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Abstract—ARM devices are proliferating the mobile and embed-
ded market segments, and with the introduction of Virtualization
Extensions (ARMv7-A), and the latest 64-bit architecture changes
(ARMv8), ARM is expected to expand further in the networking
and server markets. At the same time, Mixed-Criticality use
cases for In-vehicle (IVI) and In-flight (IFI) infotainment are
of increased interest, where a feature rich Operating System
(OS) is required for multimedia applications, while at the same
time legacy real time operating systems are still needed for
time critical applications. In this paper, we propose and test a
Dual-OS environment for Mixed-Criticality systems using ARM
devices, by exploiting latest architecture changes and software
advancements. The technologies tested and covered in this paper,
which enable a Dual-OS environment, include the TrustZone
Security Extensions, ARMv7/v8 Virtualization Extensions, as well
as the ARM Trusted Firmware (ATF) software infrastructure.
Feasibility tests and latency/performance metrics were acquired
on ARMv7/v8 platforms including Versatile Express and the Juno
development boards.

Keywords–Mixed-Criticality; ARM; embedded-virtualization;
Dual-OS; real-time; Linux; KVM; GPOS and RTOS

I. INTRODUCTION

Real-time systems have pre-defined timing constraints and
are deterministic in nature, thus a Real-Time Operating System
(RTOS) has the ability to execute tasks with low latency, which
are guaranteed to be completed on a predetermined deadline
[1] [2]. On the other hand a General Purpose Operating System
(GPOS), for example Linux, is targeting best performance
instead of providing latency guarantees.

In the context of automotive, some subsystems are time
critical, e.g., Electronic Stability Control (ESC) or Adaptive
Cruise Control (ACC), while others are tied to multimedia
services which are of low priority, with less to no criticality
concerns. In such a Mixed-Criticality use case, there is no
definite Operating System that can meet all needed charac-
teristics, e.g., strict determinism, low latency, performance,
portability, certifiability, feature richness, ease of development
and maintenance.

Additionally, providing more performance by just increas-
ing the clock frequency of the CPU is no longer feasible,
instead the trend in current System on Chip (SoC) solutions,
is to increase the number of cores and lower power dissipa-
tion. A continuous growth of multi-core platforms is being
observed over the years, which essentially creates incentives
for an efficient overcommitment of available resources and the
combination of hardware for multiple purposes, which results
in a lower total cost. For this reason, with the abundance of

multi-core SoCs, it is no longer cost efficient to have multiple
hardware instances with different software, instead the use of
different Operating Systems in the same hardware platform is
desired.

A. Contributions of this paper

First, we highlight the concept of a Dual-OS environment
on modern ARM platforms and how a GPOS, such as Linux,
can co-exist with other Operating Systems by using the Trust-
Zone technology along with a novel firmware/monitor layer
to handle interrupts, context switches and shared resources.
Then, by leveraging Linux and KVM on ARM, we show how
a host/guest OS can interface with an isolated RTOS running
in the secure world. Additionally, we show how an efficient co-
ordination scheduling mechanism can be implemented, to dy-
namically change scheduling policies triggered by synchronous
and asynchronous events.

Finally, experimental results are reported, where the latency
overhead of the ATF firmware layer is measured, as well as
the communication overhead between a KVM guest and a
TrustZone isolated bare-metal binary. The selected hardware
platform for testing and benchmarking is ARM’s latest 64-bit
development board called Juno.

B. Organization of this paper

In Section II, we describe the overall architecture of a Dual-
OS infrastructure on a modern ARM platform, and describe
how the TrustZone security extensions can be combined with
Virtualization Extensions to run two isolated Operating Sys-
tems with the option of also adding further Virtual Machines.
Additionally, in Section III a list of previous related work
is provided, along with how this paper contributes further
to the concept. Then, in Section IV we document the ATF
firmware layer that is responsible for handling the secure and
non-secure world context switches, as well a basic description
of its components. In Section V, we provide details on the
ATF modifications needed for experimental measurements,
along with actual results from the Juno and Versatile Express
development boards. Finally, we conclude the work in this
paper and list further possible directions.

II. DUAL-OS USE CASE IN IVI

The target use case, similar to [3], is the deployment of two
Operating Systems, one RTOS and a GPOS on a single multi-
core hardware platform. In an automotive or even aerospace
use-case, the medium of travel has an important placement
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in the Internet of Things (IoT) arena. More specifically in
the automotive example, high speed mobile communication
enables the car to take the role of a gateway for connected
objects.

Moreover, modern technology standards for modems such
as 4G/4G+, enable the connection of multiple automotive
devices. Applications that interface with the Long Term Evolu-
tion (LTE) software stack [5] will need to share resources both
in the GPOS and RTOS, which will require a scheme of LTE
virtualization either as direct device assignment or hardware
assisted virtualization for the target device. Other protocols that
are related to this use-case are the Controller Area Network
(CAN) bus, as well as the high bandwidth communication
IEEE 802.1 AVB Ethernet bus [4], which will also have to
be accessible by the multiple actors (OSes) in the system.

Finally, similar to [6], this particular use case depends
on the functionality of the GPOS to utilize the Virtualization
Extensions of latest ARM architectures, for the instantiation
of Virtual Machines completely isolated from the RTOS. This
is possible with Linux and KVM on ARM, which allows the
kernel to also act as a full-fledged hypervisor. Figure 1 shows
the generic architecture of this use case.
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Figure 1. GPOS and RTOS on an Automotive Platform

For this mentioned automotive use case, the latest ARMv8-
A architecture iteration, is targeting the full spectrum of high-
end performance in embedded platforms, but at the same time
keeping power needs to a minimum. The most significant
change in this new architecture is the transition to 64-bit
computing, while preserving 32-bit compatibility for legacy
systems. As it was the case with its ARMv7-A predecessors,
it provides Virtualization Extensions that enable its efficient
usage for virtualization needs, as well as an isolated execution
environment called TrustZone for secure computing. In general

ARMv8-A brings the most advanced ARM features extended
for 64-bit environments, which makes this architecture an ideal
selection for virtualization and Dual-OS use cases.

A. Security Extensions

In modern CPU architectures, execution is split in multiple
operational modes, with different security aspects and a fine-
grained granularity to various instructions. The most obvious
use-case for this paradigm is the separation of the kernel-space
to user-space execution, where in user-space the permission
rights for specific actions are reduced, while in kernel-space
most instructions are available and the kernel has almost total
control of the hardware.

In x86, this scheme is implemented with protection rings,
where 4 different execution mode rings are available and the
kernel/user -space code is placed in the most/least privileged
mode respectively. For ARM devices these execution modes
are called Supervisor and User mode, and newer architectures
introduce additional modes such as the Secure Monitor and
after-mentioned Hypervisor mode.

The ARM Security Extensions (a.k.a TrustZone) [7] [8],
is a system-wide security approach for numerous client to
server use-cases, including mobile devices, general purpose
computers and enterprise systems. It can be utilized also as
means to implement digital rights management, Bring Your
Own Device scenarios and secure transactions. TrustZone is a
core part of latest Cortex-A processors, although a complete
implementation can be extended to the whole platform with
specific TrustZone compatible devices/blocks, including secure
memory, peripherals, accelerators, etc.

In essence, TrustZone adds a ”Secure” context to the
available modes plus the addition of the Secure Monitor which
is the most privileged CPU execution level. With this addition
two instances of each mode (with the exception of Hypervisor
mode which can only be non-Secure) can co-exist together,
completely isolated from each other, where they are subject
to the central authority of the Secure Monitor Exception
Level 3 (EL) [9]. Practically, this means that with TrustZone
you can have a Secure Supervisor or User mode (S-EL1/S-
EL0) along with the previous non secure instances of these
(EL1/EL0). With this set of features TrustZone allows the
deployment of General Purpose Operating Systems such as
Linux, together with Trusted Execution Environments (TEE).
The secure modes have the same features as the normal ones,
while operating in an isolated memory space. Finally, the
Secure Monitor has utmost authority of all modes handling
the world switch (context) between them.

B. Virtualization Extensions

With ARM attempting to break into new markets, but
also trying to keep its dominance in existing segments, since
ARMv7-A (Cortex-A15, A7, etc.) they have added a number
of new features in the ARM architecture in order to facilitate
virtualization, usually referred to as the ARM Virtualization
Extensions [10].

A new processor mode is introduced, called Hypervisor
mode, which allows each guest to have access to its own
privileged mode; the processor’s state can be switched between
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guests, allowing the processor to be virtualized without expen-
sive binary patching techniques, and with very few traps being
necessary. The Virtualization Extensions also allow certain
instructions to be set up to trap to the hypervisor if that is
necessary to support certain guest features.

The ARM Virtualization Extensions also include function-
ality to assist with the virtualization of memory for guests. For
this, the Large Physical Address Extensions [11], besides an
updated page table format also include the possibility to set
up a second stage of memory translation to be used by the
hypervisor.

The above described extensions are sufficient to fully
virtualize the CPU and memory for any number of guests, and
also trap any accesses I/O devices so they can be emulated by
software. These satisfy the requirements to implement an effi-
cient native virtualization solution on newer ARM processors.

III. RELATED WORK

The concept of Dual-OS in embedded systems has been
explored previously, dealing mostly with ARM devices by
leveraging TrustZone. Yoshinori Endo et al [18], propose a
generic architecture of dual operating systems in automotive
called Dependable Autonomous hard Real-time Management
(DARMA), with an implementation based on an SH-4 RISC
processor.

For ARM platforms, Daniel Sangorrin et al [20], give
details on a thin Secure Monitor layer called SafeG and
provide examples of scheduling and device sharing between
the two Operating Systems on an ARMv6 platform. Finally,
Soo-Cheol Oh et al [19], implement their own solution called
ViMoExpress based on a Cortex-A8 processor and an LCD
virtualization feature.

For this paper, the added contribution is the application of
the concept on latest ARMv8 platforms, with the possibility to
run 64-bit or legacy 32-bit software, as well as the combination
of multiple guest operating systems by utilizing KVM and the
virtualization extensions of the ARM architecture.

IV. ARM TRUSTED FIRMWARE

For a Dual-OS environment we need a firmware layer that
will make use of the TrustZone security extensions to isolate
resources to their secure and non-secure equivalents. For our
firmware needs, which also fit the Juno hardware platform,
ARM Trusted Firmware is selected.

ATF [12] is a secure world software implementation for
ARMv8-A platforms, provided as a reference firmware infras-
tructure. Additionally, ATF is meant to be a modular frame-
work for handling the boot procedure, interrupt management
and world switching on all available SoC cores. Modularity
is key for portability and maintainability, as well as covering
any separation concerns in the firmware level, resulting in
easier development/testing and certification. At its current state
ATF is a standardized EL3 Runtime Firmware for all 64-bit
ARMv8-A platforms, with plans to extend it further to cover
older ARMv7-A architectures. Although ATF is designed as
a firmware solution to run multiple OSes in parallel, it can
still be used in cases where only one operating system is

Figure 2. ATF architecture

used, without a strict requirement of a Secure-OS. The top-
level architecture of ATF can be summarized in Figure 2, the
functionality overview is also listed below:

• Secure world Initialization (e.g., exception vectors,
interrupt handling, registers, etc.).

• Support for the newer Generic Interrupt Controllers
found in latest ARM devices, which are also virtual-
ization aware and compatible with TrustZone.

• Proper initialization of the Normal world, typically in
AArch64 EL2 mode, which is also required for KVM
initialization by the kernel.

• Handles Secure Monitor Call (SMC) requests from
booted Operating Systems for PSCI power manage-
ment features such as, booting secondary cores, hot-
plug and shutdown/reset events.

• Secure-EL1 Payload Dispatcher for handling world
switching and interrupt routing.

• Option to replace the Trusted Boot Firmware adapted
for the needs of the target platform.

• Memory isolation from secure/normal world based on
the features provided by TrustZone.

Figure 3 depicts an overview of the boot procedure in
ATF, with the execution sequence between the blocks/modules
that ATF consists of. Every stage of the ATF Boot Loader
has a dedicated purpose during initialization system boot and
any of the following listed BLs can be replaced by custom
implementations according to the target platform needs and
requirements.
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Figure 3. Top-level ATF execution flow

• BL1 - AP Trusted ROM - basic initial boot up
procedure in EL3, which subsequently calls BL2.

• BL2 - Trusted Boot Firmware - responsible to pass
execution to further BL3-x modules.

• BL3-1 - EL3 Runtime Firmware - Exception routing to
dedicated handlers in the corresponding world (world-
switch).

• BL3-2 - Secure-EL1 Payload (optional) - runs in SEL-
1 and could be an RTOS or another secure bare-metal
binary

• BL3-3 - Non-trusted Firmware - any non-secure
firmware/software, e.g., u-boot, UEFI (Tianocore
EDK2), GPOS, etc.

A. Interrupt management & world switching

In general, exception routing and world switching is im-
plemented at the BL3-1 level, and since an actual Interrupt
Service Routine is not part of the EL3 core logic, instead,
for the final handling of interrupts, ATF defines interfaces for
the retransmission of exceptions to the end destination OS.
More specifically, FIQ routing, is managed by the Secure-EL1
Dispatcher layer, while SMC exceptions are standardized in
the EL3 runtime service framework based on the SMC Calling
Convention PDD. Finally, the EL3 runtime service interface,
is complemented by the Power State Coordination Interface
(PSCI).

Secure-EL1 Dispatcher service, as part of the EL3 runtime
service, is a link interface between BL3-2 (Secure OS/Payload)
and BL3-1 (ATF). It is responsible for processing the entry/exit

requests for the target secure software (e.g., RTOS), and is
designed in a way to provide a common calling convention be-
tween these two layers. This service is implemented according
to the needs/requirements of the deployed secure software.

PSCI [13] is responsible for the power management of
all available SoC cores, where it also supersedes the old
mechanism of waking up secondary cores, also known as the
CPU holding pen. With PSCI an Operating System can signal
the firmware layer to power up/down available cores, through
the use of SMC/Hypervisor Call (HVC) instructions. This new
paradigm considerably simplifies power management for an
OS, as instead of having to implement low level target specific
power routines, the OS can rely on the firmware layer.

B. ATF modifications for Dual-OS

By default ATF is using time-triggered signals to change
between the secure/non-secure payloads. For this purpose, the
internal architected ARM timer [14] is programmed to fire as
a secure interrupt and signal a world switch, this interrupt is
configured as a Fast Interrupt Request (FIQ) and is handled
according to the current context. If at the time of the received
FIQ the non-secure world (GPOS) is active, execution will be
immediately directed to EL3 for a world switch to the secure
payload (RTOS). On the other hand if the secure payload
has the context, the interrupt is by default serviced by itself,
without the need of EL3 interception.

For experimental measurements, we opted for an event-
triggered implementation, where the world switch is triggered
by the SMC instruction. That way each world can yield CPU
resources deterministically, and give back the context when this
is desired. Modifications on the Secure-EL1 Dispatcher service
were needed for this behavioral change, which allows us to
have a more fine-grained control for latency measurements.

V. EXPERIMENTAL RESULTS

Experimental results are split in two sections. First we de-
ploy ATF with two separate world switch triggering methods,
and we measure the overall latency introduced when switching
between the Secure and non-Secure worlds. Subsequently,
QEMU is used to create a KVM accelerated virtual machine
and measure the guest exit overhead, that results when an SMC
or HVC instruction is called from the guest.

By using the Performance Monitor Unit (PMU), which is
found on all recent ARM CPUs, we can precisely measure
programmatically the latency between two points in execution.
The PMU [15] provides a number of counters and registers for
gathering statistics on the operations executed in the processor.
Among a set of configurable event and performance counters
the PMU provides a 64-bit cycle counter, which is incremented
on every clock cycle. For the following measurements the
PMU cycle counter (PMCNT) is reset to zero before starting
the process of a world/context switch and is stopped after
execution is resumed in the respective world.

A. ATF world switch latency

As described in Section IV-B, ATF by default is using
time-triggered signals to issue a world switch. For a more
deterministic approach ATF was modified so that a world
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Figure 4. Execution flow of world switch measurement

TABLE I. LATENCY FOR A FULL WORLD-SWITCH IN CLOCK
CYCLES

Average Minimum Maximum Std. deviation
3716,66 3520 3998 95,245

switch can occur programmatically when issuing the SMC
instruction.

In the case of Linux, we implemented a small module
which at the time of its loading it would reset the PMU
cycle counter and immediately issue an SMC instruction. This
Secure Monitor Call is then trapped by ATF, which saves the
non-Secure context (Linux) and then proceeds to restore and
resume the Secure payload. On the Secure side, the SMC is
re-issued immediately to trap back to ATF and finally resume
execution in Linux.

Figure 4 depicts how latency was acquired in relation to the
execution flow. Measurements were repeated 1000 times and
results are reported in Table I. The reported results show that
a full world switch (non-Secure to Secure and back) is in the
range of just under 4000 cycles. This eventually means that the
Secure payload, at any point of execution, will receive control
of the system in less than 2000 cycles, with actual values in
time depending on the clock frequency of the processor.

B. Virtual machine context switch latency

For guest to host latency measurements a similar approach
to the world switch measurement is made. The difference is
that for the guest we use a thin bare-metal program instead
of a full Linux guest. The guest executes a loop where the
PMU cycle counter is reset and immediately an SMC or HVC
instruction is issued. After guest execution is resumed the PMU
cycle counter register is saved to memory and the process is
repeated for 1000 times. Before the guest is terminated results
are reported to the user.

From the host side, KVM will not allow the guest to

Figure 5. Execution flow of guest/host context switch measurement

execute an SMC or HVC instruction, as they are considered
”sensitive” instructions and are immediately trapped by the
hypervisor. An example of this interaction is how KVM wakes
up secondary guest cores through the use of PSCI, in which
the guest will call HVC with the proper argument. KVM traps
the guest, checks the provided argument and decides if the
HVC instruction was meant to be a PSCI wake up event.
In our case, as PSCI is not used, KVM will inject an abort
exception and the guest will be halted. For this reason KVM
needs to be modified in order to resume execution to the guest
without aborting. A similar usage pattern of HVC instructions,
has already been highlighted as means to implement a Storage
I/O co-ordination scheduling approach, between a Linux/KVM
host and a guest system, with significant improvements in
latency and responsiveness of guest applications [16] [17].

Once again Figure 5 highlights the execution flow of the
measurement and results are reported in Table II. It is inter-
esting to note that this measurement was replicated in both an
ARMv7-A target (Versatile Express TC1 - Cortex-A15) and an
ARMv8-A platform (Juno board - Cortex-A53). Furthermore
the ARMv8-A Virtualization Extensions with KVM provide
a way to run legacy ARMv7 guests, but results were not
affected by this scenario. Finally, results show a full host/guest
context switch (guest to host and back) of around 1500 cycles
for both ARMv7 and ARMv8 platforms. Coupled with the
world switch latency results, it means that if a guest needs
to be interfaced and communicate with the Secure software,
a latency of at least 5500 - 6000 cycles is expected on this
firmware implementation.

Summarizing the results, with a reference CPU clock of
1GHz the average latency for a full world switch (non-Secure
to Secure and back) is in the range of 4 µs. A similar path for
a guest to host context switch (and back to guest) is around
1,5 µs.
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TABLE II. LATENCY FOR A FULL GUEST CONTEXT-SWITCH IN
CLOCK CYCLES

Type Average Minimum Maximum Std. deviation
SMC - ARMv8 1497,88 1475 1906 27,766
HVC - ARMv8 1492,62 1461 1932 39,697
SMC - ARMv7 1647,58 1612 2429 66,130
HVC - ARMv7 1679,46 1655 3115 50,140

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed the use of a Dual-OS in-
frastructure to efficiently leverage ARM multi-core hardware
platforms in Mixed-Criticality use cases. Through architec-
ture technologies such as TrustZone and a proper firmware
layer like ATF, two completely independent and isolated OS
instances can be run simultaneously on the same hardware
resources. Additionally, by using Linux as the GPOS and KVM
on ARM, we can extend the number of concurrent Operating
Systems even further.

Experimentally, with the ARMv8 Juno development plat-
form, we highlighted the latency overhead of a secure/non-
secure world context switch and interrupts handled by ATF, as
well as the equivalent latency when switching from a guest OS
to the host with KVM (including measurements with ARMv7
Versatile Express). Such measurements show the feasibility of
the Dual-OS concept, with an average world switch latency
of around 4 µs and guest to host switch of 1,5 µs on our
reference platforms.

Future work, will include a communication interface be-
tween GPOS/RTOS and VMs, in order to implement a com-
plete TEE solution and a fine-grained co-scheduling policy
in the system. Finally, the ATF firmware layer is going to be
replaced by a fully redesigned custom bare-metal software that
will be targeting automotive certification.
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