional data
structures, they use only the neighborhood relations in the
mesh, thus often they are more often chosen than the optimal
time complexity solutions.

There exist several walking algorithms solving the loca-
tion process, some are robust, others faster. In this paper, we
propose a new walking algorithm combining two existing
solutions in order to gain speed from the faster and still
remain robust. The main idea of our approach is to compute
such a transformation that the line connecting a selected
vertex of the starting triangle and the query point is parallel
with x-axis. This transformation is then used for the tested
points throughout the walk to enable a cheap comparison
of their position with respect to this line. Surprisingly,
despite the use of transformations, the walk is still fast,
because only the query point and the tested points (one
per visited triangle) are transformed. Since the walk goes
straight between the starting triangle and the query point, it
cannot cross the border of a convex triangular mesh, which
contributes to its robustness.

Section II presents the existing walking algorithms and
a sophisticated selection of the starting triangle for the
walk. Section III describes our new proposed algorithm,
Section IV shows experiments comparing our solution with
the existing algorithms. Section V summarizes the charac-
teristics of our algorithm.
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II. OVERVIEW

Point location by walking algorithms usually works in
two steps: (1) selection of the initial triangle for the walk,
and (2) using the neighborhood relationships between the
triangles (walking) to find the target triangle, containing the
query point.

A sophisticated selection of the initial triangle may radi-
cally improve the speed of the process. One way is to use
some additional knowledge about the data, i.e., if we know
the range of the mesh vertices coordinates, we can start all
the locations in a triangle containing the point lying in the
middle of the triangular mesh, used for instance by [1]. Or,
we may know that the next query point will be close to
the last one, in which case the best solution is to use the
target triangle from the last location as the initial one for
the next [11], [17].

Without any knowledge about the data, we may select
the initial triangle as the nearest triangle from a set A of
randomly chosen triangles from T , where ∥A∥ ≪ ∥T∥ [9].
Devroye et al. in [4] showed that such an improved straight
walk achieves O( 3

√
n) time complexity per one search for

uniformly distributed points, Zhu in [18] came to the same
complexity for the remembering stochastic walk.

Other solutions use some additional memory: [10] simpli-
fies the triangular mesh and locate the points in the simpli-
fied version first, [13] introduces a bucketing method, which
uses a uniform grid to quickly find a proper initial triangle.
Some algorithms [14], [16] try to avoid the sensitivity of
the original bucketing method on data uniformity by using
adaptive structures instead of a uniform grid.

When we know the initial triangle, the walk may proceed.
There are several algorithms solving this step. They can be
divided into three groups: visibility, straight and orthogonal
walks, according to the style how they determine the way
of the walk.

Visibility walks use local “visibility” tests to determine
the way of their walk. These tests look for such an edge
that defines a line separating the query point and the third
vertex of the triangle. The walk then moves across this edge
to the neighborhood triangle.

The first visibility walk algorithm is called Lawson’s
oriented walk [7]. The algorithm starts in the initial triangle
and uses the 2D orientation test to move to its neighbors
until it reaches the query point:

orientation2D(t,u,v) =

∣∣∣∣ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ (1)

where points t,u define an oriented line and v is the tested
point. In each triangle, the algorithm tests the triangle edges
until it finds an edge, where the third vertex of the triangle
lies on the opposite side of the edge than the query point.
Then, it crosses such an edge to the next triangle. If such an
edge does not exist, the triangle containing the query point
has been found.

The Lawson’s oriented walk algorithm tests edges of
the current triangle in a deterministic order, depending on
the arrangement of edges in triangles, generated during the
construction of the triangulation. This leads to the fact that
the walk may loop for non-Delaunay triangulations [3], [15].
[3] proposed an algorithm avoiding the loop by choosing
the edges of the current triangle in a random order. This
modification is called stochastic. Furthermore, since it is not
necessary to test the edge incident to the previous triangle,
the process was sped up by remembering this edge and
skipping the test. This modification is called remembering
and brings a significant speedup, since only one or two
orientation tests are needed instead of up to three (except
of course the first triangle, where all the three edges may be
tested). As the second test is done only to find out whether
we are in the target triangle, [6] suggested to speed up the
process even more by testing only one edge for the first k
steps. If the triangle is found within this k steps, we circle
around it, so it is necessary to determine a proper k based
on the input.

Straight walk algorithms do not use only the local com-
parisons to determine the way of the walk, but they use
an oriented line −→pq, connecting one point p (its choice
depends on the particular solution) of the starting triangle
with the query point q and then pass all triangles intersected
by this line.

The standard straight walk algorithm [3], [8] works in
two steps: an initialization step and a straight walk step.
In the initialization step, a point p is chosen as any of the
starting triangle vertices and a triangle intersected by the line
segment −→pq is found. The walk starts from this triangle, and
in each step, it uses such a vertex of the current triangle that
is opposite to the edge used to enter this triangle and finds
out its position with respect to −→pq (using the 2D orientation
test). Based on its position, it selects which edge it should
cross to the next triangle. Before crossing, it computes the
orientation test for the point q with respect to this edge. If
the point q is on the inner side of the edge, the final triangle
has been found. Otherwise, the walk crosses the edge to the
next triangle and continues.

[12] proposed a modification of this method simplifying
the initialization step and speeding up the algorithm. Instead
of the 2D orientation tests, an implicit line equation of −→pq is
used. The equation is precomputed in the initialization step
along with an implicit equation of a line normal to −→pq in q,
which is used to determine if there is a possibility that the
target triangle has been found. However, the location of the
target triangle is not precise, so the remembering stochastic
walk algorithm is used for the short, final location (usually
about 2 triangles, for more detail see Section IV).

Orthogonal walks first navigate along one coordinate
axis and then along the other, which makes the local
tests cheaper, since only components of the coordinates are
compared during the walk. The walk is usually longer than
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other walks, but its tests are much cheaper, which results in
a faster location.

The original orthogonal walk [3] consists of three steps:
an initialization step, a walk along the x-axis, and a walk
along the y-axis. During the initialization step, any vertex p
of the starting triangle is chosen and two lines are defined:
a horizontal line, containing this vertex and parallel to the
x-axis, and a vertical line, containing the query point and
parallel to the y-axis. A triangle intersected by the horizontal
line and containing p is found. The walk then follows this
line in a similar manner as the straight walk, but with
component comparisons only: y-values are used to determine
the next triangle, x-values are used to determine if the
triangle intersected by the vertical line is found. When it
is done, the walk continues by following the vertical line,
where y-values are used to determine the next triangles and
x-values to determine the target triangle containing the query
point. For a few final triangles in each walk direction, it uses
2D orientation tests for a precise location.

The original orthogonal walk has a significant drawback:
it does not solve the case, when the walk crosses the border
of the triangular mesh. If the horizontal walk crosses the
border, the vertical walk starts from the last triangle and
usually does not find the correct triangle.

[1] proposes a modification, where the initialization step
is simplified, and the walk is sped up by using fewer
comparisons. Instead of two comparisons determining when
the target triangle may be found, in which case the original
walk uses the 2D orientation test to be sure, it uses only
one comparison. This way the walk may stop too early, but
since the previous tests were not precise anyway, slightly
less precision is not so important, and the Remembering
stochastic walk algorithm (RSW - details see in [3]) is used
for the last few steps. The use of RSW also solves the
problem with the possibility of crossing borders of the
triangular mesh, because in such a case, the algorithm does
not end at the correct triangle, but the final location with
RSW does. However, the final walk is then longer and slows
down the whole location.

Figure 1 shows such a situation: the horizontal walk
reaches the border at the triangle γ. Here, the algorithm
switches to the vertical walk, where the vertical line is
moved to the last tested point. The vertical walk stops at
the triangle δ, because the y component of sj is higher then
the one of q. This should mean that the triangle contains q
or is close to the target triangle, but as the horizontal walk
had to stop early, the triangle is still quite far. The original
algorithm would stop here and would not locate the right
triangle. Its modification uses the RSW algorithm at this
step and therefore locates the right triangle, but for a higher
time cost, because the RSW algorithm has more expensive
tests.

The complexity of the presented algorithms has been
proved only for their basic representatives, and also either

sip

qsj

α
γ

δ

Figure 1. A case when the orthogonal walk crosses the border of the
triangular mesh (a dotted line denotes the horizontal walk, a chain line
denotes the vertical walk, a chain line with double dots denotes the final
location by the RSW algorithm; the dashed and solid line denote the lines
controlling the walk).

the time complexity or the number of visited triangles has
been derived (note that these two values do not necessarily
correspond). The stochastic walk has been shown to need
O(

√
n · log n) expected time for uniform data [18]. The

straight walk has been proved to visit O(
√
n) triangles in

the expected case and uniform distribution [5], [10], a bound
based on [2] shows that the orthogonal walk has similar
complexity as the straight walk [4], [10].

III. THE PROPOSED ALGORITHM

The algorithm described in this paper is called a Hybrid
walk, because it combines the basic idea of two walking
strategies: straight and orthogonal walk, to keep the advan-
tages of both. The algorithm works in four steps. In the
initialization step, a point p is chosen as any of the vertices
of the starting triangle, and a transformation matrix M is
set to transform the tested points in a way as if the line −→pq
was parallel with the x-axis and p′x < q′x (prime symbol
denotes the transformed vertices, i.e., p′ = p · M ). From
this point, each tested vertex is first transformed, and then
only its coordinate components are compared in the tests. In
the next step, a triangle intersected by −→pq and containing p
is found. The third step is the walk itself, following the line
−→pq. The final, short location (about 2 triangles) is done by
the RSW algorithm.

There exist many transformations meeting the previous
requirements, to achieve the fastest computation possible, we
chose the transformation matrix combining rotation by angle
φ and scaling by k. The variables φ and k are determined
by the mutual position of the points p,q. The equation used
for transforming a vertex v is as follows:

v′ = (vx, vy) ·
(

k · cosφ k · sinφ
−k · sinφ k · cosφ

)
(2)
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Figure 2. Components of the transformation matrix (x′ is parallel with
the x-axis, y′ with the y-axis).

Computing sine and cosine of φ would be slow, but it
can be avoided by using triangle similarity (see Figure 2),
so qy−py and qx−px are computed instead of k · sinφ and
k · cosφ. Note that this fast computation of sine and cosine
is the reason why k was introduced, otherwise k = 1 would
be used.

Now, let us describe the algorithm in detail (for pseu-
docode, see Algorithm 1). In further text, we assume that
the vertices of the triangles are in a CCW order. During
the initialization step, the point p needs to be selected as
simply and fast as possible, because the tests done after the
transformation are cheaper. Therefore, we choose any of the
vertices of the starting triangle as p (as is done in [3]) and
compute the transformation matrix.

When the transformation matrix is set, the triangle δ
intersected by −→pq and containing p needs to be located.
This is done in a similar manner as in the straight walk, but
with cheaper tests thanks to the use of transformations. We
select a different vertex than p from the starting triangle,
let us denote it r, and compute the y-coordinate of its
transformed version r′. Then we turn around p until we
find the desired triangle. In each triangle, we determine
which edge we should cross to the neighborhood triangle
by comparing r′y with q′y . Therefore, during this step, only
one transformed coordinate has to be computed and one
coordinate component comparison per triangle is performed.

The walk starts from the triangle δ and follows the line
−→pq. In each triangle τi with vertices li, ri, si, the edge ϵliri
is used to cross to this triangle, li is to the left of −→pq and ri
to the right. The edge to cross is determined by comparing
the y components of s′i and q′. If s′i is above

−−→
p′q′, we cross

the edge ϵrisi , otherwise, we cross the edge ϵlisi . Note that
if the line leaves the triangle through its vertex, the walk
may continue by both ϵrisi and ϵlisi , in the pseudocode we
choose the latter one. Also the x-components of s′i and q′ are
compared to end the walk if there is the possibility that the
target triangle has been found. Therefore, during this step,
both transformed components of si have to be computed and
two component comparisons per triangle are performed.

The triangle in which the walk ends does not necessarily

Input: the query point q, the chosen starting triangle α ∈ T
Output: the triangle ω which contains q

// initialization step
triangle τ = α = lrs;
point p = s;
if p = q then return τ ;
vector a = q − p;
// k = ∥a∥
double kcos = ax;
double ksin = ay ;
q′x = qx · kcos − qy · ksin;
q′y = qx · ksin + qy · kcos;
double r′y = rx · ksin + ry · kcos;
if r′y > q′y then

// r is above −→pq
double l′y = lx · ksin + ly · kcos;
while l′y > q′y do

τ = neighbor of τ trough ϵpl;
r = l;
l = vertex of τ , where l ̸= p, l ̸= r;
l′y = lx · ksin + ly · kcos;

end
s = l; l = r; r = p;

else
// r is below −→pq
repeat

τ = neighbor of τ trough ϵpr ;
l = r;
r = vertex of τ , where r ̸= p, r ̸= l;
r′y = rx · ksin + ry · kcos;

until r′y > q′y ;
s = r; r = l; l = p;

end
// now −→pq intersects τ

// walk step - following the line segment −→pq
s′x = sx · kcos − sy · ksin;
while s′x < q′x do

s′y = sx · ksin + sy · kcos;
if s′y < q′y then r = s; else l = s;
τ = neighbor of τ trough ϵlr ;
s = vertex of τ where s ̸= r, s ̸= l;
s′x = sx · kcos − sy · ksin;

end
return remembering stochastic walk(q, τ);

Algorithm 1: Hybrid Walk

contain the query point, but it is usually very close to the
one that does. The final location is performed by the RSW
algorithm (as can be seen in Section IV, it visits about 2
triangles in average). For its implementation, we used the
pseudocode from [3].

IV. EXPERIMENTAL RESULTS

For the testing purposes, we implemented the proposed
algorithm and the previous algorithms in Java with double
precision floating point arithmetic. The algorithms were
tested on Intel Q6600 2,40GHz. Based on the tests per-
formed on different types of triangulations, we chose De-
launay triangulation as a sufficient representative. The tests
were performed on triangulations of many different datasets,
which were of three different types: randomly distributed
points in the unit square, the real geodetic data from land
registers and LIDAR data.

We selected the fastest of the existing algorithms and
compared them with our proposed solution. The selected
algorithms were: Remembering stochastic walk (RSW),
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Figure 3. A hybrid walk example (a dashed line denotes the initialization
step, a chain line denotes the walk and the final location by RSW algorithm
is marked by a dotted line).

Normal Straight Walk (NSW), Improved Orthogonal Walk
(IOW) and our Hybrid Walk (HW). Remembering walk is
faster than its modification RSW, however, it may loop for
other than Delaunay triangulations, thus to be objective, we
did not include it in our test results.

In each test, 107 pairs of the initial triangle and the target
point were generated randomly, and the average number of
the tested properties were computed. Such properties were:
the length of the walk (#∆), the number of the tests (#tests)
and the time per one location (t[µs]). The properties #tests
and #∆ consist of two values for some algorithms. The
former value concerns the walk, the latter concerns the final
location performed by RSW.

Table I contains selected results of the tests for a triangular
mesh enclosed in a rectangle preventing the orthogonal
walk from crossing the border of the triangular mesh. Note
that the number of triangles visited by our algorithm is
about the same as in NSW, because both algorithms visit
triangles intersected by the line connecting a point from the
starting triangle with the query point, the only difference
is in the particular selected point. However, tests done in
each triangle by NSW are slower than by our algorithm,
therefore the time per one location is higher. RSW algorithm
is the slowest because of the 2D orientation tests and
randomization done in each step. We included it in the tests
as a representative of visibility walk group, but especially
because it is used for the final location in all NSW, IOW
and HW algorithms.

Table II compares our algorithm with IOW for randomly
distributed points in a rectangle 2:1, rotated by π/6, which
aims to resemble a more realistic situation, where some
particular walks cross the border of the triangular mesh.
It can be seen that our algorithm is the most suitable for
such data that are not enclosed in a shape preventing the
walk from crossing the border of the triangular mesh. Even
a small percentage of walks leaving the triangular mesh
slows down the whole location process in a way that our

algorithm is faster. With a growing percentage of such
walks, our algorithm becomes significantly faster. Recall
Figure 1, providing an explanation for this behavior. Each
walk leaving a triangular mesh in OW leads into a longer
final walk done by RSW algorithm, which is slower (see
Table I).

Even for the cases, when the walk does not cross the
triangular mesh border (Table I), our algorithm has compa-
rable results to OW, particularly for a uniform distribution
its speed is similar or better. Moreover, its implementation is
simpler than the one of OW, because our algorithm does not
have four different cases which need to be solved separately.

V. CONCLUSION

We presented a new walking algorithm, combining the
basic idea of two walking strategies (straight and orthogonal
walk). Experiments proved that our algorithm is faster than
the fastest existing visibility and straight walk algorithms,
and comparable with orthogonal walk algorithms. If there is
even a small percentage of walks that cross the boundary of
the triangular mesh, our algorithm becomes faster than the
orthogonal walk. Furthermore, its implementation is simpler,
because the problem does not split into cases which has to
be solved separately, as it is for the orthogonal walk.
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