
Fragment-Based Computational Protein Structure Prediction 
 

Nashat Mansour, Meghrig Terzian 
Department of Computer Science and Mathematics 

Lebanese American University, Lebanon 
e-mail: nmansour@lau.edu.lb, meghrig.terzian@lau.edu 

 
 

Abstract—Proteins consist of sequences of amino acids that fold 
into 3-dimensional structures. The 3-dimensional configuration 
determines a protein’s function. Hence, it is very important to 
determine the correct structure in order to identify the wrong 
folding that indicates a disease situation. Computational 
protein structure prediction methods have been proposed in 
order to alleviate the enormous time taken by wet-lab methods. 
This paper presents a fragment-based protein tertiary 
structure prediction method which employs the CHARMM36 
energy model. The method is based on a two-phase Scatter 
Search algorithm that minimizes the energy function. 
Backbone fragments are extracted from the Robetta server 
and side chains are, extracted from the Dunbrack Library. The 
results show that the algorithm produces tertiary structures 
with promising root mean square deviations. 

Keywords-protein structure prediction; scatter search; 
CHARMM36; protein fragments. 

I.  INTRODUCTION  
Proteins are macromolecules found in all biological 

organisms. They are composed of a sequence of amino acids 
and are involved in a wide variety of functions within cells 
including cell structure, cell motility, cell signaling, enzyme 
catalysis, and substance transport. For example, enzymatic 
proteins, such as pepsin, are fundamental for the metabolism 
and accelerate the rates of biochemical reactions. The 
various functions are determined by the 3-dimensional 
folding that is based on the unique sequence of amino acids.  

Predicting protein tertiary structure provides information 
about the functionality, localization and interactions between 
proteins and consequently contributes in drug design and 
disease prevention associated with protein misfold. The 
laboratory experimental methods for protein structure 
prediction, mainly X-ray crystallography and nuclear 
magnetic resonance, consume a lot time and are error-prone. 
Hence, computational methods may offer an alternative. 
Computational approaches for protein structure prediction lie 
in two groups. The first group, comparative modeling, 
predicts structures using proteins of known structures as 
templates [1]-[4]. The second, ab initio, predicts structures 
using the amino acid sequence of the structure to be 
predicted [5]-[7]. 

Ab initio approaches are based on Anfinsen's theory 
stating that the lowest energy value protein conformation is 
the most stable one [8]. Ab initio methods are divided into 
two classes. The first is fragment-based and the second 
biophysics-based. Fragment-based methods employ database 

information, whereas biophysics-based methods do not [5]. 
A typical ab initio method starts with random conformations, 
generates substitute conformations using heuristics, 
calculates their energies, and keeps on generating substitute 
conformations until the ending criterion is reached, where 
the solution is the conformation with the lowest energy. The 
efficiency of ab initio methods depends on the utilized 
energy function accuracy and the search algorithm 
efficiency. 

The protein structure prediction problem is NP-
Complete. Hence, there is a need for heuristic methods. The 
main challenge of structure prediction methods is the search 
space vastness. To limit the search space, a number of 
models, such as the Hydrophobic-Polar model [9], UNRES 
model [10], and dihedral angles model [6] have been 
developed. But, limiting the search space by simplifying the 
structure model may limit the quality of the predicted protein 
structure. 

Atom-based ab initio methods either use fragment 
databases or are pure. Pure ab initio methods do not employ 
any prior information. Examples of such published pure ab 
initio work are based on scatter search algorithm [11] and a 
genetic algorithm [12]. 

Fragment-based protein structure prediction methods 
employ peptide fragments, secondary structures and 
statistical information from the Protein Data Bank (PDB) 
structures to predict protein tertiary structures. The basic 
principle behind this method is the presence of a strong 
relationship between an amino acid sequence and structure 
[4]. A typical ab initio fragment-based method starts with 
generating fragments from the PDB. Then, heuristics are 
used to optimize conformations and generate native like 
structures by using energy functions and evaluation methods. 

Iterative Threading Assembly Refinement (I-TASSER) is 
a unified meta server for protein structure and function 
prediction [13]. Fragments are utilized to assemble well-
aligned structural regions of the segments with unaligned 
regions. Starting from the query sequence, I-TASSER uses 
Basic Local Alignment Search Tool (BLAST) to identify 
sequence homologs. Then, the homologs are aligned using 
multiple sequence alignment to form a sequence profile and 
are utilized for predicting secondary structures which are 
threaded by gathering top template hits from ten threading 
programs. 

The University College London (UCL) bioinformatics 
group developed several algorithms to tackle protein 
structure prediction and function annotation including 
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Fragment-based protein folding (FRAGFOLD) for prediction 
of tertiary structure [14]. FRAGFOLD starts the folding 
simulation with supersecondary fragment selection for each 
position in the query sequence. The energy function utilized 
includes terms for short-range, long-range, solvation, steric 
clashes, and hydrogen bonds with their corresponding 
weights. The energy minimization phase is conducted using 
a Simulated Annealing approach [15]. 

ROSETTA [16], an integrated package for protein 
structure prediction and functional design, is one of the 
leading ab initio performers in Critical Assessment of 
Protein Structure Prediction (CASP). ROSETTA uses 
fragments to model the protein backbone. Then, the model is 
refined and rotamers from the Dunbrack library are 
assembled to model the side chains. The fragment assembly 
phase is guided by Monte Carlo Simulated Annealing search 
[17]. Two energy functions are used in ROSETTA; the 
probability values used in the energy function are collected 
using Bayesian statistics from the PDB [17].  

This work presents a fragment-based protein tertiary 
structure prediction method that yields good suboptimal 
structures. The method employs the CHARMM36 energy 
model [18] and is based on designing a two-phase scatter 
search metaheuristic that minimizes the energy function. 
Backbone fragments are extracted from the Robetta server 
and, later, side chains are extracted from the Dunbrack 
Library. The results of applying our method to three proteins 
are assessed by calculating their energy and root mean 
square deviation (RMSD) values and by visualizing them. 
The best structures generated are compared with structures 
generated by ROSETTA, I-TASSER, and previous work 
performed by Mansour et al. [19]. The adapted scatter search 
algorithm yields promising results. 

The paper is organized as follows. Section 2 presents a 
protein structure model, the energy function used, and the 
assumptions made. Section 3 explains the design of the 
proposed scatter search algorithm. Section 4 discusses the 
experiments performed and the results obtained. Section 5 
concludes the paper. 

II. PROTEIN MODEL AND ENERGY FUNCTION 
In the dihedral angles model of protein presentation, the 

backbone conformation is determined by three torsion 
angles, Phi φ, Psi ψ and Omega ω, and the conformation of 
side chains is determined by the Chi χ angles. Phi is formed 
by the C-N-Cα and N-Cα-C planes and rotating around the 
N-Cα bond. Psi is formed by the N-Cα-C and Cα-C-N planes 
and rotating around the Cα-C bond. Omega is formed by the 
Cα-C-N and C-N-Cα planes and rotating around the C-N 
bond.  

The All-atom Chemistry at HARvard Macromolecular 
Mechanics (CHARMM36) protein force field function 
computes the potential energy of a protein structure.  The 
potential energy is the sum of individual terms representing 
the internal and non-bonded contributions. Internal terms 
include bond, angle, Urey-Bradley, improper torsion, torsion, 
and backbone torsional correction energy values. The non-
bonded terms include electrostatic, Van der Waals, and 
solvation values. The following equation represents the nine 

terms of the CHARMM36 energy function E as a function of 
the conformation c [18][20]. 
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Assumptions have been made in this work to simplify the 

representation of a solution including: constant bond lengths 
and bond angles; and insignificant improper torsion, Urey-
Bradley, and CMAP components.  Also, Hydrogen atoms are 
combined with neighboring heavy atoms referred to as the 
"extended-atom representation”, which reduces the size of 
the problem. 

III. SCATTER SEARCH BASIC ALGORITHM 
Scatter Search (SS) is a population based, evolutionary 

and stochastic meta-heuristic that generates and maintains 
high quality solutions by controlling the search space 
through randomization, recombination and diversification 
[21].  Scatter Search generates a random set of candidate 
solutions, improves them and selects 20% of these solutions 
and places them in the reference set. Half of the selected 
solutions are high quality and the other half diverse. Then, it 
iterates through a subset generation, solution combination, 
improvement and reference set update methods, where new 
subsets are generated, combined, improved and included in 
the reference set according to a certain criteria. In the 
following sections, we describe the design of the various 
methods that adapt scatter search to provide good 
suboptimal solutions for the protein structure prediction 
problem. 

A. Solution Encoding 
A PROTEIN candidate solution is represented as a list of 

consecutive objects, AMINO ACIDs. The position of an 
Amino Acid in a PROTEIN object list is consistent with its 
position in the protein chain. Consequently, the size of the 
PROTEIN object is equal to the number of amino acids of 
the protein. Each AMINO ACID consists of a name, Phi, Psi, 
omega, Chi1 to Chi4 angle values (if present), van der 
Waals, electrostatic, torsion, and ASA energy values, and a 
list of ATOM objects representing the atoms of that 
particular AMINO ACID. An ATOM has a name and a 
POSITION object, representing the Cartesian coordinates of 
that atom. 

B. Diversification Generation Method 
The Diversification Generation Method (DGM) 

generates random, diverse and valid initial solutions. These 
solutions are formed by randomly selecting a nine width 
window of consecutive amino acids from the protein chain, 
then randomly selecting a 9 width fragment (containing phi, 
psi and omega values) for this particular position and placing 

109Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences



the torsion angles in their corresponding spots. Next, the 
Cartesian coordinates of the atoms of each amino acid are 
calculated and the energy of the solution is computed. These 
steps are repeated until the chain is full and the generated 
structure is valid, that is, each amino acid in the chain has 
phi, psi and omega values and there are no collisions 
between the atoms. 

C. Improvement Method 
The Improvement Method (IM) enhances the solutions 

generated by the DGM. After saving the existing values of 
the torsion angles, for every amino acid position in the chain 
a fragment is randomly selected for that position and torsion 
angle values are inserted into the solution. If the newly 
generated solution is feasible and its potential energy value is 
lower than the old solution, the move is accepted. The 
improvement method is run 25 times the protein size. Then, 
the same procedure is repeated with length 3 fragments, with 
number of moves being 50 * protein size. 

D. Reference Set Update Method 
The Reference Set Update Method (RSUM) constructs 

two reference sets (RefSet), high-quality and diverse 
solutions. The RefSet b contains b1 high-quality solutions, 
and b2 diverse solutions. Since b=20% of the population's 
size and PopSize=100, RefSet has 20 solutions. The b1 
solutions are the top 10 minimum energy valued solutions 
generated from IM. The b2 solutions are the solutions having 
diverse energy values from the b1 high-quality solutions. 
After selecting the top 10 solutions of minimum energy and 
placing them in the RefSet (HQRefSet), for every solution 
not in the HQRefSet, the minimum distance between this 
solution and all solutions in the HQRefSet is computed and 
sorted in decreasing order of minimum distances. The first 
b2 (most diverse) solutions having the highest energy values 
are inserted into the RefSet (DivRefSet). The algorithm 
terminates when no new solutions are found to be inserted 
into the RefSet or when the number of added solutions 
reaches a limit. 

E. Subset Generation Method and Solution Combination 
Methods 
In the Subset Generation Method (SGM), subsets of the 

reference set are generated by using a method that groups 
every pair of elements in a subset. (b!/2!(b – 2)!) subsets are 
generated, where b is the size of the RefSet.  

Then, the pairs generated by the SGM are combined to 
generate one candidate solution for each pair. For every 
amino acid, the dihedral angles from either candidate 
solution are used and the partial energy function, up to this 
amino acid, is calculated. The angle values that yield a lower 
energy value of the structure are chosen to be included in the 
combined candidate solution. 

F. Side chain Assembly  
After the termination of phase one, the solution with the 

lowest Cα-RMSD value in the final Reference Set is chosen 
to go through the side chain assembly phase.  In this phase, 
fragments from the Dunbrack library are chosen and inserted 

into the solution. The method utilized is the same method 
utilized in the Improvement method of the Scatter Search 
algorithm in phase one, with 100 * protein size attempted 
moves. In this phase, the energy function includes the energy 
values produced by the side chain atoms and all-atom RMSD 
value is calculated. 

IV. EXPERIMENTAL RESULTS 

A. Fragment-based SS and Mansour et al. Results 
In this section, we compare our results to the results 

generated by the pure ab initio results of Mansour et al. [19]. 
The generated structures are evaluated by computing the root 
mean square deviation expressed in Å.  

Table 1 tabulates the minimum RMSD values generated 
by both algorithms for 1CRN, 1ROP and 1UTG proteins. 
Figures 1-3 display the tertiary structures of the three 
proteins in their native state (PDB) and generated by the two 
algorithms. Table I shows that the RMSD for 1CRN dropped 
from 9.01 Å to 8.05 Å, for 1ROP from 12.14 Å to 5.43 Å, 
and for 1UTG from 14.78 Å 12.34 Å. This shows that the 
approach utilized in this study significantly improves the 
three protein RMSD values. Furthermore, unlike [19], the 
structures generated, have no discontinuities in them. 

 
 

TABLE1. FRAGMENT-BASED SS RMSD VALUES 
Methodology 

                     
Proteins 

1CRN 1ROP 1UTG 

Mansour et al. 
[19] 

9.01 Å 12.14 Å 14.78 Å 

Fragment based 
SS 

8.05 Å 5.43 Å 12.34 Å 

 

B. Fragment-based SS, ROSETTA, and I-TASSER Results  
In these experiments, we compare the generated 

structures from our algorithm with those generated by I-
TASSER and ROSETTA. Since I-TASSER and ROSETTA 
do not set the first amino acid coordinates of the structures to 
the coordinates of the corresponding PDB protein, after 
generating the structures from their servers we translated the 
coordinates to calculate the RMSDs and to visualize them. 

As shown in Table II, the RMSD results generated by 
our code are the lowest for the three proteins. However, it 
seems that since RMSD is a global measure, a small 
disorientation in one part of a protein results in a large root 
mean square deviation increase. For all the three tested 
proteins, the visualized generated structures by I-TASEER 
and ROSETTA looked reasonable.  Hence, their RMSDs 
should have been less. Figure 4 is a case in point. 
Consequently, the results of our fragment-based SS 
algorithm can be interpreted as comparable to those of I-
TASSER and ROSETTA for these three proteins. 
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TABLE II.  RMSD VALUES GENERATED BY FRAGMENT-BASED 

SS, I-TASSER AND ROSETTA 
Method 

                              
Proteins 

1CRN 1ROP 1UTG 

I-TASSER 12.14 Å 26.14 Å 19.94 Å 
ROSETTA 11.35 Å 23.28 Å 18.20 Å 

Fragment-based 
SS 

8.05 Å 5.43 Å 12.34 Å 

 

V. CONCLUSIONS 
In this paper, an ab initio fragment-based protein 

structure prediction method is presented. This method is 
based on a scatter search metaheuristic. Given a protein 
sequence and its corresponding fragments, the algorithm first 
assembles the backbone of the candidate solutions then the 
side chains of the best generated solution.  The RMSD 
values of the generated structures of three proteins show 
promising results that are comparable to those of well-
recognized algorithms. 

Major limitations of this work are presented by the 
inaccuracy of the energy function and the lack of accuracy of 
is the dihedral to Cartesian transformation method utilized 
that is not 100% accurate. Further future work can focus on 
including more terms in the energy functions. The CMAP 
term ignored for simplicity, should be added to the energy 
function. In addition, hydrogen atoms, can be added to the 
solution representation, thus adding the hydrogen bonding 
term to the energy function.  This would require parallelizing 
the algorithm in order to speed up the processing and to 
explore areas of the search space.  
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Figure 1. Structures generated by the two methods and the PDB structure for 1CRN. 

 
 

 
Figure 2. Structures generated by the two methods and the PDB structure for 1ROP. 

 
 

 
Figure 3. Structures generated by the two methods and the PDB structure for 1UTG. 

 
 

 
Figure 4. 1ROP Structures Generated. 
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