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Abstract—Currently cloud infrastructures are in the spot-
light of computer science. Through offering on-demand re-
source provisioning capabilities and high flexibility of man-
agement cloud-based systems can seamlessly adjust to the
constantly changing environment of the Internet. They can
automatically scale according to a chosen policy. Despite the
usefulness of the currently available tools in this area there is
still much space for improvements. In this paper we introduce
a novel approach to automatic infrastructure scaling, based on
the observation of business-related metrics. We present details
on a tool based on this concept, which uses a semantic-based
monitoring and management system, called SAMM. At the end
we discuss the capabilities of the new mechanisms.
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I. INTRODUCTION

While becoming a very promising trend for IT [1],
cloud computing platforms offer great flexibility and pric-
ing options which are very interesting especially from the
end user point of view. The service consumer pays only
for the actually used resources and need not worry about
providing/maintaining them. All the required computing
power, memory and disk space can be used on demand
[2]. Along with easy allocation and de-allocation, many
cloud environments offer the ability to automatically add
and remove new resources based on the actual usage. These
automatic scaling capabilities can provide a great value.
With such a tool it is possible to seamlessly deal with peak
load situations and to reduce the costs of handling a stream
of service requests which form predictable patterns.

Usually the rules behind a scaling mechanism are based
on the observation of generic metrics, e.g. the CPU load.
This approach does not require spending additional time to
develop customized tools and can be easily applied to many
different systems. Nevertheless, it is far from perfect. The
decision on what to do with the system is based mainly
on low level data which indicate that the system is already
undergoing high load or some resources are not being used.
One has also to keep in mind that it always takes some time
to execute a particular action. Launching a VM instance,
connecting it to load balancing facilities and redirecting

requests to a new node may take a while. Therefore the
action should be executed at such a moment that it will actu-
ally improve the situation, instead of generating undesirable
overload of the system.

It is common for monitoring tools to provide not only
generic, low level information, but also describe the state of
resources with metrics tailored to a specific technology or
even a particular instance of the system. In many situations
such information indicate how much resources will be
required in the near future. For example, if the length of the
requests queue for computational intensive tasks is rapidly
growing, we may be sure that new virtual machines should
be deployed. On the other hand, when request buffers on
virtual machines are getting empty, the number of running
virtual machines may be reduced.

Based on such observations we developed a different
approach to automatic scaling. We propose to use higher
level data, including customized metrics relevant only to
a single system, as decision-making criteria for an auto-
scaling mechanism. For example, a resources pool could
be extended based on the requests queue length. In this
approach we assume that it is far more easier for the user
to define triggers for dynamic resource provisioning, when
they use concepts directly bound to the application to be
scaled.

In this paper we present a modified version of Semantic-
based Autonomic Monitoring and Management - SAMM
([3], [4]) system, which is using the new paradigm. SAMM
is a result of our previous research which was aimed to
help administrators meet SLA conditions. To be able to
handle this task, the tool monitors a set of customized, high
level metrics. They describe the state of a system under
observation in the context of business objectives defined in a
Service Level Agreement ((SLA)). SAMM was designed to
independently modify the application behaviour to prevent it
from breaking the contract. Since this level of autonomy is
not always desired, we decided to enhance the system with
support for custom rules which trigger specified actions.

The rest of paper is organized as follows: Section 2
presents the already existing approaches in the area of
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automatic scaling. Next, in Section 3, we provide more
details on the enhancements to SAMM and define (Section
4) an environment which was used to test it. In Section 5
we discuss the results obtained. Finally, Section 6 concludes
the paper with a short summary and outlines plans for future
work.

II. RELATED WORK

Depending on a user’s cloud usage model [5], automatic
scaling may be understood in different ways. If the user
consumes a ready-to-use software application (Software as
a Service model [6]) the service provider is the party which
is responsible for providing a proper amount of resources.
There has to be enough computing power and network
bandwidth provisioned to meet the conditions of agreements
with clients. In this situation, automatic scaling from the end
user perspective is only a feature of the system, which allows
to easily satisfy the business needs when they arise. For
example, a company which uses an on-line office software
suite may need to provide such software to ten new employ-
ees. Instead of buying expensive licenses and installing the
software on their workstations, the IT department requests
for additional ten accounts in the online service.

In the Platform-as-a-Service model ([7], [8]) the situation
is similar. The service provider is also responsible for the
automatic scaling of application. However, usually the user
has to explicitly request the provisioning of such resources.
Providers are able to influence the applications by defining
technical constraints for the platform. This way they may
ensure that the architecture of the software deployed allows
to add and remove some resources dynamically without
disrupting normal operation. The algorithm used in decision
making may be fine tuned to the underlying hardware and
internal resource handling policies of the provider. Usually
the user can influence the automatic scaling behavior by
setting the upper and lower boundaries of automatic scaling.
This prevents from unlimited consumption of resources and
therefore from exceeding an assumed budget.

The last model - Infrastructure-as-a-Service (e.g. [9])
relies on virtualizing the infrastructure elements like ma-
chines and network connections between them. The user
has to install and configure everything from scratch and
on its top develop their own applications. On the other
hand the environment can be customized in many ways,
beginning with virtual hardware resources (e.g. CPU power,
storage size) and ending with their own server software.
Automatic scaling in this model is understood as provi-
sioning on-demand more resources (e.g. virtual machines,
virtual storage devices). The user may delegate this task to
the service provider ([10]). Adding and removing certain
elements is then usually triggered by user-defined rules
specifying what action should be taken when a particular
threshold is exceeded. These thresholds are limited to a
set of metrics predefined by the provider (e.g. CPU usage,

storage usage). Many IaaS providers also share an API for
operations related to managing acquired resources. With
such a manner of interaction with infrastructure, the user
may create own management tools which can implement
custom automatic scaling policies.

In [11] the authors showed that automatic scaling al-
gorithms working with application-specific knowledge can
improve the cost-effectiveness ratio of application deployed
in cloud environments. Choosing metrics from a set of
traditional system usage indicators as CPU usage, disk
operation, and bandwidth usage can be not helpful enough.
The authors decided that the deadline for jobs executed by
system will be used as a key factor for triggering the auto-
scaling of the system.

These examples show that currently existing automatic
scalability mechanisms can be improved. The presented
tools focus on maximizing resources usage, which does not
have to be the most important factor from the user point
of view, e.g. it may be more important to have a system
with very short request response time instead of high CPU
usage. There are attempts to change this situation, but there
is no generic tool which would be oriented towards easy
adaptation to specific systems.

III. MODIFICATIONS TO THE SAMM SYSTEM

Our approach to automatic scaling is based on the assump-
tion that for each application it is possible to choose a set of
metrics, which can be used to estimate how much resources
will be required in the nearest future. On the most basic
level it should be sufficient to be able to predict whether
more resources will be required, or some of those currently
running may be stopped. With this point of view, the user
is able to determine simple thresholds related to triggering
some actions influencing the system in a desired way.

The set of metrics under discussion is tightly coupled with
an application for which it is to be chosen. Since the metrics
with the same names are often used in different contexts,
they may have completely different semantics, e.g. the mem-
ory usage may be defined as physical RAM usage or virtual
memory usage. To handle so much different information, it
is required to use a data representation capable of describing
all the used concepts. Furthermore, the monitoring system
used in this situation has to provide easy ways to create
extensions. There should be a possibility to provide support
for new data acquisition techniques. In modern complex
software systems, measurements will have to be gathered
with help of several very different technologies.

Therefore we decided as a starting point for this research
to use the result of our previous work on automatic scaling
- the SAMM ([3], [4], [12]) system. SAMM is a monitoring
and management software, flexible enough to meet the above
requirements. By using ontologies to describe resources
and metrics available for observation, it has capabilities
to express different system architectures and monitoring
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facilities. Owing to its module-based architecture based on
OSGi bundles and services, it can be extended by support
for new technologies without much effort. Reimplementing
and replacing the existing components is also feasible.

To meet the requirement of being able to define rules
in a convenient way, we came to a new decision-making
module. For this purpose we used the Esper event processing
engine ([13]). The internal architecture of SAMM with the
enhancements introduced is depicted in Figure 1.

Figure 1. SAMM’s architecture after introducing described changes

The flow of measurement activities is as follows:
1) Measurements are being collected by the Transport

Adapters. Transport Adapters are a an abstraction
layer over different technologies used for data collec-
tion, e.g. there are separate adapters for Java Manage-
ment Extensions (JMX)([14]) and Eucalyptus ([15]).
They translate internal SAMM measurement requests
to language specific constructs for a particular tech-
nology, e.g. to Java method invocations.

2) Metrics module processes measurements according to
formulas defined in form of Java classes. The values
obtained in this way are sent further to the Decisions
module.

3) Values coming from Transport Adapters and Met-
rics modules are processed directly by the Decisions
module. The Esper event processing engine captures
specific events and based on them can trigger an action
execution. Rules that describe which events should
trigger which actions are defined by the user. It is
optional to trigger an action.

4) Whenever the Decisions module detects exceeding a
threshold, an action execution request is sent to Action
Executor. This component tries to modify the infras-
tructure by using a specific Transport Adapter, since
actions can be executed only with help of particular

communication protocols. The exact steps executed by
an action are provided as a Java code.

Once SAMM has been enhanced, measurement and met-
rics values are processed by Esper as events. Owing to
this, conditions specified in rules may be very flexible and
may include e.g. aggregation functions or consider values
only from within a particular interval of time. Since custom
queries can be used, the only constraint is the flexibility of
the Esper query language.

IV. EVALUATION OF THE APPROACH

To evaluate our approach to automatic resources provi-
sioning we applied the business-metric based scaling policy
to a sample application - a simple service for numerical
integration. To be able to easily scale the number of nodes
used for computations, the Master - Slave model was ap-
plied. In the application’s architecture (presented in Fig. 2)
there is a main master node, responsible for dispatching the
requests and one or more slave nodes performing numerical
integration. We do not discuss the exact algorithm of nu-
meric integration or its parameters since it is out of scope
of interest of the paper.

Figure 2. Test application architecture

The Master node is built from three components:
• Slave Dispatcher - handles the queue of incoming

numerical integration requests. If there are any requests
in the queue, Slave Dispatcher passes them to one of
the registered slaves. The slave is chosen by performing
the following steps:

1) Retrieve a proxy for another slave from Slave
Resolver

2) If the slave is capable of handling a next request,
send it to this node, else go to point 1.

3) If there are no slaves capable of handling the
request - wait e.g. for 5 seconds and start looking
for an appropriate node from the beginning.

A slave node is capable of handling a next function if
it does not overflow the buffer of numerical integration
requests. The size of buffer was set to 25 requests.
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The Slave Dispatcher is the main component of Master
node.

• Slave Resolver - maintains the set of proxies to slave
nodes. In this component slave nodes register at the
beginning of their work. The information about the
addresses of nodes are later shared with Slave Dis-
patcher.

• Expression Generator - generates the functions for
which integration operations are further performed on
slave nodes. The functions may be generated infinitely
or read from a file in chunks of a specified size.

One of the main assumptions about the test application
is that always at least one slave node has to be running.
It was also decided that at most ten instances could get
started automatically. The stream of integration requests
in the test scenario was tailored to these parameters. The
system running all ten slave nodes at once could handle
without problems the load used in the test scenario.

A. Test Environment

The development work and tests were carried out using
the FutureGrid project environment [16]. The India Euca-
lyptus ([15]) cluster was used. The following virtual machine
types were provided:
• m1.small - 1 CPU, 512 MB of RAM, 5 GB of

storage space
• c1.medium - 1 CPU, 1024 MB of RAM, 5 GB of

storage space
• m1.large - 2 CPUs, 6000 MB of RAM, 10 GB of

storage space
• m1.xlarge - 2 CPUs, 12000 MB of RAM, 10 GB

of storage space
• c1.xlarge - 8 CPUs, 20000 MB of RAM, 10 GB

of storage space
The cluster is built up from 50 nodes and each node is

able to run up to 8 m1.small instances. Slave nodes in
our application do not use much storage space and memory.
To have got a fine-grained level of the management of the
computing power, we decided to use m1.small instances
for them. The Master node application had higher mem-
ory requirements, thus we deployed it on a c1.medium
instance.

B. Case Study

To evaluate the quality of our approach we compared
two strategies of automatic scaling. The first one exploits a
generic metric - the CPU usage. The second strategy uses a
business metric - average time spent by computation requests
while waiting in Slave Dispatcher’s queue for processing.
Upper or lower limits for such a metric could be explicitly
included in a Service Level Agreement, e.g. the service
provider might be obligated to ensure that a request won’t
wait for processing for longer than one minute.

The triggering rules used in the first approach are as
follows:
• Start another slave node virtual machine: the average

CPU usage of slave nodes from the last 300 seconds
was higher than 90%

• Stop a random slave node virtual machine: the average
CPU usage of slave nodes from the last 300 seconds
was less than 50%

The triggering rules used in the second approach are:
• Start another slave node virtual machine: the average

wait time of request from within the last 300 seconds
was higher than 35 seconds

• Stop a random slave node virtual machine: the average
wait time of request from within the last 300 seconds
was less than 10 seconds

The presented parameters were tuned up specifically to
the infrastructure on which we carried out the tests and the
current load of the cluster. The infrastructure was used in
parallel with other users, thus, e.g., the startup time of virtual
machines differed over time.

For the evaluation we prepared a test scenario consisting
of 120 steps. Each step included adding new requests of
numerical integration to Slave Dispatcher’s queue and wait-
ing for 60 seconds. We had to ensure that two auto-scaling
strategies will have to handle exactly the same situation.
It was therefore decided to generate the exact functions to
process before the actual test and store them in files. Later,
when the test was run, Expression Generator was reading
functions from these files and passing further for processing.

The number of requests added to the queue was equal to

ExprNum(n) = 100 + 5 ∗ (n mod 80)

(where n is the iteration number) of each step of workload.
The exact values of formula’s constants were chosen in such
a way, that a setup of ten virtual machines running constantly
during the test scenario could handle the workload. The
workload simulates a basic situation requiring automatic
scalability capabilities: a constant increase in load in a period
of time with a rapid drop right after it.

V. TEST RESULTS

To compare the automatic scaling exploiting the selected
strategies, we gathered data about the average wait time
(Figure 3), Slave Dispatcher’s input queue length (Figure
4) and the number of running instances (Figure 5) when
executing the test scenario. To sum up the differences we
computed the average values of those metrics. Table I
presents the results.

At the beginning (the first half of an hour), according to
the growing demand for computing power, SAMM started
some slave nodes. They were kept busy, because the number
of integration requests was growing.

While observing the system from the CPU usage point of
view, more resources should still be allocated - there was
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Figure 3. Average wait time during test scenario execution for both
strategies (CPU usage and Avg wait time)
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Figure 4. Queue length during test scenario execution for both strategies
(CPU usage and Avg wait time)

not enough computing power to process incoming requests.
The number of slaves was increased until the requests
were handled faster than the new ones were added. Once
the queue got completely empty, CPU usage dropped and
SAMM terminated the unused virtual machines. However,
some minutes later, the queue got refilled. Again, more
resources were acquired. At the end, after eighty minutes
(when the workload rapidly drops), the number of requests
in the queue was still high (over 6000).

In the second approach, the rapid drop of average wait
time at the beginning also indicated that some resources
should get released. The virtual machines were fully used,
but the wait time for requests was acceptable. When more
and more requests kept joining the queue, the average time
required to start the numerical integration got extended. Even
if the machines were not utilized 100%, the quality of the
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Figure 5. Number of running instances during test scenario execution for
both strategies (CPU usage and Avg wait time)

service was dropping according to the average wait time
metric. SAMM therefore acquired more resources to im-
prove the situation. In a longer perspective such a behavior
resulted in a shorter response time in comparison with the
CPU usage-based scaling strategy.

Table I
AVERAGE METRIC VALUE FOR AVGWAITTIME AND CPU STRATEGIES

Metric AvgWaitTime CPU

Average instances number 4.53 4.96
Average wait time (ms) 203987.08 266362.25
Average queue length 934.06 1392.72

VI. CONCLUSIONS AND FUTURE WORK

Using the average wait time metric has a positive impact
on the system when considering its operation from the
business point of view. Since the end users are mostly
interested in making the time required to wait as short
as possible, the amount of the resources involved should
be increased according to this demand. By improving this
factor, the potential business value of the presented service
grows. The system was automatically scaled by SAMM not
only from the technical point of view but also from the
business value perspective. On the other hand, since the
CPU usage was not the main concern, the system may be
used not in the most efficient way. If there would be an
SLA which does not cover the request wait time, it would
be more reasonable to use the CPU usage as a trigger for
automatic scaling. Choosing the most appropriate metric to
use is up to the user - they have to decide which one is the
most important from their perspective.

The actual improvement introduced by the dynamic re-
source provisioning highly depends on an actual workload.
In our test scenario the system shortened the time spent on
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waiting by 62 seconds. However there are also situations in
which the strategies bound to generic metrics can be as good
as the one based on business metrics, but it would require
more efforts to choose the most relevant ones and to tune
correct limit values.

The possibility to dynamically increase the amount of
resources involved in providing a service is a response for
the need to efficiently operate in a very quickly changing en-
vironment such as the Internet. Adding resources on-demand
significantly extends the capabilities of a running system,
which is enabled to serve both small and big numbers of
users. There is no unused capacity, so the operational costs
can be lower.

Making the automatic scaling tools more aware of busi-
ness rules makes them more useful, especially when they
are used in privately held cloud systems. Deep knowledge
about the elements running inside the system, provides
better insight into scaling rules. They can be fine-tuned
to particular hardware and software setup, so the balance
between the allocated and spare resources can be properly
maintained. For the crucial applications the system could
provide all the required computing power and low priority
tasks can be automatically maintained. The service provider
is able to do more with the same or even smaller amount of
computing power.

Our research in automatic scaling area is ongoing. We
plan to further extend SAMM with a web interface which
would facilitate using its functionality. Another interesting
goal of the research is to add support for other cloud stacks,
e.g. Open Stack [17] or Open Nebula [18], thus making
SAMM interoperable in a heterogeneous environment.
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