
Learning to Play Mastermind Well Using the Anti-Mind with Feeback Algorithm

Jose Barahona da Fonseca

Department of Electrical Engineering and Computer Science
Faculty of Sciences and Technology

New University of Lisbon
2829-516 Caparica, Portugal,
Email: jbfo@fct.unl.pt

Abstract—In a previous work we developed the Anti-Mind algo-
rithm. The Anti-Mind program simulated a good player of the
Mastermind game, discovering the secret code defined by the
human operator (a sequence of four integers in the interval [0
5]) very quickly. Then we used the algorithm of Anti-Mind to
help and correct a human operator trying to discover the secret
code defined by the computer resulting in the Anti-Mind with
Feedback algorithm. In this paper, we revisited this work and
developed another faster implementation of the Anti-Mind with
Feedback algorithm which has the drawback that it does not
know the set of next good guesses, it just compares each guess
with the previous moves and accepts it if it is coherent with
all the previous moves. Nevertheless, we introduced an option
to generate the set of good guesses, i.e., the guesses that are
coherent with all the previous moves. This implementation allows
generalizing the Mastermind game to more than four digits and
more than six colours. We begin to define rigorously what we
mean by a guess coherent with a previous move, next we define
what is a good guess and, then, we enunciate five hypotheses about
the Anti-Mind algorithm namely one that guarantees that if we
always play a good guess we will find the code in a finite bounded
number of guesses. We propose a strategy to play Mastermind
with the maximization of repetions at the beginning of the game
which reduces the cognitive overload to play well and validate it
with the Anti-Mind with Feedback algorithm. Finally we compare
the Anti-Mind algorithm with the Ant-Mind with maximization
of repetitions of the guesses through intensive simulations and
conclude that the original Anti-Mind algorithm has a better
average performance in terms of the number of guesses to break
the secret code.

Keywords–artificial intelligence; mastermind game; anti-mind
algorithm; anti-mind with feedback algorithm

I. INTRODUCTION

It seems that the Mastermind game was invented by M.
Meyerowitz in 1973 [1]. It is a two players game, the code
maker and the code breaker, and the code breaker must find
the secret code in at most 10 guesses. The secret code has
four colours that may be of one of six colours. In each move
the code breaker makes a guess of four colours and the code
maker answers with the number of white pegs, cpe, the number
of correct digits in wrong position, and the number of black
pegs, the number of correct digits in right position, cpc. In this
work the six colours will be represented by the integers in the
interval [0 5]. Our algorithm was named Anti-Mind because it
was originally created to break the code created by the human
player. Then we created a variation of this algorithm where the
human plays as the code breaker and the Anti-Mind algorithm
is used to generate in each guess the set of good guesses, i.e.,

the guesses coherent with the previous moves. If the guess does
not belong to the set of good moves, then, it is considered a bad
move and the user is asked if he wants to see the set of good
moves and, then, he must make another guess [2]. In this paper,
we show how the human player can improve his skills using
the Anti-Mind with Feedback algorithm. When it remains only
one hypothesis that must be the secret code and the user is
asked to guess the code without any more information. From
the use of this algorithm resulted a simplified faster algorithm
and a strategy of playing Mastermind.

Our simulations point to a worst case performance of
the Anti-Mind algorithm of 9 guesses and Donald E. Knuth
[3] showed through exhaustive simulations that his strategy
guarantees a maximum of 5 guesses. He showed that the best
first guess to guarantee this worst case performance is 1122.
After the work of Knuth many proposals were published,
e.g. [4]-[7], but no one beat the worst case performance
of Knuths strategy of 5 guesses, nevertheless some works
improved the average performance over all possible secret
codes. Nevertheless, our algorithm is much faster than previous
algorithms, since at each stage it selects randomly the next
guess from the set of good guesses that are coherent with
previous moves. In this sense, the Anti-Mind algorithm can
be considered a stochastic algorithm. On the contrary Knuth’s
algorithm for each good guess generates the next set of good
moves for each of the 15 possible combinations of cpc and
cpe and chooses the good guess that minimizes the maximum
number of next good guesses [3].

This paper is organized as follows. In Section 2, we
describe how a good guess is defined based on the concept of
the coherence of a guess with a previous move. In Section 3,
we describe the Anti-Mind algorithm. In Section 4, we describe
the Anti-Mind with Feedback algorithm. In Section 5, we show
how the Anti-Mind with Feedback algorithm can be used to
learn to play mastermind well, in Section 6, we present a faster
version of the Anti-Mind with feedback algorithm, in Section
7, we present exhaustive simulation results of the Anti-Mind
algorithm and the Anti-Mind algorithm with maximization of
the number of repetitions of the guesses and in Section 8, we
present the conclusions and possible vectors of evolution of
our work.

II. DEFINITION OF A MASTERMIND GOOD GUESS

The main idea behind the Anti-Mind algorithm is the
coherence between a guess and a previous move. In Definition
1, we define what is a move.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

Definition 1: A move is the triplet (guess, cpc, cpe) where
cpc and cpe result from the comparison between the guess and
the secret code.

In Definition 2, we define what is the coherence between
a guess and a previous move.

Definition 2: Consider a previous move, move, with cpc
correct digits in right position and cpe correct digits in wrong
position and a guess, guess. Considering that the comparison
between the guess and the move resulted in cpc i and cpe i,
then, the guess is coherent with move if (1) is true.

cpc = cpc i AND cpe = cpe i (1)

When a guess is coherent with all previous moves, then,
we say that it is a good guess. On the contrary if the guess
is not coherent with at least one previous move, then, we say
that it is a bad guess. In this sense, we can say that playing
Mastermind well happens when all guesses are good guesses.

So, we can define rigorously the set of good guesses as all
combinations that are coherent with all previous moves. This
is expressed by (2).

set good guesses = {∀combination : (2)
∀move, cpc = cpc i AND cpe = cpe i}

Once obtained the set of good guesses, we can verify if a
given guess is a good guess, testing if it belongs to the set of
good guesses. Alternatively, we can compare the guess with
all previous moves, and if it is coherent with all of them, then,
it is a good guess.

III. THE ANTI-MIND ALGORITHM

After each guess, the Anti-Mind algorithm obtains the new
set of good guesses and selects randomly one of them as the
next guess. This is much less computationally expensive than
Knuth’s algorithm but the Anti-Mind algorithm has a greater
worst performance of 8 guesses. In this sense, we can say
that the Anti-Mind algorithm is a stochastic algorithm. So we
can enunciate five hypotheses that we will show in a near
future work that characterize the behaviour of the Anti-Mind
algorithm based on emperical data like intensive simulations.

Hypothesis 1: The Anti-Mind algorithm always finds the
secret code in less than 9 guesses if the codemaker did not
make any error in cpc and cpe for all previous moves.

Hypothesis 2: When the Anti-Mind algorithm finds the
secret code in 8 guesses, if the codemaker did not make any
error in cpc and cpe for all previous moves, the eigth good
guess is always the secret code. In appendix we show some
enough information games with 8 guesses.

Hypothesis 3: If the codemaker makes errors in cpc and/or
cpe in at least one previous move, then, the Anti-Mind al-
gorithm always reaches a situation of an empty set of good
guesses in less than 9 guesses.

Hypothesis 4: If the game reaches a situation where there
is only one good guess, then, this good guess must be the secret

code, if the codemaker did not make errors in the previous
moves.

Hypothesis 5: Obtaining the new set of good guesses is
equivalent to obtain all combinations/guesses that are coherent
with all previous moves

The result of hypothesis 2 is the main idea behind our
previous work of the Anti-Mind with an unlimited number of
lies [8]. When it reaches the conclusion that there is at least
one lie in previous moves, reaching the situation of an empty
set of good guesses, then, it begins to test the hypothesis of
one lie, removing one previous move from the set of previous
moves and generating each time the set of good guesses. If
it reaches a point where all manners of removing a previous
move resulted in an empty set of good guesses, then, it begins
to remove two previous moves and so on until it reaches a
point where the set of good guesses has a cardinal 1. Then the
removed previous moves are the moves with lies and the good
guess must be the secret code [8].

Hypothesis 1 can be proved by exhaustive computer search,
where for each possible secret code are generated all possible
Mastermind games with good guesses and saved the number
of guesses when the secret code is found. Since there are only
1296 possible Mastermind secret codes, this computer search
is not prohibitive in terms of runtime.

The result of hypothesis 4 is the main idea behind the sec-
ond version of the Anti-Mind with feedback algorithm where
we do not have all good guesses in memory, and generate
them whenever it is asked, comparing all combinations with
the previous moves and printing the guesses that are coherent
with all previous moves- see section 6.

IV. FIRST VERSION OF THE ANTI-MIND WITH FEEDBACK
ALGORITHM

In the Anti-Mind with feedback algorithm the human is the
codebreaker and the computer the codemaker. At each move,
the new set of good guesses is generated, and when the guess
does not belong to this set, the user is asked to enter another
guess. There is an option that allows the user to see all the
good guesses. If it is reached a situation where only one good
guess remains, the user is asked to enter the secret code without
any more information, since hypothesis 3 guarantees that the
remaining good guess must be the secret code. In Table I we
present a game of this type.

In Algorithm 1, we describe the Anti-Mind algorithm in
detail.

V. USING THE ANTI-MIND WITH FEEDACK ALGORITHM
TO FIND A GOOD PLAYING STRATEGY

Since we think in terms of symbolic expressions, and taking
into account our cognitive limitations, it is easier to begin with
a guess with repetitions like 0111. Now if the answer is cpc=3,
cpe=0, we can conclude that there exist three 1s in the last three
positions, OR one 0 in the first position AND two 1s in two
of the last three positions. This symbolical logical expression
corresponds to the set of 20 good guesses presented in Table
II.

But if for the same secret code, the first guess was 0123,
the answer would be cpc=2, cpe=0, which means a much more

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

Algorithm 1 Anti-Mind with feedback algorithm

n digits⇐input(’Number of Digits=’)
dig max⇐input(’Maximum Digit=’)
n good guesses⇐ (dig max+ 1)n digits

secret code⇐ generate s c(n digits, dig max)
set good guesses⇐ gen all gs(n digits, dig max)
counter ⇐ 0
while n good guesses > 1 do

counter ⇐ counter + 1
guess⇐ input(′Guess =′)
cpc⇐ calc cpc(secret code, guess)
cpe⇐ calc cpe(secret code, guess)
if cpc == n digits then

display(’You Found It’)
break

end if
flag bel⇐ see if bel(guess, set good guesses)
if flag bel then

display cpc cpe(cpc,cpe)
set good guesses ⇐
calc new set(guess, cpc, cpe, set good guesses)

else
display(’Bad Move’)
in=input(’Want to See Good Guesses?’)
if in == 1 then

display g g(set good guesses)
end if

end if
end while
if n good guesses = 1 then

flag ⇐ 0
while 1− flag do
guess=input(’Secret Code=’)
flag ⇐ (guess == secret code)

end while
end if

complex symbolic expression: 0 and 1 are in right position
OR 0 and 2 are in right position OR 0 and 3 are in right
position OR 1 and 2 are in right position OR 1 and 3 are in
right position OR 2 and 3 are in right position. This complex
symbolical logical expression corresponds to a much greater
set of 96 good guesses. In Table III we show these good
guesses.

So in terms of cognitive overload it seams better to play
in the beginning with repetitions.

VI. SECOND VERSION OF THE ANTI-MIND WITH
FEEDBACK ALGORITHM

In the first version of the algorithm we first generate all
combinations, and for each guess and cpc and cpe we generate
a new set of good guesses, and we decide if the new guess is
good, testing if the guess belongs to the set of good guesses.
For a genarilized version of Mastermind with more digits and
a greater maximum digit, this can take a lot of time in the
first moves. So, inspired in this strategy, we created a new
version of the algorithm where we only compare the guess with
previous moves, and accept it if it is coherent with all previous
moves. This algorithm does not have the information of the

TABLE I. EXAMPLE OF A GAME WITH 8 GUESSES

anti mind real(4,5,1, 1)
Number of Possible Good Guesses=1296
move 1=0111
cpc=0
cpe=1
Number of Possible Good Guesses=308
move 2=1222
cpc=1
cpe=0
Number of Possible Good Guesses=90
move 3=1333
cpc=1
cpe=0
Number of Possible Good Guesses=20
move 4=1444
cpc=0
cpe=1
Number of Possible Good Guesses=6
move 5=4320
cpc=2
cpe=2
Number of Possible Good Guesses=3
move 6=4302
cpc=1
cpe=3
Number of Possible Good Guesses=2
move 7=4023
cpc=1
cpe=3
*ENOUGH INFORMATION**
Secret Code=4230
*You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

TABLE II. SET OF GOOD GUESSES AFTER GUESS 0111

0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 2 0 1 1 3 0 1 1 4
0 1 1 5 0 1 2 1 0 1 3 1 0 1 4 1 0 1 5 1 0 2 1 1
0 3 1 1 0 4 1 1 0 5 1 1 1 1 1 1 2 1 1 1 3 1 1 1
4 1 1 1 5 1 1 1

TABLE III. SET OF GOOD GUESSES AFTER GUESS 0123

0 0 0 3 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 5 0 0 3 3
0 0 4 3 0 0 5 3 0 1 0 0 0 1 0 1 0 1 0 4 0 1 0 5
0 1 1 0 0 1 1 1 0 1 1 4 0 1 1 5 0 1 4 0 0 1 4 1
0 1 4 4 0 1 4 5 0 1 5 0 0 1 5 1 0 1 5 4 0 1 5 5
0 2 2 0 0 2 2 2 0 2 2 4 0 2 2 5 0 3 0 3 0 3 3 3
0 3 4 3 0 3 5 3 0 4 0 3 0 4 2 0 0 4 2 2 0 4 2 4
0 4 2 5 0 4 3 3 0 4 4 3 0 4 5 3 0 5 0 3 0 5 2 0
0 5 2 2 0 5 2 4 0 5 2 5 0 5 3 3 0 5 4 3 0 5 5 3
1 1 1 3 1 1 2 1 1 1 2 2 1 1 2 4 1 1 2 5 1 1 3 3
1 1 4 3 1 1 5 3 2 1 2 1 2 1 2 2 2 1 2 4 2 1 2 5
2 2 2 3 2 3 2 3 2 4 2 3 2 5 2 3 3 1 1 3 3 1 3 3
3 1 4 3 3 1 5 3 3 2 2 3 3 3 2 3 3 4 2 3 3 5 2 3
4 1 1 3 4 1 2 1 4 1 2 2 4 1 2 4 4 1 2 5 4 1 3 3
4 1 4 3 4 1 5 3 4 2 2 3 4 3 2 3 4 4 2 3 4 5 2 3
5 1 1 3 5 1 2 1 5 1 2 2 5 1 2 4 5 1 2 5 5 1 3 3
5 1 4 3 5 1 5 3 5 2 2 3 5 3 2 3 5 4 2 3 5 5 2 3

number of good guesses and it is impossibile the detection of
an enough information situation, but it is much faster and we
can play more difficult generalized Mastermind games inside
Matlab environment. In Algorithm 2, we describe in detail this
second version of the Anti-Mind with feedback algorithm.

VII. SIMULATION RESULTS

To evaluate the performance of the Anti-Mind algorithm,
we made an exhaustive simulation over all possible secret
codes, with 1000 runs for each secret code. In this simulation,
the computer is the codemaker and the codebreaker. In Figure
1 we show the distribution of runs by the number of guesses to
find the secret code. Then we repeat the simulation maximizing
the number of repetitions of each guess. In Figure 2 we show

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

Algorithm 2 Second version of Anti-Mind with feedback

flag not found⇐ 1
n digits⇐ input(’Number of Digits=’)
dig max⇐ input(’Maximum Digit=’)
secret code⇐ generate s c(n digits, dig max)
counter ⇐ 0
while flag not found do
counter ⇐ counter + 1
guess⇐ input(′Guess =′)
cpc⇐ calc cpc(secret code, guess)
cpe⇐ calc cpe(secret code, guess)
cpc o(counter)⇐ cpc
cpe o(counter)⇐ cpe
guess o(counter)⇐ guess
if cpc = n digits then

display(’You Found It’)
break

end if
for i=1:counter-1 do

if 1− flag bad guess o(i) then
cpc i⇐ calc cpc(guess, guess o(i))
cpe i⇐ calc cpe(guess, guess o(i))
flag bad guess ⇐ 1 − (cpc i = cpc) + 1 −
(cpe i = cpe)
if flag bad guess then

break
end if

end if
end for
flag bad guess o(conter)⇐ flag bad guess
if flag bad guess then

display(’Bad Guess!’)
in=input(’Do you want to see the good guesses?’)
if in == 1 then

combination=zeros(1,n digits)
flag end⇐ 0
while 1-flag end do

for i=1:counter-1 do
cpc i⇐ calc cpc(combination, guess o(i))
cpe i⇐ calc cpe(combination, guess o(i))
flag coher ⇐ 1− (cpc i = cpc o(i)) + 1−
(cpe i = cpe o(i))
if flag coher==0 then

break
end if

end for
if flag coher then

display(combination)
end if
combination⇐ gennext comb(combination)
flag end⇐ all combs(combination)

end while
end if

end if
flag not found⇐ 1− (cpc = n digits)

end while

the results of this simulation. Comparing the two figures, we
can say that the results of the second simulation are worse
than the results of the first simulation, since we have a greater

percentage of runs with 5 guesses. This way we can say
that playing mastermind well, with repetitions, has a lower
performance than the Anti-Mind algorithm performance. So
we confirm that the computer thinks better than the human
[2].

FIGURE 1. NUMBER OF GUESSES IN PERCENTAGES DISTRIBUTION OF THE
ANTI-MIND ALGORITHM.

FIGURE 2. NUMBER OF GUESSES IN PERCENTAGES DISTRIBUTION OF THE
ANTI-MIND ALGORITHM WITH MAXIMIZATION OF REPETITIONS OF

GUESSES.

VIII. CONCLUSIONS AND FUTURE WORK

We showed how to define rigorously what it is meant by
playing Mastermind well and how the Anti-Mind algorithm
can be used to learn playing well, resulting in the Anti-
Mind with feedback algorithm. In the near future, we plan
to demonstrate the five hypotheses enunciated in this work as
theorems.

REFERENCES

[1] ”Games Gift Guide,” Games and Puzzles, vol. 20, pp. 16-17, December
1973.

[2] J. Barahona fa Fonseca, ”Anti-Mind and Anti-Mind with Feedback: an
Example where the Computer Thinks better than the Human,” Proc.
Congress in Cognitive Neurosciences, University of Evora, Nov. 2003,
pp. 55-61.

[3] D. E. Knuth, ”The Computer as Mastermind,” Journal of Recreational
Mathematics, vol. 9, 1976, pp. 1-6.

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

[4] V. Chvtal, ”Mastermind,” Combinatorica, vol. 3, 1983 pp. 325-329.
[5] M.M. Flood, ”Mastermind Strategy,” Journal of Recreational Mathemat-

ics, vol. 18, 1985, pp. 194-202.
[6] M.M. Flood, ”Sequential Search Sequences with Mastermind Variants-

part 1,” Journal of Recreational Mathematics, vol. 20, 1988, pp. 105-126.
[7] M.M. Flood, ”Sequential Search Sequences with Mastermind Variants-

part 2,” Journal of Recreational Mathematics, vol. 20, 1988, pp. 168-181.
[8] J. Barahona da Fonseca, ”The Anti-Mind with Unlimited Number of

Lies as a First Step to Detective Reasoning Modeling,” Proc. ICIEIS
2014 Conference, ICIEIS Press, Nov. 2014, pp. 200-205.

APPENDIX

Enough Information Games with 8 Guesses

>> anti_mind_real(4,5,1, 1)
Number of Possible Good Guesses=1296
move 1=0111
cpc=0
cpe=1
Number of Possible Good Guesses=308
move 2=1222
cpc=1
cpe=0
Number of Possible Good Guesses=90
move 3=1333
cpc=1
cpe=0
Number of Possible Good Guesses=20
move 4=1444
cpc=0
cpe=1
Number of Possible Good Guesses=6
move 5=4320
cpc=2
cpe=2
Number of Possible Good Guesses=3
move 6=4302
cpc=1
cpe=3
Number of Possible Good Guesses=2
move 7=4023
cpc=1
cpe=3

ENOUGH INFORMATION
move 8=4230

**You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

Number of Possible Good Guesses=1296
move 1=2201
cpc=0
cpe=2
Number of Possible Good Guesses=222
move 2=5320
cpc=3
cpe=0
Number of Possible Good Guesses=8
move 3=5322
cpc=2
cpe=0
Number of Possible Good Guesses=7
move 4=5520
cpc=2
cpe=0
Number of Possible Good Guesses=4
move 5=5310
cpc=2
cpe=0
Number of Possible Good Guesses=3
move 6=4320
cpc=3
cpe=0
Number of Possible Good Guesses=2
move 7=0320
cpc=3
cpe=0

ENOUGH INFORMATION
move 8=3320

**You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

Number of Possible Good Guesses=1296
move 1=2241
cpc=1
cpe=1
Number of Possible Good Guesses=230
move 2=2532
cpc=0
cpe=2
Number of Possible Good Guesses=34
move 3=5121
cpc=0
cpe=2
Number of Possible Good Guesses=10
move 4=1345
cpc=0
cpe=2
Number of Possible Good Guesses=6
move 5=4254
cpc=1
cpe=0
Number of Possible Good Guesses=3
move 6=3213
cpc=3

cpe=0
Number of Possible Good Guesses=2
move 7=3210
cpc=2
cpe=2

ENOUGH INFORMATION
move 8=0213

**You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

Number of Possible Good Guesses=1296
move 1=0214
cpc=1
cpe=0
Number of Possible Good Guesses=108
move 2=1111
cpc=0
cpe=0
Number of Possible Good Guesses=81
move 3=0300
cpc=0
cpe=1
Number of Possible Good Guesses=29
move 4=3444
cpc=1
cpe=0
Number of Possible Good Guesses=9
move 5=3232
cpc=3
cpe=0
Number of Possible Good Guesses=4
move 6=3233
cpc=2
cpe=0
Number of Possible Good Guesses=2
move 7=3252
cpc=3
cpe=0

ENOUGH INFORMATION
move 8=3222

**You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

Number of Possible Good Guesses=1296
move 1=1243
cpc=0
cpe=2
Number of Possible Good Guesses=312
move 2=2551
cpc=1
cpe=0
Number of Possible Good Guesses=50
move 3=3450
cpc=0
cpe=2
Number of Possible Good Guesses=12
move 4=4001
cpc=1
cpe=1
Number of Possible Good Guesses=4
move 5=2024
cpc=0
cpe=1
Number of Possible Good Guesses=3
move 6=0331
cpc=3
cpe=0
Number of Possible Good Guesses=2
move 7=0131
cpc=2
cpe=2

ENOUGH INFORMATION
move 8=0311

**You Found It! in 8 Guesses, with 0 bad Guesses and 0 hints **

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

