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Additionally, H can be an identity, blur or projection

investigated under the assumption of mixed Laplace-Gaussian
noise, which plays an important role in tomography
reconstruction and quantitative analysis of hydrodynamic
experiments. To solve the model numerically, adaptive
stopping functions are introduced to improve the classical
augmented Lagrangian method, and an adaptive soft-
shrinking formula is derived. To acquire efficiency and
reliability, it is further combined with a variant of the
expectation maximization method. Some experimental tests are
performed for image denoising and object reconstruction.
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I. INTRODUCTION

Image reconstruction is an indispensable process in
image processing and data analysis, whose goal is to rebuild
an ideal image from noisy or even blurred data. Some
different types of mixed noise models have been investigated
in the literature, such as Poisson and Gaussian noise [1][2],
impulse and Gaussian noise [3]-[5], etc.. With regards to
impulse noise, two special cases have drawn much research
interest, that is, salt-and-pepper noise and random-valued
noise. Nevertheless, in some applications, such as harsh
hydrodynamic experiments, additive white Gaussian noise is
introduced as expected during image acquisition, while non-
Gaussian noise, especially additive Laplace noise, is also
encountered for more accurate modeling transmission in
Charge-coupled Device (CCD) channels and interaction
between shielding and photons. Accordingly, this paper
considers the task of removing mixed Laplace-Gaussian
(MLG) noise, where the observation f of an ideal image u is
modeled by

flx) = Hulx) + nx).x € U
U denotes the image domain, n(x) is regarded as a
realization of independent and identically distributed (iid)
random variables Z(x), which has the probability density
function (PDF)
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operator in this paper. The problem of this paper is then to
reconstruct u from the observation f with an unknown
parameter set 8.

The First-Order Total Variation (FOTV) regularization
method, designed originally for Gaussian noise removal, is
now one of the most popular approaches for studying
inverse problems under various assumptions of noise
including Poisson, Speckle, impulse, or even mixed noise.
Among the works in the literature, the first-order
regularization models given in [6]-[8] are of benefit to our
work.

Given the success of FOTV-based models, various
modifications have been developed to surmount its artifact,
such as the staircase effect and the shortage of smoothness.
Among the modifications, we concentrate on the following
Higher-Order TV (HOTV) regularization methods. Li, Shen,
Fan, Shen [9] proposed the following model

min, [, (1 — ¢)IVul + g|Vul?)dx+ £ [, (u — f)%dx (2)
for Gaussian noise removal, where g is a stopping function
producing anisotropic diffusion and a weighted fourth-order
diffusion equation is derived by steepest descent method.
Papafitsoros and Shconlieb [10] considered the Gauss noise
model and the impulse noise model separately, and
established a theoretical and numerical framework of the
minimization problem

[ (ral(Ty) - Ql‘\f'ﬁu‘z\\rl 10 Ty — 2y (3)
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where s=1,2, T is a known linear operator a=0,p=0are
regularization parameters, and the convex functions a(+), b(*)
have at most linear growth at infinity. They also assured that,
by implementing a higher order extension of FOTV, the
proposed model can significantly reduce the staircase effect
in image restoration.

As mentioned above, the primary goal of this paper is to
find an appropriate model for mixed noise removal and
image reconstruction. Most existing regularization models
have the data fidelity terms determined by the probability
distributions of the noises, such as L? norm for Gaussian
noise and 1! norm for impulse noise. In applications,
however, it is still not well-founded for the noise model, as
well as higher-order regularization methods used for hydro-
dynamic experiments, since the parameters of the PDF are
unknown in advance and has to be considered carefully.
Moreover, it is not unnecessary to reconsider the assemblage
of the punishing functions, and the weighting functions
should have been investigated in a more natural and practical
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way. In view of that, the problem of image reconstruction is
reconsidered and a new framework of the second order
regularization method is proposed. Noting that noise
modeling is indispensable for image processing and data
diagnosing, the first main contribution of this paper is to
introduce an applicable calculation method for the
parameters of the PDF, which can be generalized to more
intricate simulations of real noise. The second contribution
lies in designing an efficient and reliable Augmented
Lagrange Method (ALM) to solve a constrained
minimization problem, where some kind of positive control
functions are designed to enhance significant details. The
numerical discussion confirms that the proposed model
succeeds in avoiding the undesirable pseudo-features in the
reconstructed data.

The rest of the paper is organized as follows. In section 2,
applying Bayesian inference theory, a new hybrid
regularization model is proposed. Furthermore, its algorithm
is established with some modification of the ALM. In section
3, some numerical experiments are conducted to prove the
applicability of the proposed models. Finally, in section 4,
some additional remarks and future work on the model and
its algorithm are discussed.

II. MAINMODEL AND ITS ALGORITHM

A. Mathematical Modeling

The main idea is to configure a regularization model by
combing FOTV functionals with HOTV ones through some
kinds of weighting functions, intending to enhance true
edges and polish fake or insignificant information in the
reconstructed images.

By applying the Bayesian inference theory [11] in
continuous settings, the maximum a-posteriori probability
(MAP) estimator of u is given by

u” = argmin,, l_ JU np{flujdx — JU "(u)dx} “
It follows from the ideas in [10] that the a priori probab-
111ty den51ty functlon p(u), can be defined by

t—.l') N
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where «, T are positive parameters On the other hand, by the
independency assumption, there holds that

p(flw) = pz(f — Hu; 6).
We then have a negative log-likelihood functional of the
MLG model

0’ 2
25

f-Hul\I +n [ r2_., n( L=l pdw (6)
The difficulty of Computrng the minimizer of the funct-
ional (6) lies in the log-sum operation. Fortunately, it can be
surmounted in the following way. Introduce a vector-valued
function ¢ = {@,,@,} [4],[12] in
A+= {(P(X)“) < @j (X) < 1JE]'2=1 Q”i(x) = 1}!
and define a functional
R(O,1,0) =
Jy Zr@i®[P(x) —In QGO ldx+ [, X ¢ilng;dx

(7

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

where
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Then, perform the followmg iteration scheme
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for given 9 90 ,u’, where v denotes the inner iteration number.

Utilizing the updating equation
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it can be proven that the above scheme leads to the same

global minimize of L(6,u).

Thus, we turn to consider the following minimization
problem (MLG-TVBH)

ming, (0, u) = R(6,u, o"*1) + R(Vy, V2u).  (10)

B.  Proposed algorithm of MLG-TVBH

The algorithm for MLG-TVBH is based on the variable
splitting method and the ALM, where penalty parameters in
the quadratic infeasibility terms of ALM are replaced by
adaptively selective functions. Indeed, reuse the pattern of (8)
and split (10) into several minimization sub-problems. Use v
to detonate the iteration number. 8° is a coarse guess of the
parameters 6 , then the minimizer (8¥*1,uV*1) are given by

( u¥" = argmin,E{6", u) 1"
{ v+ = argmingE(Q, u¥*) (i
iteratively.
In terms of calculating 8¥*2, it yields by direct compu-
tation that
IU qDZ+1|HuV+1—f‘dX

[(712)‘”'1 — (0.22)v+1 —Ju 4p;+l|HuV+l_f|2dx
Jy @i rax fyvitrax
(12)
v+l fU 49}'_“'- v+l v+1
}’1 - K] JY 1 - |U| fU 1dX (13)

As for the u-minimization problem of (11), it can be
proven that there exists a unique solution in the space of
bounded Hessian (BH) [10], the details of which are omitted
in this paper.

To circumvent the non-differentiability of the I norm
arisen in our model, a modification of the Alternating Dire-
ction Augmented Lagrangian (ADAL) method [13][14] is
proposed, as follows.

Firstly, introduce auxiliary vector-valued variables g, h,
and split the minimization problem into

miny, 5, R(07,u, ") + [, (alq| + t|R|)dx subject to

q=Vu,h =V3y,

Secondly, configure an alternating minimization process.
More specifically, use a third variable k to approximate the
fidelity term Hu — f, and introduce spatially detail selective
functions py(x), py(x). py(x), and then consider the
following functional

1P(uk,q h;u) =Sk)+{p, Hu— f — k) +J alg|dx+
u
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%fu () Hu — f — k*dx + (u, Vu —g) +
%J'U pe@®)Vu —gl?dx+ [, tlhldx + (4, Vu — h) +
1
Sy Pr()|VPu — h|?dx

— v v+l :
where S(Hu — ) = (6", 4, ¢, p = (pi,pq.p1) is the

vector of posmve penalty functions to be specified latter,
g= (‘uJl VMg, #h) is the vector of Lagrange multipliers.

Given initial values u?, kY, g% kY. If u¥ kY gV hY are the
current approximation to the multiplier Vector, the fidelity
term, the gradient and the Hessian of the original data, then
we turn to consider the following problems

SP1: u¥*1 = argmin, JJP(u, kv, q%, h"; 1¥) (14)
SP2: k¥*! = argmin, Ip(u‘”'l, k,q",h’; ") (15)
SP3: g¥** = argmin, LF (u¥™, k7, q, hY; 1Y) (16)
SP4: hY v+l — F‘T"m!ﬂ fp(,”\+l L,V-t-l (,V+1 h: ,,v) (17)
SP5: u¥** = argmax , L? (11‘”’1, Fc"’“, q"“,h‘*l,ﬂ) (18)

For the minimization problem (14), which is a quadratic
problem, by a routine computation, it yields the following
fourth-order Euler-Lagrange equation

—div(p,Vu) + divZ(p,V?u) + W, /) =0 (19)
W =div(peq" — pg) — divz(phh —up) +
H(pp(Hu — f — k) + @) (20)
with boundary conditions
du/oN =Vu, N =Vu,-N=10
[\7 (pnwux\ “‘1\_“7 (n, YV ) n.Y = 0.
X J 4 AV OAMh VI IRErA

where N = (n,,n,) is the outward unit normal vector to the

boundary, H” is the adjoint operator of H.

For the problem (15), combine it with the updating of
L, in (18). Introduce an auxiliary variable m to approximate
Hu¥*! — f — k, utilize the dual method, we find that the

maximize wy™?! fulfills
v+1

‘uﬁ-t\_ #?\:Huv*'l—f—kv*—lég.
Pr(X)  Pr(X)
Detonate A(x) = @iy *™1/(cf)Y, B(x) = ¥~/ (02)",

consider M (k) / 8k = 0, where

4 n

= i v+l _ o M;‘; :
M(k) s(k)+2I i (Hue+t — 7 k—t—p—k) dx,

=J

there holds the following iteration scheme for solving (15):

v+l — _Pk Pi)
Jk B+ A)’

L ,u.;,':'i'i _ o -
L or(x)  pr(x) 7

In a similar way, the minimization problem (16), (17)
can be solved. Indeed, there have

20

(a‘”’l = shrink (Vu'”’l + 'l(rx) ‘:'((:?J
fq
[T , 22)
! P Vu'v'+1 _ v+L
pa(®  Pal® 1

and
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In summary, an alternating minimization algorithm of
the MLG-TVBH model is given as follows.
Algorithm Given a tolerance €, > 0. Choose initial guess
u' k®=p, =0, Q“—‘uq—un'=|uh—6(’:r’"
Setv =0, do
Step 1. Calculate "1 by equation (9).
Step 2. Calculate #¥** by (19),(20).
Step 3. Calculate kV*%,q¥*1, h¥"*and pui™t, pui**, ui™* by
(21)-(23), respectively.
If lu¥*t? — ul/luV] < ¢, end the recurrence. Otherwise, go
to the next steps
Step 4. Calculate 87% by (12), (13).
Step 5. Set v=v+1, go to step 1.

It can be seen that only step 2 is time-consuming, while
the others can be calculated explicitly.

III.  APPLICATIONS

In this section, the proposed method is applied for image
denoising with H representing the identity operator and data
reconstruction with A representing the Abel transform [15]
[16], i.e.,

Hu(z,y) = 2 [, = d (24)
The intensity of the observed image is rescaled to the interval

[0,1] before operation. Some synthetic images are utilized,

and degenerated versions are obtained by adding random

noise to the clean ones with certain proportion. The programs

were coded in C++ and run on a personal computer with four

2.83 GHz CPU processors.

A.  Configuration of p

Based on the ideas in [9][16], the second-order total
variation is used to restrain the staircase effect in the restored
images. Meanwhile, the strictly positive penalty functions
Pq.Pr.and pg act as stopping functions preventing from
over-blurring. The stopping functions can be defined by

q = 1/\!1 + (|VGG-3 * ”|/Kq)2’

pe() = exp (=py (),
respectively, where G, is the Gaussian filter with fixed
parameter 7, , '* ' denote the convolution operator. In
application, K, K;, are positive valve with K; » K;. The
former is the valve of true edges in the original image, and
the other is used to distinguish pseudo signal caused by the
staircase effect.
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B.  The numerical scheme for (19)

It is noted that there have been many approaches of
computing u in the literature, such as steepest descent
method (e.g., [17]), lagged-diffusivity fixed-point method
(e.g., [18]), additive operator splitting (AOS, e.g., [19], [20]),
dual method (e.g., [21]), and so on.

In this paper, the gradient descent method and the semi-
implicit AOS scheme are utilized to get the solution of (19).
Intuitively, in homogeneous regions of a given image, |V2u|
is significantly smaller than |Vu|, and thus, integrate the
fourth-order divergence term into the source term W, and
consider the following evolution equation

uy — div(p,Vu) = —div?(p, V2u) — W(w, f) (25)
with initial-boundary conditions. It can be seen that the
stopping functions p,,p, are fundamental in our method,
since isotropic diffusion is undesired as they are spatially
invariable.

To meet the boundary condition, we utilize the trick of
continuous extension to the boundary of original images. The
scale derivative term, i.e., 1;, is approximated by a forward
difference scheme. The first-order divergence term is approx
-imated by the standard central difference, and the second-
order divergence term is approximated by finite forward
and/or backward differences (e.g., [9]). Hence, equation (25)
can be solved by a semi-implicit AOS scheme, which can be
used to deal with the heat flow equation to compute the
Gaussian convolution.

Additionally, to assess the reconstruction performance,
the quality index of restoration

PSNR = 101g (255% /== £ (u;; — £;;))
s\ ”Fth Lij=1\"ij ~ Jij) )

is adopted in this paper.

(26)

C. Initial value and parameter selection

In applications, we pay more attention is the selection
of parameters (¢#)°,i = 1,2 and the valve value K, than
the other parameters, such as Ky, a, 7 and the scale step size
(= 0.1), since they are less sensitve and almost consistent in
our experiments. For example, in this paper, ¢ = Z,7 = 0.1,
and K, = 10™*. The stopping criterion in our experiments is
107* In this paper, y?=y3=05 (¢?)?=0.75,

-3
0 _n4_nnr
= uUu.1L~u.vo.
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D. Image denoising

In this section, some experiments of the proposed
model are listed for reconstructing images corrupted by
different kinds of mixed noise.

Figure 1 shows an experiment of removing mixed
Lapla ce-Gaussian noise. Figure 1A) is a synthesized image
according to [10], Figure 1B) is a degenerated version of
Figure 1A) with PSNR =26.45dB by adding 30% Laplace
noise ( o7 = 0.05) and Gaussian noise (&% = 0.05) to
Figure 1A). Figure 1C) is a recovered image using our
proposed model, PSNR=33.07dB, K, = 0.03.

Figure 2 presents another experiment. Figure 2A) is a
synthesized image composed of two triangles and one circle.
Figure 2B) is obtained by adding Laplace-Laplacian noise to

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

Figure 2A) with PSNR=19.61dB. Figure 2C) is recovered
by the proposed model with PSNR=36.25dB, K, = 0.045.

Figure 3 shows the validation of mixed Gaussian noise
removal. Figure 3A) is the standard Lenna image. Figure 3B)
is a noisy image of Figure 3A) by additive Gaussian noise
with PSNR=19.29 dB. Figure 3C) is obtained by our
proposed method with PSNR =10.18dB.

E. Object reconstruction

In this section, we give only one experiment on the
France Test Object (FTO).

In Figure 4, Figure 4A) is the original image of its
density distribution. Figure 4B) is its projection image,
which is corrupted by mixed Laplace (67 = 0.03,30%) and
Gauss (¢ = 0.005) noise. Figure 4C) is a reconstructed
image of Figure 4B) using the Abel inversion formula (e.g.,
[15]). Figure 4D) is a reconstructed version obtained by our
proposed method with parameters o =1.5, t=0.2,

K, = 0.015,K, = 0.0002.

IV. CONCLUSIONS AND REMARKS

In this paper, a new modeling framework is proposed,
which is based on the assumption of mixed Laplace-
Gaussian noise. The proposed model can be seen as an
improvement of some known works, such as those in [8]-
[10].

The algorithm of the proposed model is also investigated
via the splitting tactics and the ALM with some modification.
Spatially adaptive functions are introduced to enhance
significant information in the original images. Also, a new
soft shrinking formula is obtained. Numerical experiments
illuminate its validation of recovering images in the presence
of varies kinds of mixed noise.

The proposed model can be further extended to process
images degenerated by blur and inhomogeneous light field,
which is to be discussed in future work.
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A) (Left) An synthesized noise-free image[10]; B) (Center) Mixed Gaussian-Laplacian noise added to A); C) (Right) Restored version by our

Figure 2. A) (Left) A synthesized image; B) (Center) Mixed Laplacian-Laplacian noise ;C) (Right) A restored version using our proposed model.
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Figure 3. A) (Left) Lenna image; B) (Center) A noisy version of A) by adding mxied Gaussian noise; C) (Right) A restored version obtianed by our
proposed method

Figure 4. A) (Left) The original density distribution image of FTO; B) (MidLeft) A degenerated image of the projection of A), obtianed by utilizing the
Abel formulation (20) firstly, and then adding mixed Laplace-Gauss noise. C) (MidRight) A reconstructed image of B) using the Abel Inverse formula [15]
D) (Right) A reconstructed image using our proposed method.
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