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Abstract — In this paper, a lot scheduling problem on a single 
machine with indivisible orders is studied. The objective is to 
minimize the total completion time of all orders. We use a 
binary integer programming approach to solve this problem. 
The binary integer programming approach with run time limit 
is considered as one heuristic method. As compared to a lower 
bound, it turns out the average performance of the method is 
really good. 
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I.  INTRODUCTION 
Generally, there are two main production processes in a 

production system, that is, continuous production and batch 
production. Here, we are interested in batch production. In 
the literature, there are two categories of batch scheduling 
problems. One is batch scheduling with divisible batch sizes. 
Naddef and Santos [1] studied a single machine problem 
with batching jobs. The objective is to minimize the total 
completion times. They showed that the greedy algorithm 
solves the problem if jobs are all of one type. They also 
provided a heuristic for the problem with various job types. 
Coffman et al. [2] considered a single machine job shop in 
which subassemblies of two different types are made and 
then assembled into products. They provided an efficient 
algorithm for minimizing the total flow time of the 
products. Dobson et al. [3] considered batch jobs in the 
multiple-machine scheduling problem. The objective is to 
minimize the mean flow times. They proposed an efficient 
algorithm for computing the optimal solution for single 
product case. Hou et al. [4] studied a lot scheduling problem 
with orders which can be split. Orders are grouped into lots 
and then processed. The objective is to minimize the total 
completion time of all orders. They showed that this problem 
can be solved in polynomial time. 

The other is batch scheduling with indivisible batch sizes. 
Shallcross [5] studied a problem of batching identical jobs on 
a single machine. He presented an algorithm to minimize the 
sum over all jobs of the batched completion times. Mosheiov 
et al. [6] addressed a classical minimum flow-time, single-

machine, batch-scheduling problem. They introduced a 
simple rounding procedure for Santos and Magazine's 
solution [7], which guarantees optimal integer batches. Mor 
and Mosheiov [8] studied an identical parallel-machine 
scheduling problem with identical job processing times and 
identical setups. They showed that the solution is given by a 
closed form, consisting of identical decreasing arithmetic 
sequences of batch sizes on the different machines. 

In a factory, products are usually made according to 
customers’ orders. This production approach is called MTO 
(make to order). Since different orders may contain different 
quantities, two production strategies are applied in the batch 
production, especially when the lot size of the batch 
production is fixed. Also, in this particular situation, the 
production time of each lot is fixed no matter how many 
quantities in the lot. Therefore, from the viewpoint of 
efficiency, one order may be divided into several lots to fill 
up each lot. The study presented by Hou et al. [4] is based on 
this viewpoint. However, from the viewpoint of management, 
one order is not divided into different production lots 
because the products of the same order are finished at the 
same time and then delivered to the customer. Based on this 
viewpoint, in this paper, we study the problem given by Hou 
et al. [4] but orders are restricted to be indivisible.    

The rest of the paper is organized as follows. In the 
second section, a description of the problem is given. Next, 
the integer programming formulation is provided. 
Computational experiments are given in the fourth section. 
Final section is the conclusion. 

 

II. PROBLEM DESCRIPTION 

There are n orders ( , i = 1, 2, …, N) to be grouped into 
lots and then be processed on a single machine. Each order 
has its own size (

iO

iσ , i = 1, 2, …, N). The size of each order 
is no more than one lot’s capacity (K). On top of that, every 
order is indivisible. It means products of each individual 
order have to be processed in the same lot. The orders in the 
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same lot have the same processing time (t). Therefore, all 
orders in the same lot have the same completion time.  

 The machine can handle at most one lot at a time and 
cannot stand idle until the last lot assigned to it has finished 
processing. The objective is to minimize the total completion 

time ( ) of all orders. Thus, using the three-field 

notation, this scheduling problem is denoted by 

. 

Oi
C∑

indivisible1/ , / Oi
lot C∑
 

 

III. INTEGER PROGRAMMING FORMULATION 

The problem is conjectured to be NP hard [9]. Therefore, 
we use the following binary integer programming approach 
to solve this problem. 

Let  if the ith order is assigned to the qth lot, and 

0 otherwise. Since the processing time of each lot is t, the 
completion times of the first lot, the second one, etc., are t, 
2t, …, respectively. Thus, the total completion time of all 

orders is . Then, a binary integer programming 

(BIP) formulation to solve the proposed problem is 
developed as follows. 

[ ] 1i qX =

1 1

N N

q i

t
= =
∑∑ [ ]i qX q

q

N
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1 1

N N

i q
q i

t X
= =
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Subject to                               (2) [ ]
1

1
N

i q
q

X
=

=∑ 1,2,...,i =

[ ]
1

N

i i q
i

X Kσ
=

≤∑                         (3) 1,2,...,q = N

N[ ] {0,1}i qX ∈   ,           (4) 1,2,...,i N= 1,2,...,q =

 
The objective is to minimize the total completion time of 

all orders which is shown in (1). Equation (2) ensures that 
each order is only assigned to one lot. Equation (3) limits the 
total sizes of orders that are assigned to the same lot to the 
lot capacity (K). Finally, (4) guarantees that variable [ ]i qX  is 

either 0 or 1. 
 

IV. COMPUTATIONAL EXPERIMENTS 

The above binary integer programming approach can 
solve the proposed problem, but it is time-consuming when it 
comes to a large problem. Considering the efficiency of the 

BIP, the run time limit of the BIP is set to 3600 seconds. 
Also, in order to evaluate the performance of the BIP, it is 
tested in the computational experiments which are conducted 
based on the following parameter set.  
Order number N is equal to 20, 30, 40, 50, 60, 70, 80, 90, 
100. 
Lot capacity K is equal to 15, 30. 
Order size iσ  is uniformly distributed over [1,5], [1,10] 

( iσ
d
= U(1,5), iσ

d
= U(1,10)) 

There are 9 2 2 36× × =  problem types. For each problem 
type, 30 test problems are generated. Each test problem is 
solved by BIP and LP, respectively. BIP and LP are solved 
by using a computer program coded in LINGO 11.0 with 
4GB of memory available for working storage, running on a 
personal computer Intel(R) Core(TM) i7-2600 CPU @ 
3.4GHz. To evaluate the performance of the computational 
results, we have to come up with a lower bound (LB) and 
then compare these percentage errors (100*( ) /BIP LB LB− ) 
in different test problems. 

Obviously, one lower bound can be obtained from the 
solution of a variant of the original problem by changing the 
original problem to the one in which orders are divisible and 
can be processed in different lots. Therefore, we only need to 
change (4) as follows. 

       [ ] 0i qX ≥ 1,2,...,i N= ,                      (4’) 1,2,...,q = N

Then, since the problem becomes a Linear Programming 
(LP) problem, we take much less time to solve the problem 
than the original one. The lower bound is also tight because 
the solutions of the original problem and its variant can 
happen to be the same (integers).  

The average and maximal percentage errors of each 
problem type for the BIP solutions and also the number of 
optimal solutions obtained within 3600 seconds are shown in 
the following table. 

From Table 1, we have the following observations: 
(1) For 20N = , the optimal solutions for all generated 

test problems can be found within 3600 seconds. 
(2) The larger the lot capacity is or the smaller the order 

size range is, the more optimal solutions you can obtain 
within the run time limit.  

(3) Average percentage errors of all problem types are 
less than 2.5, it means that the performance of the binary 
integer programming with run time limit is really good, 
especially, in the problem type with parameters K = 30 and 

iσ
d
= U(1,5). 
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(4) Most maximal percentage errors of all problem types 
are less than 4.5, it implies that the BIP performs well in 

most test problems, even in the worst situations. 

 
TABLE1. COMPUTATIONAL RESULTS. 

  iσ =1~5, K =15 
iσ =1~5, K =30 

iσ =1~10, K =15 
iσ =1~10, K=30 

  Error (%) 
 

Error (%) Error (%) Error (%) 

N avg max opt. no. avg max opt. no. avg max opt. no. avg max opt. no. 

20 0 0 30 0 0 30 0 0 30 0 0 30 

30 0 0 30 0 0 30 1.05 9.23 26 0 0 30 

40 0.38 3.44 26 0 0 30 1.30 10.08 25 0.15 4.46 29 

50 1.08 3.04 13 0 0 30 1.31 10.86 24 0.13 3.93 29 

60 1.38 2.77 7 0 0 30 1.34 7.52 23 0.28 3.19 27 

70 1.59 2.37 2 0 0 30 1.06 10.24 25 0 0 30 

80 1.23 2.38 6 0.56 1.71 18 1.49 8.01 22 0.09 2.63 29 

90 0.91 2.54 10 0.57 1.44 15 1.30 7.27 23 0.18 3.15 28 

100 1.47 2.06 1 0.86 1.32 3 2.46 6.55 17 0.08 2.47 29 

iσ : order size, K: lot capacity, N: order number 
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