
Extending Microsoft® Project for Real-World Job-Shop Scheduling

with Genetic Algorithm

Peter Steininger

Steinbuch Center for Computing (SCC)

Karlsruhe Institute of Technology (KIT)

Kaiserstrasse 12

D-76128 Karlsruhe, Germany

steininger@KIT.edu

Abstract — Although production scheduling has attracted the

research interest of production economics communities for

decades, there still remains a gap between academic research

and real-world problems. Genetic Algorithms (GA) constitute

a technique that has already been applied to a variety of

combinatorial problems. We will explain the application of a

GA approach to bridge this gap for job-shop scheduling prob-

lems, for example to minimize makespan of a production pro-

gram or to increase the due-date reliability of jobs. The pre-

sented approach focuses on integrating a scheduling algorithm,

based on GA, into a commercial software product, namely

Microsoft Project 2003. We extended Microsoft Project in a

range of aspects: A new graphical user interface is introduced

to support users by a guided wizard describing the problem for

which an optimal schedule is sought. The GA was developed to

search for the solution with the maximum results for a given

set of production logistical objectives. The developed GA algo-

rithm and operators are tested on real-world data from a one-

of-a-kind manufacturing department of a major company. It

includes different aggregation operators for combining objec-

tives. Furthermore, the efficiency of the algorithm was com-

pared to benchmark tests available in literature.

Keywords: Job-Shop Scheduling, Genetic Algorithms, Job-

Shop Benchmarks, Real-World Scheduling Problems

I. PROBLEM STATEMENT

A. Characteristics of job-shop scheduling problems

Many jobs in industry and elsewhere require a collection
of tasks or activities to be completing while satisfying tem-
poral, resource and precedence constraints. Temporal con-
straints impose that some activities, or a set of them have to
be started or finished before or only after a certain point in
time. Resource constraints dictate that two tasks requiring
the same resource cannot be carried out simultaneously.
Precedence constraints refer to the technological winding-up
of a job. The objective is to create a schedule specifying
when each task is to begin (or finish) and what resources it
shall use in order to satisfy all the constraints while pursuing
an objective, e.g., taking as little overall time as possible,
minimizing mean delay, minimizing maximum delay, mini-
mizing the number of late jobs and so on. This is known as
the job-shop scheduling problem (JSP).

The JSP is a very important and well-studied scheduling
problem. It is a basic model, which may be extended by

additional characteristics like buffers, transportation, setup
time, time lags, etc., allowing practical scheduling problems
in practice are to be modeled more precisely. In its general

form, it is -complete, meaning that there is probably no

efficient procedure for exactly finding the shortest schedule
for arbitrary instances of a problem.

Bagchi [1, p. 109] references the JSP as follows: "Within
the great variety of production scheduling problems that
exist, the job shop scheduling problem (JSP) is one that has
generated the largest number of studies. It has also earned a
reputation for being notoriously difficult to solve. Neverthe-
less, the JSP illustrates at least some of the demands im-
posed by a wide array of real world scheduling problems…
Attempts to tackle the multi objective job shop are still rela-
tively few." A JSP is usually solved using a heuristic algo-
rithm that takes advantage of special properties of a specific
class of instances. This can be regarded as a backdoor to
reducing the complexity of a given problem.

B. Formal problem description

An instance of the JSP consists of a set of NOJ jobs i

and NOM machines j . Each job consists of a number of

activities so that we can count the total number of activities
NOA as follows:

1

NOM

i

i

NOA NOJ

Each job has fixed number and sequence of activities.
Each activity has certain duration and requires a single ma-
chine for its entire duration. The activity following a pre-
ceding one within a job requires a different machine. An
activity must be finished before each activity following it in
its job. Two activities cannot be scheduled at the same time
if they both require the same machine. The problem is to find
a feasible schedule which minimizes some objective func-
tion, e.g., minimizing makespan, in other words the overall
completion time of all activities, see Steininger [15, p. 26 f.].
These results in a complexity function for the JSP expressed
as

 !
NOM

O NOJ

which means in order to find the best schedule for a prob-
lem instance, we have to enumerate and evaluate all possible

94Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

schedules and the number of possible schedules to enumerate
is the result of function (2).

Figure 1. Selected complexity functions

Figure 1 illustrates the dimension of selected complexity

functions, where n is the number of problem elements, here

the number of activities. The graph illustrates that the com-

plexity of JSP is much bigger than some other well-known

problems, such as "Permutation problem" which is

 !O n n , "Towers of Hanoi" which is 2
n

O n ,

"Quicksort" which is logO n n n , and so on.

C. 1.3 Classification of scheduling problems

Classes of scheduling problems can be specified in terms
of the three-field classification approach initial introduced by
Conway, Maxwell and Miller [5] and extended by Graham
[12] and Brucker [3], which is under a continuous
reconsideration.

The three-field classification is described as α | β | γ,
where α specifies the machine environment, β specifies the
job characteristics and γ describes the objective function or a
combination of objective functions. Using the three-field
classification to specify the problem instance of the JSP we
are examining, the following taxonomy is noted:

 max, | ,intree, |ijJ NOM NOJ t C

Formula (3) describes a class of scheduling problems as
JSP (J) with a fixed machine count of NOM and a prede-

fined and fixed number of NOJ jobs. The order of activities

in each job is predefined and fixed as a directed graph with
operation times (ijt), expresses as integer values, for each

task.
The three-field classification notes γ as the objective

function or a combination of objective functions. In formula
(3) γ specifies the "traditional" objective function (maxC),

which de-scribes our goal as taking as little makespan as
possible for the schedule of all NOJ jobs using NOM ma-

chines.

II. MODELLING OF JSP SCHEDULING PROBLEMS

A. Formal problem representation

Even slightly different job-shop problems require com-
pletely different encodings in order to find a good solution.

Thus, choosing a good representation is a very important
component of solving a JSP. However, choosing a good
representation for a scheduling problem is as difficult as
choosing a good search algorithm for a search problem. Not
all algorithms work equally efficient on a specific problem
representation. To describe the representation technique
developed for our solution we use a simple job-shop schedul-
ing problem as shown in Table I.

Job

 Machine

jS i

[TU]ijt

j 1 2 3

1 (3,2,1) 3 5 1

2 (1,2,3) 3 2 1

3 (2,1,3) 1 2 5

Table I. Example of a production schedule problem with 3 jobs, routing

information jS for jobs, 3 machines and task operation times.

The scheduling problem can be represented by a graph as

shown in Table I. In addition to the activity nodes ,j i , it

contains a source node a with no duration (operation time),

a sink node e , also with no duration (operation time), and

two nodes called 2r and 3r which describe an imposed later

start of job 2 and 3 relative to job 1.

Figure 2. Network representation of a JSP based on Table I

The directed arcs running from the source node, through

each activity node ,j i to the sink node describes the

technological sequence of activities based on jS in Table I.

Each node shows the job id, the machine needed and the
operation time ijt . There are also undirected arcs in the

network, which references all possible sequences of an activ-
ity of a given job on a specific machine. Such a representa-
tion is called a disjunctive network.

B. Data representation and problem reduction

Care must be taken when adopting such a graphical
representation into a data structure, especially for the JSP in
an area with hundreds of jobs, thousands of sequences and
millions of possible activity orders at specific machines.

A data structure which is very efficient in the use of stor-
age (because of the size of a practical problem) as well as in

95Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

time has to be found to represent the introduced network.
Gallo and Pallottino [10] introduced the so-called "Forward
Star" data structure, which is the most efficient representa-
tion of all existing network data structures for representing a
network [4]. The "Forward Star" data structure uses three
arrays to describe a (directed) network. First we have an

array called from , whose index represents all nodes of the

network. The value of an index field references the index of
the second array called succ , which is the index of a node to

connect, referencing from . The third array is called cost and

reports the cost of a specific arc connecting two nodes.
The "Forward Star" data structure allows for a perfect

implementation of the activity order of any JSP, an efficient
implementation in storage and time and a reduction of the
initial problem described by the α | β | γ three-field classifica-
tion. Using the "Forward Star" data structure our problem is
reduced to the following taxonomy ():

 max, | , , |ijJ NOM NOJ chains t C

As mentioned above, the selection of a good representa-
tion is very important for the solution of a JSP. Care must
also be taken to adopt both representational schemes and the
associated operators for an effective algorithm. When using
the traditional way of solving a problem with GAs, the
chromosomes are implemented as binary vectors. This sim-
ple representation is an excellent choice for problems in
which a point naturally maps into a chromosome of zeros
and ones. Unfortunately, this approach of zeros and ones
cannot be used for real-word engineering problems such as
JSP, because of the number of information needed to repre-
sent coding of the JSP. Therefore, we have to find a way to
integrate the "Forward Star" data structure into a GA.

III. GENETIC ALGORITHMS

A. General principle

The term Genetic Algorithm describes a set of methods,
which can be used to optimize complex problems. As the
name suggests, the processes employed by GAs are inspired
by natural selection and genetic variation. This GA uses a
population of possible solutions to a problem and applies a
cycle of processes to modify them. These processes mimic
those in nature in such a way that subsequent populations are
fitter and more adapted to their environment. As generations
progress over time, they become better suited to their
environment and provide an advantageous solution in a
given time.

Since their development in the late 1980’s GAs [11] have
been used to find solutions too many types of problems. A
unique characteristic of a GA is that the fundamental algo-
rithm is unaware of the problem it is optimizing. All that is
required is that the parameters entered into a model or sys-
tem can be efficiently transformed to and from a suitable GA
chromosome format. This means GA optimization can be
applied to many types of complex problems. Detailed intro-
ductions are given by Goldberg [11] and Davis [7].

The flowchart for the GA is given in Figure 3. First, an
initial population of randomly generated sequences of the

tasks in the schedule is created. These individual schedules
form chromosomes which are subject to a form of evolution.
Once an initial population has been formed, "selection",
"crossover" and "mutation" operations are performed repeat-
edly until the fittest member of the evolving population con-
verges to an optimal fitness value. Alternatively, the GA may
run for a user-defined number of iterations [11].

Figure 3. Principal flow of Genetic Algorithms.

The size of the population is user-defined and the fitness
of each individual, in this case a schedule, is calculated
according to a function, in our case the makespan or an
additive combination of different goals. It is also possible to
use a fitness function on other calculated values like mean or
maximum delay, number of delayed jobs and so on. Also
combinations of different functions are possible. The
schedules are then ranked according to the value of their
fitness function and, after that, selected for reproduction.

B. Schedule encoding and decoding

GAs were derived by examining biological systems. In
biological systems evolution takes place on chromosomes
which are organic devices for programming the structure of
living beings. In this sense, a living being is a decoded struc-
ture of all chromosomes. Natural selection is the link be-
tween chromosomes and the performance of the decoded
structures. When implementing the GA, the variables that
characterize an individual are represented in arrays (by index
ordered lists). Each variable corresponds to a gene and the
array corresponds to a chromosome in biological systems.

Decision was made [15] to use the encoding schema
introduced by Bean [2] to build the chromosomes. He calls
his schema "Operation Based Representation". Encoding
starts by enumerating jobs and corresponding activities in a
list. Each activity in a job is encoded with the numerical id of
the job in which it resides. All jobs and activities are encoded
following that description in one potential schedule for the
problem. The result is a chromosome which represents a
potential schedule.

96Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

C. Crossover

The GA uses crossover, where mating chromosomes are
cut once. Crossover is the most delicate operation of GA
because of the problem that it can produce irregular activity
sequences for a job. We use a corrected 2-point crossover to
avoid non-regular activity sequences of orders, which
Goldberg [11] refers to as a PMX-crossover operator. The
following figures will illustrate a crossover operation of a
sample JSP with 4 jobs, each with 3 activities, and 4 ma-
chines (see Figure 4 to Figure 8), based on an example in
Steininger [15, p. 146 f.].

Step 1: Select two individuals randomly from the popula-

tion (Figure 4).

Figure 4. Crossover operator, step 1: Parent selection.

Step 2: Select a segment of the first chromosome which

starts and ends with the same job number (Figure

5). Selected segment: 4124.

Figure 5. Crossover operator, step 2: Segment selection.

Step 3: Select a segment of the second chromosome

which starts and ends with the same job number

as the selected segment of the first chromosome

(Figure 6). Selected segment: 4131134.

Figure 6. Crossover operator, step 4: Segment exchange.

Step 4: Exchange the selected segments between the two

chromosomes to get the "child". The result is two

chromosomes with non-regular activity se-

quences of jobs. Child 1 has too many activities

and child 2 lacks some genes/activities (Figure 7).

This result necessitates a correction step.

Step 5: The following process, called "normalization",

initializes this correction step. It examines the

original segment of a child with the exchanged

segment of the same child (Figure 7). The result

of that examination for child 1 is: 2 are missing; 3,

1, 1 and 3 are added. For child 2 we get: 3, 1, 1

and 3 are missing and 2 is added.

Figure 7. Crossover operator, step 5: Correction of child 1.

Step 6: Having detected the added and missed genes, we

can start the correction step: For child 1 we delete

3, 1, 1 and 3 at first occurrence in child 1 without

inspecting the exchanged segment; for child 1 we

add 2 at the end of exchanged segment (Figure 8).

The same operations are executed on child 2 and,

at the end of all steps; we have two new and cor-

rect chromosomes.

Figure 8. Crossover operator, step 6: Correction of child 2.

D. Mutation

Mutation is the process of random dissimilarity of the value

of a gene with small probability. It is not a primary operator,

but it ensures that the possibility of searching any section in

the problem space is never zero and prevents complete loss

of genetic material through reproduction and crossover. We

execute the mutation operator as a permutation by first pick-

ing (and deleting) a gene before reinserting it at a randomly

chosen position of the permutation (Figure 9).

Figure 9. Mutation operator: Gene flipping.

E. Fitness

The fitness function is used to evaluate the fitness of each

individual in the population and depends on the specific

application. Since a GA proceeds toward more fit individu-

als and the fitness value is the only information available to

the GA, the performance of the algorithm is highly sensitive

97Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

to the fitness function. In case of optimization routines, the

fitness is the value of the objective function to be optimized.

F. Selection

To selectively reproduce the population and to determine

the next generation we use a hit and miss selection proce-

dure based on the fitness function. This could be imple-

mented using a roulette wheel method. An imaginary rou-

lette wheel is constructed with a segment for each individual

in the population. An individual’s section size is based on

the fitness value of the particular individual. A fit individual

will occupy a larger slice of the roulette wheel than a

weaker one. Selection is made by rotating the roulette wheel

a number of times equal to the population size. When the

roulette wheel stops, the individual it points to is selected.

This means that fitter individuals will have a propensity to

be selected more frequently than weaker ones.
The GA needs a few additional parameters to work.

These parameters specify the size of the population, use of
operators and so on.

G. Population size

The population size depends on the nature of the problem
[13]. Typically, it contains several hundreds or thousands of
possible solutions. The population is generated randomly, so
it is possible to cover the entire range of possible solutions.
We use a population size of 500 individuals, which repre-
sents 500 possible schedules.

H. Probability of crossover

The parameter probability of crossover affects the rate at
which the crossover operator is applied [11]. A higher
crossover rate introduces new chromosomes more quickly
into the population. If the crossover rate is too high, good
individuals are eliminated faster than selection can produce
improvements. A low crossover rate may cause stagnation
due to the lower exploration rate. We use probability of
crossover with a value of 0.6.

I. Probability of mutation

Probability of mutation is the likelihood with which each
gene of each individual in the new population undergoes a
random change after a selection process. A low mutation rate
helps to prevent any gene positions from getting stuck to
single values, whereas a high mutation rate results in essen-
tially random search [11]. We use a value of 0.05 for muta-
tion probability.

J. Final result

It is a characteristic of the GA that once fairly good solu-
tions have been found their features will be carried forward
into even better solutions, which will ultimately lead to a
near-optimal solution. Therefore, GAs are particularly attrac-
tive for scheduling.

Compared with other optimization methods, GAs are
suitable for traversing large search spaces since they can do
this relatively rapidly and because the mutation operator
diverts the method away from local minima. Being suitable
for large search spaces is a useful advantage when dealing

with schedules of increasing size since the solution space
will grow very rapidly. It is important that these large search
spaces are scanned as fast as possible to enable the practical
and useful implementation of schedule optimization.

Figure 10. Microsoft Project 2003 with integrated REIMOS.

IV. APPLICATION EXAMPLES

A. Scheduling problem in a one-of-a-kind manufacture

We have tested our approach, REIMOS (German
abbreviation for "Sequence planning for multi-product
manufacturing systems”) [15], in a one-of-a-kind manufac-
ture of a major German company. For confidentiality rea-
sons, the model mix, job and operation data are under a non-
disclosure agreement and we are not allowed to publish the
data. But we have also tested our approach with a few pub-
licly available benchmark sets for JSP, which can be ac-
quired by any researcher from a public website (Taillard
[16], e.g. Figure 12).

B. Benchmark tests

Early on, research of scheduling problems started a
competition on the "best schedule" of a specific problem. For
that reason some researchers designed (calculated) very hard
to solve scheduling problems as so called "benchmark in-
stances" [9]. Some modern benchmark instances are distrib-
uted by Taillard [16] and called JSP-15-15, JSP-20-15 and
JSP-50-20. The name of the benchmark is derived from
scheduling a problem; in the case of JSP-15-15 it stands for
15 jobs on 15 machines and so on (Figure 11). Taillard [16]
also published the list of best results for each scheduling
problem instance, allowing our own results to be compared
with those of other researchers.

We used three benchmark instances to model Microsoft
Project 2003 files as input for REIMOS and started a GA run
with the parameter values mentioned above (3.8, Figure 11
& 12). Our algorithm for benchmarking was modified to
write a so-called "debugging output", so we know specific
values for the GA at every step. For example, these values
are: number of iterations, best calculated schedule and so on.
We compared the best schedule found thus far with the best
known schedule of Taillard [16] and calculated a quality

98Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

level, which is the percentage reached of so far “best” known
solution by Taillard [16]. This is shown in Figure 12 for JSP-
15-15.

Figure 11. Benchmark instance JSP-15-15 in Microsoft Project 2003.

For all benchmark instances we attained a quality level
around 95 % of the best known solution calculated over 1000
generations GA runtime. On a so-called standard PC suitable
for the use of Microsoft Office, one calculation run around
10 to 20 minutes, which were our time goal for planning a
schedule. We could have gone even further and let it run for
hours or days, but the effect would not bring a realistic
benefit. The problem with the best known solution by
Taillard [16] is that we did not know its runtime, implemen-
tation of algorithm, computer etc. So it was hard to say "how
good was best" from an economical point of view.

Figure 12. Results of benchmark instance JSP-15-15 with REIMOS.

V. CONCLUSION AND OUTLOOK

A computer algorithm being based on the evolution of
living beings may be surprising, but the extensiveness with
which this approach is applied in so many areas is even more
surprising. Genetic algorithms have already proven their
efficiency in many application areas, commercial, educa-
tional and scientific. Their usefulness in solving various
kinds of problems have made them a preferable choice com-
pared to traditional, mainly heuristic approaches.

The adaptation of a GA to schedule jobs in manufactur-
ing shops with time, resource and precedence constraints has
been demonstrated here [15]. The simplicity of the methods
used supports the assumption that GA can provide a highly
flexible and user-friendly solution to the JSP. The use of
standard software and an implemented "add-in" for
Microsoft Project 2003 to realize the GA has shown that this
approach can be used for solving real industrial scheduling
problems [15].

VI. REFERENCES

[1] Bagchi, Tapan P., 1999. Multiobjective Scheduling by
Genetic Algorithms. Boston, Dordrecht, London: Kluwer
Academic Publishers.

[2] Bean, James C., 1994. Genetic Algorithms and Random Keys
for Sequencing and Optimizations. ORSA Journal of
Computing. 6 (2), 154-160.

[3] Brucker, Peter, 2004. Scheduling Algorithms. Berlin,
Heidelberg, New York et al.: Springer Verlag.

[4] Cherkassky, B. V., Goldberg, A. V., Radzik, T., 1993.
Shortest Paths Algorithms: Theory and Experimental
Evaluation. Technical Report 93-1480, Computer Science
Department, Stanford University.

[5] Conway, Richard W., Maxwell, William L., Miller, Louis W.,
2003. Theory of Scheduling. Mineola (NY): Dover
Publications.

[6] Darwin, Charles, 1859. On the Origin of Species by Means of
Natural Selection. London (UK): John Murry.

[7] Davis, Lawrence, 1996. Handbook of Genetic Algorithms.
Florence (KY): International Thomson Computer Press.

[8] Domschke, Wolfgang, Scholl, Armin, Voß, Stefan, 1997.
Produktionsplanung. Berlin, Heidelberg, New York et al.:
Springer Verlag.

[9] Fisher, Howard, Thompson, Gerald L., 1963. Probabilistic
Learning Combinations of Local Job-Shop Scheduling Rules.
In: Muth, John F.; Thompson, Gerald L., (Eds.). Industrial
Scheduling. Englewood Cliffs (NJ): Prentice-Hall, 225-251.

[10] Gallo, Giorgio, Pallottino, Stefano, 1982. A new Algorithm to
find the Shortest Paths between all Pairs of Nodes. Discrete
Applied Mathematics. Amsterdam, 3 (4), 23-25.

[11] Goldberg, David E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. München: Addison
Wesley.

[12] Graham, Ronald L., Lawler, Eugene L., Lenstra, Jan Karel et
al., 1979. Optimization and approximation in deterministic
sequencing and scheduling. Annals of Discrete Mathematics,
16 (5), 287-326.

[13] Haupt, R. L., 2000. Optimum population size and mutation
rate for a simple real genetic algorithm that optimizes array
factors. IEEE Antennas and Propagation Society International
Symposium, 2, 1034-1037.

[14] Roy, Bernard, Sussmann, B., 1964. Les problèmes
d'ordonnancement avec contraintes disjonctive. Montrouge
(F): SEMA Groupe.

[15] Steininger, Peter, 2007. Eine Methode zur
Reihenfolgeplanung bei Mehrprodukt-Fertigungssystemen.
Dissertation, Universität Karlsruhe. Aachen (D): Shaker
Verlag.

[16] Taillard, Éric D., 2006. Scheduling instances.
http://ina2.eivd.ch/Collaborateurs/etd/
problemes.dir/ordonnancement.dir/ordonnancement.html.

99Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

