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Abstract—Task scheduling is one of the key subsystems of
an operating system. Generally, by providing fairness in terms
of processor time allocated to tasks, the task scheduler can
guarantee a low latency and high responsiveness to applications.
In this paper, we demonstrate that some problems can occur in
virtualized environments, in relation to standard task scheduler
implementations and the way that tasks and virtual cores are
scheduled. More precisely, there is a need to implement a
communication channel between virtualized schedulers in the
virtual machines and the host task scheduler, particularly when
full-virtualization techniques are used, which could lead to latency
issues and loss of responsiveness in virtual machines, especially
when processors execute excessive workloads. After having an-
alyzed the potential problems in virtual machines, experiments
were done with real world and benchmarking applications. For
testing, a Linux-based system and two different task schedulers
were used, with a benchmark suite especially designed for
virtualized environments where application responsiveness and
latency can be measured. As an experimental platform, an ARM
embedded system was used; this system is almost equivalent to
general-purpose systems in terms of task scheduling.

Keywords—KVM/ARM; embedded virtualization; coordinated
scheduling; embedded systems; task scheduling; CFS; BFS

I. INTRODUCTION

Virtualization technology offers a way to increase effi-
ciency and adaptability both in general purpose and embedded
systems, but to get an efficient virtualization solution, latency
of virtual machines and responsiveness of applications should
be guaranteed at a reasonable level. For instance, an interactive
application launched in a virtual machine should not have
much worse performance in terms of responsiveness and
latency than one executed in a host machine in the same
conditions.

In previous work, we have already experimented with
this objective in mind, specifically for storage-I/O, and the
implementation of Virtual-BFQ [1] [2], a Linux I/O scheduler
based on the BFQ scheduler [3]. The work described in this
paper, instead targets process scheduling, so that it could be
used as a complementary approach.

In this paper, we provide the following contributions:

A. Contributions of this paper

We highlight that in virtualized environments there are
latency problems with task scheduling, where a missing link
between the guest and the host scheduler can affect perfor-
mance negatively. In fact, there is a need to implement a

coordinated communication channel between schedulers in vir-
tual machines and the host task scheduler. As a consequence,
latency of a guest operating system is higher, especially in a
system with many CPU-bound tasks. This results in degraded
responsiveness of applications in virtual machines, compared
to similar conditions for non-virtualized systems. To show this
problem, through experimentation, we use two different Linux
task schedulers.

Then, experimental results are reported, these results con-
firm that, in virtualized environments, when a process requires
a high portion of the processor’s time in both the guest and
host system, the latency and the responsiveness of the guest
application is not guaranteed.

An ARM-based embedded system was used to run the
experiments, Kernel-based Virtual Machine (KVM) and Quick
EMUlator (QEMU) is the virtualization solution used, which is
among the most popular solutions in embedded virtualization.

B. Organization of this paper

The paper is organized as follows. In section II, a de-
scription of the two task schedulers used is provided. Then
in Section III latency problems and the lack of responsiveness
is highlighted. After describing the benchmark suite and the
experimentation methods in section IV, the results are reported
in Section V. Finally, in SectionVI, possible solutions are
detailed in order to solve the issue highlighted.

II. LINUX TASK SCHEDULERS

The task scheduler, also named process or CPU scheduler,
is the part of an operating system that decides which task runs
when, and on which core. The job of a scheduler is to share
the CPU time between processes that require CPU resources,
to pick a suitable task to run next if required, and to balance
processes between the different CPUs in a multi-core system.

Two Linux task schedulers were used, CFS [4], which
stands for Completely Fair Scheduler and is the default sched-
uler of the Linux kernel, and BFS [5], which stands for Brain
Fuck Scheduler and is a popular alternative.

By default, Linux can handle real-time and non real-time
policies, which are implemented by the selected scheduler.
Both CFS and BFS schedulers implement their own non real-
time and share the same real-time policies. By extension, with
the term CFS or BFS we refer to both scheduling policies of
these schedulers, as well as the whole of their implementation.
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BFS, which is not part of the Linux mainline kernel [6],
could be considered as an alternative, it is designed for desktop
interactivity on machines with few cores [5], and its source
code has a smaller footprint and is by design simpler. For these
reasons, this scheduler was also selected for investigation.

A. The Completely Fair Scheduler

The default Linux kernel scheduler, named Completely Fair
Scheduler [4], is modular and permits to use different policies
for different tasks. Linux has two main types of scheduling
policies: a real-time one for real-time task and a normal one
named fair policy for all other tasks.

Among the real time scheduling, Linux distinguishes
three policies: SCHED FIFO, a first-in, first-out policy;
SCHED RR, a round robin policy; and SCHED DEADLINE,
a policy implementing the earliest deadline first algorithm
(since kernel v3.14).

And within the fair scheduling policies:
SCHED NORMAL, the default Linux time-sharing policy,
and SCHED BATCH, a policy for “batch” processes.

Linux defines the static priority of a task by a value,
which ranges from 0 to 99, and the real-time scheduling class
uses values from 1 (lowest priority) to 99 (highest priority).
Processes using the fair scheduling class have necessarily a
static priority of 0. In order to determine which thread (or
process) should be run next, the Linux scheduler maintains
a list of runnable processes for each possible static priority,
and it selects the head of the list with the highest static
priority. In other words, a thread, with a higher static priority
than the current running thread which becomes runnable, will
necessarily preempt the current process.

For the fair scheduling class, the kernel uses a priority
called dynamic priority, which from a user’s point of view is
also better known as the nice value, and it ranges from -20
(highest priority) to +19.

CFS is used as the default Linux scheduler since kernel
version v2.6.23, it replaced the old scheduler: O(1). And
implements a completely fair algorithm (hence the name). The
algorithm is based on the concept of an ideal multi-tasking
processor. With such a processor, each runnable task would
run at the same time, sharing the processor power. Of course
this behavior is not possible, but an equivalent behavior, would
be to run each runnable task for an infinitesimal amount of time
with full processing power. Due to task switching cost, CFS,
only approximates this behavior.

For that purpose, CFS stores the runtime value of each task
in a variable called vruntime (stands for virtual runtime) and
tries to keep all vruntime values the closer to each other. So
the runnable task which has the lower vruntime value is chosen
to be the next task to run. The priority of a task (the dynamic
priority, i.e., the nice value) influences the way vruntime is
increased.

To handle interactive tasks, CFS doesn’t use complex
heuristics. In fact, the concept of fair scheduling is enough
to maximize interface performance. For example, consider a
processor-bound task (e.g., an encryption calculation, a video
encoder, etc.) and a I/O-bound task (e.g., a terminal, a text

editor, etc.), which will be the interactive task. In that situation,
the scheduler should give to the interactive task a larger share
of the processor time to enhance the user experience. In fact,
this is what CFS will do: CFS wants to be fair, so each time
the interactive task become runnable, CFS will see that this
task consumed significantly less processor time than the CPU-
bound task. So the interactive task will preempt the other, and
will be executed until its runtime reaches the value of the
processor-bound task or be blocked from an I/O request.

B. BFS - The Alternative

BFS is an alternative to CFS, it was written by Con Kolivas.
It is not in the mainline kernel and is available as source code
patches [6].

BFS focuses on a simplistic design (about 2.5 times fewer
lines of code than CFS) and aims for excellent desktop
interactivity and responsiveness on personal computers with
a reasonable amount of cores [5]. It uses a single work-queue,
O(n) look-up for all cores unlike CFS, and implements the
earliest eligible virtual deadline first algorithm for non real-
time policies.

BFS, like CFS, provides real-time task policies:
SCHED FIFO and SCHED RR, and also two others policies
for normal tasks: SCHED ISO and SCHED IDLEPRIO. The
first, SCHED ISO (for isochronous) is designed to provide
”near real-time” performance to unprivileged users. And
SCHED IDLEPRIO scheduling policy can be used to run
tasks only when the CPU would be idle otherwise.

The design of BFS makes it efficient when the number of
running processes is small (inferior than the number of CPUs),
which is normally, according to its author [5], a common use
case for a desktop computer.

III. POTENTIAL PROBLEMS IN VIRTUALIZED
ENVIRONMENTS

In a virtualized environment a guest system is seen, from
the host scheduler, as just one, or more additional jobs to
schedule, without any awareness from the host of the fine-
grained requirements of the corresponding guest scheduler.
For example, a new spawned task in the guest system could
be scheduled in a different way by the guest scheduler, but
this information is not visible on the host side. Under certain
conditions, that could lead to undesired behavior.

To highlight the problem we can consider a system, with
two physical CPUs and a guest with one virtual CPU. Two
CPU-bound workloads are launched in the host (one per CPU)
and one in the guest (one per virtual-CPU). In this situation, the
task scheduler will share fairly the processor time between the
vCPU thread (which runs a workload) and the two workloads
in the host, since these three tasks are quite similar in terms
of CPU time demand.

When an interactive task is started in the guest system,
the guest scheduler will detect this new task and assign a
substantial amount of the vCPU time compared to the work-
load running in the same guest. On the host side though, the
scheduler sees only three processes that request a large amount
of CPU time for only two CPUs. So, the host scheduler has
absolutely no reasons to privilege the vCPU thread compared
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Figure 1. Latency results

to other processes (workloads). Additionally, the latency of this
interactive task will probably be higher than in a host system
with the same number of workloads (aside from the constant
overhead of KVM/QEMU). This problem persists for whatever
value the priority of the interactive task in the guest is set to
(could be a real-time one), since the priorities and policies are
not made aware to the host system.

IV. EXPERIMENT METHOD AND BENCHMARK SUITE

To highlight the problem described above, we set-up a
benchmark suite in order to measure, in particular, the la-
tency of the system. We use the tool, cyclictest, which is
usually used to measure latency on a Real Time Linux (i.e.
patched with rt patches) [7]. Generally, cyclictest is used
to measure the latency of real-time thread/process (schedule
with SCHED FIFO or SCHED RR), but we can also use it
with normal (SCHED NORMAL) threads. For each latency
measurement cyclictest is run twice, each one with a 100000
loop, which means that the latency provided by the benchmark
is the average of 200 thousands measurements. The following
command line is used “cyclictest -q -n -l 100000 -h 5000” to
generate the results, and the latency histogram is also retrieved
(-h option) in order to analyze in more detail.

The second kind of benchmark measures the start-up time
of an application. We simply measure how long it takes from
when an application is launched to when an application is
ready. This benchmark gives an idea of the responsiveness of
an application. The start-up time is measured with hot caches,
to avoid any I/O perturbations. For each configuration (i.e.
number of workload in the host and guest), 100 measurement
iterations are performed, and the average, as well as the
standard deviation are retrieved.

As workload, we use a simple program that does an infinite
loop, and therefore has a very low memory footprint.

V. EXPERIMENTAL RESULTS

We executed our experiments on a Samsung Chromebook
equipped with an ARMv7-A Cortex-A15 processor (dual-core,
1.7 GHz) and 2 GB of RAM. Both the host and the guest
run upstream Linux v3.17 with the PREEMPT configuration
option enabled.

A. Latency

In order to measure latency, we used the cyclictest tool and
the number of workloads is kept the same as in the start-up
time test. The result of this experiment is shown in Figure 1,
where latency is measured in microseconds and represented in
a logarithmic scale on axis Y.

For the host and guest system we employ up to 8 and 2
workloads respectively. Axis X corresponds to the total number
of workloads, i.e., host plus guest workloads. The output of
the results are four different curves:

no guest: No virtual machine, serves as reference, the appli-
cation is launched in the host

N guest wl: With N workloads in the guest, the application
is launched in the guest. With N ranges from 0 to 2.

We can notice that, with the CFS scheduler (Figure 1a), as
soon as there are more workloads than physical cores (total
of two cores in the system, critical curves are 1 guest wl
and 2 guest wl) and with at least one workload in the guest,
latency increases significantly. By adding more workloads, this
behavior persists until values are not suitable for interactive
usage. This kind of result confirms the issue highlighted in
Section III, where an interactive application in a virtualized
system can have an extremely high latency.

One can also point out that the latency is better with 2 guest
workloads than with 1 guest workload when the total number
of workloads is high. This behavior is perfectly explainable
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due to the difference in the number of workloads in the host.
For instance, in the specific case of 4 total workloads, when
we have 1 guest workload the host system sees four main
processes requesting a high amount of CPU time for only two
CPUs, but when we have 2 guest workloads, there are only
three processes that still share two CPUs. In the latter case, the
process corresponding to the vCPU has more CPU time: this
could lead, depending on the efficiency of the guest scheduler,
to a better latency compared to the former case.

With BFS (Figure 1b), results are less obvious, but we can
still notice the difference between virtualized and normal en-
vironments, and between the curves of 1 or 2 guest workloads
and the curve of 0 guest workloads.

Although our objective is not to purely compare the two
schedulers, which has already been done [8], we can remark
that even with no virtual machines (curve no guest), latency
with BFS increases steadily, contrary to CFS. This is probably
due to the fact that BFS is not designed to be efficient when the
number of running tasks is higher than the number of physical
cores [5].

We can also analyze the histogram provided by the
cyclictest results to compare the distribution of latency. Fig-
ure 2 shows the two latency histograms on a virtual machine
without any workload. We can notice that even if the average
value is slightly lower with CFS, the BFS case exposes more
converged values with a lower maximum.
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In Figure 3, two cases are compared for CFS latency
measured in a virtual machine. Both test cases have the same
amount of CPU-bound workloads, but distributed in a different
manner. In the first case all workloads reside in the host, while
in the second, one of the workloads is reserved for the guest.
Although the distribution of samples for low latency is quite
similar for both cases, in the case where one of the workloads
is in the guest, we still observe a significant amount of samples
in the range of 200 to 5000 µs. This is different from the first
case, where almost all samples are around the 100 µs mark.
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B. Start-up Time

Next, we measure the start-up time of an application. We
choose the xterm application because its start-up time can be
easily measured. In addition, this application was also selected
to measure performance of the BFQ and Virtual-BFQ I/O
scheduler [1] [2] [3].

As we can see in this Figure 4a, which represents the
startup time measured with the CFS scheduler, the curve
corresponding to a measurement in the host (no guest) has a
slightly positive constant slope. This increase is not unexpected
because CFS tries to guarantee only fairness: an increase in
the number of CPU-bound can negatively affect the start-up
time of a new application. Curve 0 guest wl, corresponds to
the case in which there is no workload in the guest, but only
in the host. We can see that this curve almost follows curve
no guest, where a constant overhead is observed.

In view of the problem highlighted above, the critical
scenarios are the ones corresponding to the curves 1 guest
wl and 2 guest wl, more particularly when the number of
workloads in the host is equal or greater than number of
physical cores (in our case 2). In fact, when vCPU threads are
allowed to use all available cores, the results are acceptable
as the start-up time remains quite low (case 1 guest wl with
a total workload of 1 and 2, and with 2 guest wl with 2 and
3 total workloads). To summarize our test case results, when
the number of workloads in the host is higher than two, the
start-up time increases significantly.

With the BFS scheduler (Figure 4b), although the ap-
pearance of the curves seems quite different, we have the
same behavior: higher start-up times when there are too many
workloads.

To sum up, our results are coherent both for start-up
times as well as latency. Moreover they clearly prove that, in
scenario where a workload is present in both guest and host,
the responsiveness of an application in the guest can not be
guaranteed.
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Figure 4. Start-up time results

VI. SOLUTIONS

Some solutions, can be developed to address the above
problem. Two possible solutions are described below, a simple
static prioritizing, and a coordinated solution that enables
a communication between scheduler of the host and guests
systems.

A. Static prioritizing

A straightforward solution could be a static prioritizing
scheme, by simply increasing the priority of the QEMU vCPU
threads, or by changing the scheduling policy to a real-time
one. This solution will allow QEMU to not be interfered by
other tasks in the host system (if there are no other real-
time threads). This method will result in a better latency, in
particular a reduction of the maximum latency [9]. With this
solution though, the guest is always privileged even when it
doesn’t execute an interactive program. This solution can be
useful for simple use cases, i.e, when a guest system which
executes soft real-time applications needs to be prioritized
compared to other guests or applications.

B. Coordinated scheduling

Instead of prioritizing QEMU threads statically, another
solution could be to boost these threads only when it is
necessary, i.e, temporary increasing the priority or changing
the scheduler policy, when the guest system requests it. It is
a sort of dynamic prioritizing with a coordinated scheduling
mechanism: the guest kernel detects when it needs higher pri-
ority, and informs the host system about it. This co-scheduling
mechanism was already implemented successfully for Virtual-
BFQ [2], therefore the communication mechanism could be
equivalent to the one developed for this storage I/O scheduler.

This type of solution has already been implemented and
evaluated, especially to make KVM a real-time hypervi-
sor [10] [11]. Such attempts mainly focused to run a real-time

Linux OS as a guest, thus when a guest executes a real-time
thread it informs the host of its current scheduling policy and
priority, the host system then has to pass on this policy and
priority to the affected QEMU thread.

In order to extend this coordinated scheduling mechanism
also to non real-time applications, a mechanism to detect
interactive application in the guest system is needed. Heuristic
algorithms have to be added for this purpose.

The communication mechanism between the host and guest
scheduler, is a crucial part, it needs to be fast or at least not
too frequent. The solution chosen in the Virtual-BFQ [2] I/O
scheduler is to use, a special ARM instruction, HVC, that
results in a hypervisor trap. Moreover, the cost of calling this
instruction, around 2000 CPU cycles, is not very expensive
and can fit the requirement of a task scheduling coordinated
mechanism.

VII. CONCLUSION AND FUTURE WORKS

In virtualized environments, we highlighted that the host
task scheduler could fail to achieve full system low latency,
and thus to preserve responsiveness when the system is loaded
with CPU-bound programs in certain conditions. The behavior
of an interactive application inside a guest will be masked by
other processes requiring a lot of CPU time in the host, and the
attempts of the guest scheduler to enhance the responsiveness
of this application may be useless. This issue mostly occurs
when the number of CPU-bound processes is higher than the
number of physical cores.

We are currently designing a solution which implements
a coordinated scheduling mechanism between the host and
guests schedulers, and we have promising results. The target
of this approach is ARM embedded systems with the KVM
hypervisor. Besides, we also plan to extend tests with more
complex scenarios including more than one virtual machines.
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Scheduler to Minimize Storage Latency and Improve Application Re-
sponsiveness in Virtualized Systems,” International Journal on Advances
in Software, vol 7 no 3 & 4, 2014, pp. 642-652.

[3] P. Valente and M. Andreolini, “Improving application responsiveness
with the BFQ disk I/O scheduler,” Proceedings of the 5th Annual
International Systems and Storage Conference (SYSTOR’12), June
2012, p. 6.

[4] “CFS scheduler,” [retrieved: June 2014]. Available: http://lwn.net/
Articles/230501/

[5] C. Kolivas, “BFS FAQ,” [retrieved: June 2014]. Available: http://ck.
kolivas.org/patches/bfs/bfs-faq.txt.

[6] C. Kolivas, “BFS Patches,” [retrieved: June 2014]. Available: http://ck.
kolivas.org/patches/bfs/3.0/.

[7] “Cyclictest,” [retrieved: June 2014]. Available: https://rt.wiki.kernel.org/
index.php/Cyclictest

[8] T. Groves, J. Knockel, and E. Schulte. “Bfs vs. cfs scheduler compari-
son,” 2009.

[9] R. Ma, F. Zhou, E. Zhu, and H. Guan, “Performance Tuning Towards
a KVM-based Embedded Real-Time Virtualization System,” Journal of
Information Science and Engineering 29.5, 2013, pp. 1021-1035.

[10] J. Kiszka, “Towards linux as a real-time hypervisor,” In Proceedings of
the 11th Real-Time Linux Workshop, 2009, pp. 215-224.

[11] Aichouch, Mehdi, J-C. Prevotet, and Fabienne Nouvel. “Evaluation
of an RTOS on top of a hosted virtual machine system,” In Design
and Architectures for Signal and Image Processing (DASIP), 2013
Conference on. IEEE, 2013, pp. 290-297.

111Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences


