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Abstract—In this paper, a characteristic adaptive wavelet method
is developed for solving aerosol dynamic equations. The proposed
method combines the adaptive multi-resolution technique and the
characteristic method to obtain the fully adaptive multi-resolution
scheme, in which the solution is represented and computed in
dynamically evolved wavelet bases along the characteristic curves.
It overcomes numerical dispersions and can use large time steps.
The efficiency and accuracy of the new algorithm is verified by
numerical experiments. The developed characteristic adaptive
wavelet algorithm in the paper has great applications in the
modelling of aerosol dynamics.
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I. INTRODUCTION

Aerosols are now clearly identified as an important factor
in many environmental aspects of climate and radiative forcing
processes, as well as in the health effects of air quality
[7][8][11][15][17]. The aerosol dynamics with respect to size
distribution is a nonlinear partial differential and integral
equation.

Numerical methods have been proposed to solve the aerosol
dynamic equations such as sectional method [9], moment
method [1][14], modal method [18], finite element method
[16], and stochastic approach [5], etc. The modal and moment
approaches have the high numerical efficiency but only applied
to some particular cases. When the distribution function is
required, sectional methods are popular technique in aerosol
dynamic modelling. But the treatment of condensation by
sectional approaches usually leads to extra numerical dif-
fusion, while smears the steep fronts. Sandu and Borden
[16] developed a framework of finite element methods for
numerical solutions of the aerosol dynamic equations, Liang
et al. [13] developed the characteristic finite element methods
for aerosol dynamic equations, and Liang et al. [12] developed
a splitting wavelet method for solving the general aerosol
dynamic equations on time, particle size and vertical spatial
coordinate.

The size of atmospherical aerosols spans order of magni-
tude and the mechanisms for different size regions are totally
different, so the aerosol size distribution is highly uneven
distributed, such as multiple lognormal distributions in some
regions. Thus, the most important problem encountered in the
solutions of aerosol dynamic equations is how to efficiently
solve the equations in size and time since the aerosol dis-
tributions vary very sharply in the size direction. Another

problem is to approximate the advection process caused by
the condensation growth term.

Multiresolution methods have been recognized to be im-
portant adaptive techniques in the applications to solutions of
Partial Differential Equations (PDEs). For many real problems,
solutions often exhibit localized singular features, such as
sharp peaks. Uniform basis function space is not a practical
option since high resolution is only needed in small regions.
For improving the accuracy, the localization property of the
wavelets both in space and in frequency makes the adaptivity
efficiently [2][3][6][10].

In the paper, a characteristic adaptive wavelet method is
developed to solve the aerosol dynamic equations, in which the
time derivative and the condensation advection are transferred
to the directional derivative along the characteristics and then
discretized by the difference along the characteristics. For
approximating size distribution, the differential systems of
equations in time variable are obtained based on the wavelet
bases. Owe to the advantage of characteristics method, we
can refine the adaptive wavelets at the next time step along
the characteristic curves. Adaptive space refinement strategy
can follow the flow of solution over time. It reduces tempo-
ral errors and eliminates the excessive numerical dispersion.
Compared with the uniform mesh method, the characteristic
adaptive wavelet method has higher computational efficiency.
Numerical experiments show the excellent performance of the
developed algorithm in simulating aerosol dynamics.

The paper is arranged as follows. The mathematical model
of aerosol dynamic system is presented in Section 2. In Section
3, the characteristic adaptive wavelet scheme is proposed for
the aerosol dynamic equations. Numerical experiments are
given in Section 4. Finally, we address some conclusions in
Section 5.

II. AEROSOL DYNAMIC EQUATIONS

The aerosol dynamic equations can be described as [7]

∂n(v, t)

∂t
= −∂[G(v)n(v, t)]

∂v
− n(v, t)

∫ Vmax

Vmin

βn(w, t)dw

+
1

2

∫ v−Vmin

Vmin

βn(v − w, t)n(w, t)dw, (1)

with boundary and initial conditions

n(Vmin, t) = 0, t ∈ (0, T ], (2)
n(v, 0) = n0(v), v ∈ Ω. (3)
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where t > 0 is the time, v is the aerosol particle volume, and
T > 0 is the time period. n(v, t) is the number concentration
distribution associated with particles volume v at time t.
In practice, one assumes that the particle population has a
nonzero minimal volume and a finite maximal volume, i.e., in
a finite volume interval [Vmin, Vmax], where Vmin and Vmax
are chosen as lower and upper limits of the aerosol volume
respectively. The condensation growth rate G(v) is defined
as the rate of change of the volume of a particle of volume
v and G(v) = σ0v will be considered in this paper due to
the important application of linear growth rate. Coagulation of
aerosol particles occurs through a variety of mechanisms such
as Brownian motion, turbulent diffusion, etc. The coefficient
β is the coagulation kernel.

III. THE CHARACTERISTIC ADAPTIVE WAVELET SCHEME

A. The Characteristic Method

For treating the condensation advection efficiently, we first
propose the characteristic semi-discretization scheme in time.
Denote the number of time steps by the positive integer Q and
the time level by tq = q∆t, q = 0, 1, · · · , Q, where ∆t is the
time step size. For any particle size x at time t = tq+1, the
characteristics curve X(x, t; τ) passing through (x, t) satisfies:{

dX
dτ (x, tq+1; τ) = aσ0X(x, tq+1; τ),
X(x, tq+1; tq+1) = x.

(4)

where τ is the characteristics direction. Let x̂ be the intersec-
tion point of tracking back along the characteristic curve from
the point (x, tq+1) to time level t = tq .

For the aerosol dynamic equations in logarithmic coordi-
nates, the characteristic semi-discretization scheme is defined
as

n(x, tq+1)− n(x̂, tq)

∆t
= −σ0n(x, tq+1)

+
β

2

∫ aln(ex/a−1)

0

e(y−b)/a

a
n(x∗, tq)n(y, tq)dy

− βn(x, tq)

∫ 1

0

e(y−b)/a

a
n(y, tq)dy (5)

with initial value n(x, 0) = n0(x) and the boundary condition
n(x, t) = 0.

Let Ṽ q+1(Ω) be wavelet space at t = tq+1 defined in the
next section. Then, the characteristic wavelet scheme is to find
n(x, tq+1) ∈ Ṽ q+1(Ω) such that(

(1 + σ0∆t)n(x, tq+1), ξ(x)
)

= (n(x̂, tq), ξ(x))

+∆tβ
2

(∫ aln(ex/a−1)

0
e(y−b)/a

a2
n(x∗, tq)n(y, tq)dy, ξ(x)

)
−∆tβ

(
n(x, tq)

∫ 1

0
e(y−b)/a

a n(y, tq)dy, ξ(x)
)

(6)

with n(x, 0) = n0(x).

B. The Characteristics Adaptive Wavelet Algorithm

In this section, we shall construct an adaptive multiresolu-
tion scheme of Haar wavelets for (6).

Haar wavelets, which are Daubechies wavelets of order
1 (see [4]), consist of piecewise constant functions and are

therefore the simplest orthonormal wavelets with a compact
support. Because of the advantages of Haar wavelets, we will
apply Haar wavelets as the basis functions in the scheme
(6). Let ψ(x) be the Haar wavelet, and the corresponding
scaling function φ(x) The adaptive space Ṽ q+1(Ω) composed
by the Haar scaling functions is the cell-average multires-
olution representation, where J0 ≤ j ≤ J and J0 is the
coarsest resolution level and J is the highest resolution level.
The scaling coefficients cq+1

j,k are cell-average values. Find
ñq+1(x) ∈ Ṽ q+1(Ω) with

ñq+1(x) =
∑

(j,k)∈Λ̃q+1

cq+1
j,k φj,k(x) (7)

in the scheme (6), where Λ̃q+1 is the index set of scaling
functions at t = tq+1. Once Λ̂q is determined, which is the final
index set at t = tq , we initialize Λ̃q+1 from Λ̂q by tracking
along the characteristics.

Figure 1. The operator P j−1
j .

To estimate the cell-averages and detail information at level
j − 1 from the ones of the level j, we use the multiresolution
transform P j−1

j , see Figure 1, as

cq+1
j−1,k =

1√
2

(
cq+1
j,2k−1 + cq+1

j,2k

)
, (8)

dq+1
j−1,k =

1√
2

(
cq+1
j,2k−1 − c

q+1
j,2k

)
. (9)

Then, we have ñq+1(x)

ñq+1(x) =
∑

(j,2k),(j,2k−1)∈Λ̃q+1

[cq+1
j−1,kφj−1,k(x)

+dq+1
j−1,kψj−1,k(x)]. (10)

A threshold parameter ε is prescribed for the adaptive proce-
dure

εj = ε/2j−J0 , J0 ≤ j ≤ J − 1.

If |dq+1
j−1,k| < εj , we reduce φj,2k−1 and φj,2k from the

space Ṽ q+1(Ω); while if dq+1
j−1,k is big, then we add φj+1,4k−3,

φj+1,4k−2 φj+1,4k−1 and φj+1,4k, based on operator P j+1
j , see

Figure 2. The space after adjustment is called as V̂ q+1(Ω) and
the corresponding index set is Λ̂q+1.

The important feature of the characteristic adaptive wavelet
algorithm is that it adjusts the approximation wavelet space
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Figure 2. The operator P j+1
j .

at next time level by tracking back along the characteristics,
which is further refined or coarsened by the adaptive wavelet
technique. The highly accurate approximation can be obtained
by the new algorithm even large time step sizes are used, while
other classic algorithms need to use very small time steps.

IV. NUMERICAL SIMULATION

In this section, numerical examples are taken to illustrate
the performance of the characteristic adaptive wavelet algo-
rithm.

Example 1.

In this example, we consider the condensation process with
initial single mode distribution. The initial distribution is a log-
normal distribution on the volume domain [1× 10−16m3, 1×
10−13.5m3] described by

n0(v, t) =
N0

3
√

2π lnσ
exp

(
− ln2(v/vg)

18 ln2 σ

)
1

v
(11)

with the volume concentration N0 = 5 × 1010particles/m3,
the geometric average volume vg = 1 × 10−15m3 and the
standard deviation σ = 1.05. We choose coarsest level J0 = 2
and highest level J = 6 for our method.
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(a) σ0 = 1.8/h and ∆t = 0.05h

Figure 3. Comparison of number distribution 3vn(v, t) by different methods.

We take the numerical experiment of our Characteristic
Adaptive Wavelet (CAW) method with threshold parameter
ε = 10−2 and compare with other methods including upstream
Finite Difference (FD) method, Sectional Method (SM) in
[9] and the Characteristics Wavelet (CW) method, where the
number of the bins NB is 32 for the last three methods. Figure

3 shows the numerical computations after 1h for different
growth rates and time step sizes, where the vertical coordinate
represents numerical distribution 3vn(v, t) and the horizontal
coordinate is the logarithmic diameter of the aerosol particles.

From Figure 3, where the growth rate σ is 1.8/h, numerical
distributions obtained by the characteristic wavelet method and
our characteristic adaptive wavelet algorithm are excellent. but
both of the finite difference method and sectional method suffer
from numerical diffusion greatly. Moreover, our characteristic
adaptive wavelet method is only with the number of the bins
NB = 25, however the characteristic wavelet method requires
the number of the bins NB = 32. The numerical solutions
by our algorithm with less number of bins show much better
numerical efficiency even with a large time step and growth
rate.
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Figure 4. Aerosol distribution for linear condensational growth and constant
coagulation kernel.

Example 2.

In this example, we consider aerosol dynamic systems
evolving both condensation and coagulation processes with the
initial two-modal log-normal distribution.

The volume domain is [102µm3, 104.5µm3]. Take time step
∆t = 0.1h, J0 = 5 and J = 10. Figures 4 and 5 show the
numerical number densities of aerosol distribution and their
corresponding adaptive bases at times T = 0.1h and 40h with
σ = 0.03/h and coagulation kernel β0 = 0.01µm3/h. The
horizontal coordinate represents logarithm of particle diameter.
The vertical coordinate represents the number distribution
3vn(v, t) and resolution level separately in the left figures and
right figures. In Figure 4, we can see that the multiresolution
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bases are centered at the places where the two peaks of the
two-modal log-normal distributions located. Since the number
condensations at the larger particle size region are very small,
it’s good enough to describe the number condensation with
coarsest resolution level.
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Figure 5. Aerosol distribution for linear condensational growth and constant
coagulation kernel.

As time goes on, shown in Figure 5, the number con-
densation moves forward along the size direction, meanwhile
number condensation of smaller particles decreases and that
of larger particles increases because coagulation is the process
whereby two particles collide and form larger particle, as a
result, higher resolution level bases are adaptively added to
capture the change of the distribution at the larger particle
size.

V. CONCLUSION AND FUTURE WORK

A new characteristic adaptive wavelet algorithm was de-
veloped for solving the aerosol dynamic equations. The con-
sidered model is a nonlinear partial differential and integral
equation with hyperbolic part from the condensation term.

Using the multiresolution technique, the computational
bases are reduced by deleting non-significant wavelet coeffi-
cients while keeping the desired accuracy. The adaptive space
refinement strategies are simplified and we refine the adaptive
bases at the next time step along the characteristic curves,
which save computational time and memory.

We demonstrated numerically the efficiency of the charac-
teristic adaptive wavelet algorithm for different tests of the

condensation process and the joint effect of condensation
and coagulation processes. The method exhibited good shape
and high accuracy even when large time steps are used in
computations, which has great applications in the modelling
of aerosol dynamics.

The proposed characteristic adaptive wavelet method can
be further extended to solve aerosol spatial transport problems
in atmosphere, where the characteristic adaptive wavelet tech-
nique can efficiently treat the transport process. Developing
fast and adaptive algorithms for the general aerosol dynamic
process will be our another interested work.
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