
A Lot Scheduling Problem on a Single Machine with Indivisible Orders

Wen-Hung Kuo and Dar-Li Yang
Department of Information Management

National Formosa University
Yunlin, Taiwan, R.O.C.

Email:{whkuo,dlyang}@nfu.edu.tw

Abstract — In this paper, a lot scheduling problem on a single
machine with indivisible orders is studied. The objective is to
minimize the total completion time of all orders. We use a
binary integer programming approach to solve this problem.
The binary integer programming approach with run time limit
is considered as one heuristic method. As compared to a lower
bound, it turns out the average performance of the method is
really good.

Keywords- lot scheduling; single machine; total completion time;
indivisible order; integer programming

I. INTRODUCTION
Generally, there are two main production processes in a

production system, that is, continuous production and batch
production. Here, we are interested in batch production. In
the literature, there are two categories of batch scheduling
problems. One is batch scheduling with divisible batch sizes.
Naddef and Santos [1] studied a single machine problem
with batching jobs. The objective is to minimize the total
completion times. They showed that the greedy algorithm
solves the problem if jobs are all of one type. They also
provided a heuristic for the problem with various job types.
Coffman et al. [2] considered a single machine job shop in
which subassemblies of two different types are made and
then assembled into products. They provided an efficient
algorithm for minimizing the total flow time of the
products. Dobson et al. [3] considered batch jobs in the
multiple-machine scheduling problem. The objective is to
minimize the mean flow times. They proposed an efficient
algorithm for computing the optimal solution for single
product case. Hou et al. [4] studied a lot scheduling problem
with orders which can be split. Orders are grouped into lots
and then processed. The objective is to minimize the total
completion time of all orders. They showed that this problem
can be solved in polynomial time.

The other is batch scheduling with indivisible batch sizes.
Shallcross [5] studied a problem of batching identical jobs on
a single machine. He presented an algorithm to minimize the
sum over all jobs of the batched completion times. Mosheiov
et al. [6] addressed a classical minimum flow-time, single-

machine, batch-scheduling problem. They introduced a
simple rounding procedure for Santos and Magazine's
solution [7], which guarantees optimal integer batches. Mor
and Mosheiov [8] studied an identical parallel-machine
scheduling problem with identical job processing times and
identical setups. They showed that the solution is given by a
closed form, consisting of identical decreasing arithmetic
sequences of batch sizes on the different machines.

In a factory, products are usually made according to
customers’ orders. This production approach is called MTO
(make to order). Since different orders may contain different
quantities, two production strategies are applied in the batch
production, especially when the lot size of the batch
production is fixed. Also, in this particular situation, the
production time of each lot is fixed no matter how many
quantities in the lot. Therefore, from the viewpoint of
efficiency, one order may be divided into several lots to fill
up each lot. The study presented by Hou et al. [4] is based on
this viewpoint. However, from the viewpoint of management,
one order is not divided into different production lots
because the products of the same order are finished at the
same time and then delivered to the customer. Based on this
viewpoint, in this paper, we study the problem given by Hou
et al. [4] but orders are restricted to be indivisible.

The rest of the paper is organized as follows. In the
second section, a description of the problem is given. Next,
the integer programming formulation is provided.
Computational experiments are given in the fourth section.
Final section is the conclusion.

II. PROBLEM DESCRIPTION

There are n orders (, i = 1, 2, …, N) to be grouped into
lots and then be processed on a single machine. Each order
has its own size (

iO

iσ , i = 1, 2, …, N). The size of each order
is no more than one lot’s capacity (K). On top of that, every
order is indivisible. It means products of each individual
order have to be processed in the same lot. The orders in the

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

same lot have the same processing time (t). Therefore, all
orders in the same lot have the same completion time.

 The machine can handle at most one lot at a time and
cannot stand idle until the last lot assigned to it has finished
processing. The objective is to minimize the total completion

time () of all orders. Thus, using the three-field

notation, this scheduling problem is denoted by

.

Oi
C∑

indivisible1/ , / Oi
lot C∑

III. INTEGER PROGRAMMING FORMULATION

The problem is conjectured to be NP hard [9]. Therefore,
we use the following binary integer programming approach
to solve this problem.

Let if the ith order is assigned to the qth lot, and

0 otherwise. Since the processing time of each lot is t, the
completion times of the first lot, the second one, etc., are t,
2t, …, respectively. Thus, the total completion time of all

orders is . Then, a binary integer programming

(BIP) formulation to solve the proposed problem is
developed as follows.

[] 1i qX =

1 1

N N

q i

t
= =
∑∑ []i qX q

q

N

Minimize (1) []
1 1

N N

i q
q i

t X
= =
∑∑

Subject to (2) []
1

1
N

i q
q

X
=

=∑ 1,2,...,i =

[]
1

N

i i q
i

X Kσ
=

≤∑ (3) 1,2,...,q = N

N[] {0,1}i qX ∈ , (4) 1,2,...,i N= 1,2,...,q =

The objective is to minimize the total completion time of

all orders which is shown in (1). Equation (2) ensures that
each order is only assigned to one lot. Equation (3) limits the
total sizes of orders that are assigned to the same lot to the
lot capacity (K). Finally, (4) guarantees that variable []i qX is

either 0 or 1.

IV. COMPUTATIONAL EXPERIMENTS

The above binary integer programming approach can
solve the proposed problem, but it is time-consuming when it
comes to a large problem. Considering the efficiency of the

BIP, the run time limit of the BIP is set to 3600 seconds.
Also, in order to evaluate the performance of the BIP, it is
tested in the computational experiments which are conducted
based on the following parameter set.
Order number N is equal to 20, 30, 40, 50, 60, 70, 80, 90,
100.
Lot capacity K is equal to 15, 30.
Order size iσ is uniformly distributed over [1,5], [1,10]

(iσ
d
= U(1,5), iσ

d
= U(1,10))

There are 9 2 2 36× × = problem types. For each problem
type, 30 test problems are generated. Each test problem is
solved by BIP and LP, respectively. BIP and LP are solved
by using a computer program coded in LINGO 11.0 with
4GB of memory available for working storage, running on a
personal computer Intel(R) Core(TM) i7-2600 CPU @
3.4GHz. To evaluate the performance of the computational
results, we have to come up with a lower bound (LB) and
then compare these percentage errors (100*() /BIP LB LB−)
in different test problems.

Obviously, one lower bound can be obtained from the
solution of a variant of the original problem by changing the
original problem to the one in which orders are divisible and
can be processed in different lots. Therefore, we only need to
change (4) as follows.

 [] 0i qX ≥ 1,2,...,i N= , (4’) 1,2,...,q = N

Then, since the problem becomes a Linear Programming
(LP) problem, we take much less time to solve the problem
than the original one. The lower bound is also tight because
the solutions of the original problem and its variant can
happen to be the same (integers).

The average and maximal percentage errors of each
problem type for the BIP solutions and also the number of
optimal solutions obtained within 3600 seconds are shown in
the following table.

From Table 1, we have the following observations:
(1) For 20N = , the optimal solutions for all generated

test problems can be found within 3600 seconds.
(2) The larger the lot capacity is or the smaller the order

size range is, the more optimal solutions you can obtain
within the run time limit.

(3) Average percentage errors of all problem types are
less than 2.5, it means that the performance of the binary
integer programming with run time limit is really good,
especially, in the problem type with parameters K = 30 and

iσ
d
= U(1,5).

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

(4) Most maximal percentage errors of all problem types
are less than 4.5, it implies that the BIP performs well in

most test problems, even in the worst situations.

TABLE1. COMPUTATIONAL RESULTS.

 iσ =1~5, K =15
iσ =1~5, K =30

iσ =1~10, K =15
iσ =1~10, K=30

 Error (%)

Error (%) Error (%) Error (%)

N avg max opt. no. avg max opt. no. avg max opt. no. avg max opt. no.

20 0 0 30 0 0 30 0 0 30 0 0 30

30 0 0 30 0 0 30 1.05 9.23 26 0 0 30

40 0.38 3.44 26 0 0 30 1.30 10.08 25 0.15 4.46 29

50 1.08 3.04 13 0 0 30 1.31 10.86 24 0.13 3.93 29

60 1.38 2.77 7 0 0 30 1.34 7.52 23 0.28 3.19 27

70 1.59 2.37 2 0 0 30 1.06 10.24 25 0 0 30

80 1.23 2.38 6 0.56 1.71 18 1.49 8.01 22 0.09 2.63 29

90 0.91 2.54 10 0.57 1.44 15 1.30 7.27 23 0.18 3.15 28

100 1.47 2.06 1 0.86 1.32 3 2.46 6.55 17 0.08 2.47 29

iσ : order size, K: lot capacity, N: order number

REFERENCES However, some of them in the problems with parameters

K = 15 and iσ
d
= U(1,10) are greater than 10, even though

their average percentage errors are less than 2.5. The
performance of BIP in such problems is not robust.
Therefore, it is worthwhile to come up with other heuristics
with better performance.

[1] D. Naddef and C. Santos, “One-pass batching algorithms for
the one-machine problem,” Discrete Applied Mathematics, vol.
21, pp. 133–45, 1988.

[2] E. D. Coffman, A. Nozari, and M. Yannakakis, “Optimal
scheduling of products with two subassemblies on single
machine,” Operations Research, vol. 37, pp. 426–36, 1989.

[3] G. Dobson, U. D. Karmarkar, and J. L. Rummel, “Batching to
minimize flow times on parallel heterogeneous machines,”
Management Science, vol. 35, pp. 607–13, 1989.

[4] Y. T. Hou, D. L. Yang, and W. H. Kuo, “Lot scheduling on a
single machine,” Information Processing Letters, vol. 114, pp.
718–722, 2014.

V. CONCLUSION

In this paper, we studied a single-machine lot scheduling
problem with indivisible orders. The problem is conjectured
to be NP-hard. Therefore, a binary integer programming
approach is given to solve the problem. Considering the
efficiency of the BIP, the run time limit is set. Also,
compared to the lower bound, it turns out the average
performance of the BIP within run time limit is really good
for all test problems. The maximal percentage errors of the
BIP with run time limit are a little greater than 10 in one
situation. Therefore, it is worthwhile to find other heuristics
with better performance in the future.

[5] D. F. Shallcross, “A polynomial algorithm for a one machine
batching problem,” Operations Research Letters, vol. 11, pp.
213–218, 1992.

[6] G. Mosheiov, D. Oron, and Y. Ritov, “Minimizing flow-time on
a single machine with integer batch sizes,” Operations
Research Letters, vol. 33, pp.497–501, 2005.

[7] C. Santos and M. Magazine, “Batching in single operation
manufacturing systems,” Operations Research Letters, vol. 4,
pp. 99–103, 1985.

[8] B. Mor and G. Mosheiov, “Batch scheduling of identical jobs on
parallel identical machines,” Information Processing Letters,
vol. 112, pp. 762–766, 2012.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-completeness. W. H.
Freeman, New York, 1979.

 ACKNOWLEDGEMENT
This research was supported in part by the National

Science Council of Taiwan, Republic of China, under grant
number NSC-102-2221-E-150-043-MY2.

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

	I. Introduction
	II. Problem description
	III. Integer programming formulation
	IV. Computational experiments
	V. Conclusion
	Acknowledgement
	References

