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Abstract - In this paper, the algorithm to mathematically
model fragments, which are extracted from non-linear
experimental dependencies, is developed, and represents
the key steps within the Cut-Glue approximation method.
The hybrid search algorithm is based on the classical
regression analysis, which takes into account the
polynomial structures implemented through the
combinatorial laws, and low dimensionality. In the case
when the direct search is resource-impossible, the
modified evolutionary-genetic algorithm (EGA) is applied.
The advantage of the developed algorithm is the
guarantee that the optimal polynomial structure exists
and can be found. The proposed approach carries out the
structural-parametric optimization for each of the studied
fragments to define its experimental data dependence. The
validation of the polynomial structural-optimization is
performed by applying a specially developed software
tool, which, in theory, makes possible to approximate
fragments of any dimension.

Keywords – optimization; approximation; regression
analysis; mathematical model; experimental data;
combinatorics.

I. INTRODUCTION

The technical processes occurring in real life are
essentially nonlinear and frequently governed by
unknown laws [1][2]. Therefore, their direct
mathematical modeling is a complex or impossible task,
which can be overcome by constructing the
Mathematical Models (MM) based on the experimental
data, whose input-output dependences are found to be
nonlinear [3]. The approximation of such dependencies
is a difficult problem to solve and can lead to
significant errors, thus special methods are required for
effectively solving these problems [4]-[7].

In particular, the presented method is generalized
and developed in [8][9]. It is based on the multiplicative
"excision" of the modeled dependence sections that are
sufficiently and accurately approximated with the
analytic functions applying their additive "gluing"
characteristics, which allows to have a single analytic
function as final result. This data processing approach is
called the "Cut-Glue" Approximation (CGA) [5]-[8],
and this associative term, in some other related works,
is called "multiplicative-additive approximation", as
being more mathematically oriented.

The implementation of the CGA method is based on
the successive execution of the following operations:

• Cuting out the Experimental Data (ED) array
into fragments that can be successfully approximated by
appropriate analytic functions (the fragments must have
common boundaries, so that their union gives the
original array);

• Approximation of fragments by applying the
most suitable analytical functions for their data profile
to minimize the approximation error and the complexity
of the approximation functions;

• Formation of new interval-isolated functions, as
different from the functions approximating fragments,
which are spatially separated by their coordinate
boundaries (special nonlinear multiplicative "cutting"
functions [4]-[9] are suggested);

• Assembling the cut-out interval-isolated
fragments into a single analytic function (i.e.,
implementation of the additive operation "glue"),
defining the mathematical model of the investigated
dependence.

Each CGA method operation determines the quality
of the final result. However, the error in the ED
mathematical description is, to the greatest extent,
determined by the quality of the constructed analytic
functions, which isolate the initial experimental data
[8][9] that approximates fragments. Therefore, to
minimize the approximation error, the received MM
can be considered as the key step in the CGA method.
This paper is devoted to the development of the
methodology and its approximation algorithm, with the
focus on the MM regression approximation of data
fragments applying the pseudo-linear polynomial
combinatorial model. The computed regression
polynomial is the approximation function for the
applied gene-chromosome model. In addition, the
performed computational tests are using the structural-
parametric optimization algorithms applying the
experimental data regression. The paper goal is to
define the analytical function that approximates an
arbitrary ED fragment that does not contain any
discontinuities in the defined function and its respective
derivatives. Such defined dependency function and its
structure can be varied and thus, parametrically
optimized.
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II. REPRESENTING MM REGRESSION
APPROXIMATION OF DATA FRAGMENTS BY A

PSEUDOLINEAR POLYNOMIAL

Research in the field of the problem, given in [4]-
[9], has shown that the method of execution stage
approximation fragmented ED treatment should be
functionally flexible, combining the flexibility and
structure, and analytical and structural diversity. All
these requirements are best-served by a well-proven
machine classical regression analysis (CRA), focused
on the construction of polynomial models [10]-[13].
Polynomial degree has universal design and is suitable
for both structural variations within the polynomial
members and to effectively optimize the parametric
regression coefficients by the method of least squares.
As a result, in the polynomial CRA polymer, there is
the possibility of effective structural and efficient
parametric optimization, which approximates the
models for the considered MM fragment.

Structure of Y(x) polynomial of arbitrary m-th
degree at the n-th dimension may be represented as
follows:

Y(�) = �0 + �1�1 + ⋯ + ���� + �11�12 + �12�1�2

+�13�1�3 + ⋯ + �1��1�� + �22�22

+�23�2�3 + ⋯ + �2��2�� + ⋯ + (�−1)��−1��

+ �����2 + �111�13 + �112�12�2 + ⋯
+ �11��12�� + ⋯ + �122�1�22 + ⋯ + �1���1��2

+ �222�23 + �223�22�3 + ⋯

+ �22��22�� + ⋯
+������3 + �1111�14 + �1112�13�2 + ⋯ + �111��13�� +

�1122�12�22 + �1123�12�2 �3  + ⋯   (1)

where ����… are the coefficients of the n-th and m-th
degree polynomials whose composite indices indicate
the variables that are multiplied when forming the
polynomial term (for example, �1123 is the multiplier for
the product �1 �2 �3 ); �� are the indexed independent
(input) variables of the experimental dependence being
investigated.

One of the simplest and most well-known methods
of simplifying the algorithm for finding regression
coefficients is the representation of its nonlinear terms
as additional arguments of the pseudo-linear factor
space of a new vector of variables �̃ of extended
dimension, where

∀� = 1, ������ → ��� = ��;  ����� = �� ∙ ��;  �����

= �� ∙ ��; ⋯ ����� = �� ∙ ��; ������

= �� ∙ ��; ⋯

������ = �� ∙ ��; ���� = �� ∙ ��;  ������ =
�� ∙ ��; ⋯ ������ = �� ∙ ��; ⋯, (2)

are generalized arguments of the dependency,

including the original arguments ��, and also the
pseudo arguments ��̂, which are all possible products
of the original arguments.

In this case, the nonlinear polynomial (1) takes the
form

(3)

where �fi� are the coefficients of the pseudo-polynomial
of the �̃-th dimension, �� and - coefficients of any
variant of the linear polynomial (3) describing the
modeled dependence and are calculated from the well-
known matrix formula:

�̃ = (�̃��̃)−1�̃��, (4)

where Y is the vector of values of the dependent
variable, and �̃ is the matrix of inputs to be examined,
which consists of lines �̃�, the line numbers correspond
to the number of the experiment, the column numbers
correspond to the term of the polynomial. It is worth
noting that the values of the column of conditionally
introduced variables �0̃ of the matrix �̃ are taken in
calculations to be equal to unity.

The non-linear polynomial (1) in the form of a
pseudo-linear polynomial (3) is well structured, which
makes it possible to create a convenient encoding of its
terms for computer implementation of combinatorial
variation of its structure. This makes it possible to
organize a computer search for a structurally and
parametrically optimal variant of an approximating
polynomial. The need for this is due to the fact that,
often, a complete polynomial does not guarantee the
best accuracy. This is because the properties of certain
nonlinear terms contradict the nature of the
approximated dependence. However, which members
will be able to describe the model in the best way we do
not know in advance. This is due to the peculiarities of
the curvature of the hypersurfaces approximating the
experimental data of each individual fragment.

III. COMBINATORIAL MODEL OF THE REGRESSION

POLYNOMIAL (CMRP)

Form (1) is convenient to organize the successive
shifts combinations for the nonlinear terms defined with
the polynomial power. In the program, the encoded
algorithm mapping is done for a complete multifactor
polynomial of any degree using the natural numbers.
The increasing series structure is constructed from the
indices of its polynomial coefficients and has the
following form:

0, 1, … , �, 11, 12, … , 1�, 22, 23, … , 2�, … , 33, 34, …
3�, … , ��, … 111, 112, … , 11�, … , 122,

123, … ,12�, … , 222, 223, … , 22�, … , ���, 1111, …
111n, … (5)

The combinatorial analysis of the polynomial
structure (5) shows that the number of its variants is
determined by the number of combinations of the
polynomial terms indices for the variables included in
the formula. Consequently, the determination of the
structural variants number can be performed using the
well-known combinatorial formula:

(6)

where n is the number of independent variables of
the polynomial and k is the order of the power

27Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences



polynomial. If the value of turns out to be
acceptable for calculating all polynomial variants of
the selected order within a reasonable time, then the
structure-parametric search can be performed by a
deterministic algorithm.

Since the algorithm for enumerating all possible
combinations of a polynomial is NP, then for the
unrealizable value (5) it becomes necessary to use
heuristic algorithms for solving this type of problem.
In this paper, we use the evolutionary-genetic
algorithm (EGA), which is developed as a tool for
searching the polynomial terms variation. To find an
effective solution, the EGA paradigm is considered in
this work, which implies the development of the
convenient gene chromosome model for this object-
oriented algorithm.

IV. POLYNOMIAL APPROXIMATION FUNCTION FOR

GENE-CHROMOSOME MODEL

The essence and originality of the proposed model
consists of 2 chromosomes with variable polynomial
structure. The main chromosome of the polynomial
(meaningful) is given by the sequence of terms of the
complete polynomial of the m-th power, ordered by
the mnemonic rule (1).

�ℎ=(�ℎ1, �ℎ2, ⋯ , �ℎ�) (7)

where N is the number of terms of a complete
polynomial of dimension n and of order m.

These terms �ℎ� ( � = 1, ������) form the genome of
the main chromosome. The binary model is based on
the auxiliary (structural) chromosome that forms the
structure of the polynomial; its genome is given by a
deuce (0, 1). The description of the structure of the
polynomial is made by way, where "1" on the next
line of the line means using the corresponding
polynomial term in the final structure obtained by the
merging of the chromosomes. The presence of "0" at
some position means the exclusion of this term - the
gene of the main chromosome, from the finite
structure of the polynomial. In the algorithm, this
means that the regression coefficient is considered
zero and is not calculated. Thus, the structural
chromosome has the form:

� = (�1, �2, ⋯ , �� ), �� ∈ (0,1) (8)

With such gene-chromosome scheme for the
formation and inheritance of the properties of a
polynomial, the mathematical model for the transfer of
genetic information from generation to generation is
built on a multiplicative basis, and is given by the
expression of the following form:

� = �ℎ ∙ �� (9)

An obligatory condition for such a coding is strict
observance of the correspondence between the position
of the term in the formula and its structure proposed by
the expression (1).

V. SEARCH ALGORITHM FOR OPTIMIZING A
POLYNOMIAL APPROXIMATING FUNCTION

The proposed modification of the EGA, like its
classic prototype, involves the use of crossing-over
operator, mutation and selection. Moreover, the
structural chromosome of EGA is used as the
transformed chromosome.

The structure of the adjusting parameters of the
EGA includes the number of populations, the
population size in one generation, the probability of
crossing-over and the likelihood of a mutation. At the
first stage of the EGA, the initial population is formed,
when the mutation operator (Fig. 1a) and single-point
crossover are applied to it (Fig. 1b). Further, with the
help of the selection operator for each individual
received, a decision is made whether to include it or not
to include it in the next generation of EGA.

a) b)
Figure 1. Illustration of mutation (a) and crossover (b) operators

execution.

The binary chromosomes obtained with the help of
crossing-over and mutation operators, which carry the
structures information are formulated according to
formula (9), where the individuals are defined as the
EGA-variants of polynomials.

For selecting the next generation individuals, those
already formed, with the repeated polynomial structure,
are eliminated with the aid of the EGA. As a result,
only the unexplored individuals are passing into the
next generation.

The algorithm for calculating the coefficients of
linear regression uses the specially developed software.

For the resulting regression equation, the value of
the simulated dependence is calculated for the
corresponding experimental points, together with the
error of the approximating polynomial at each
calculated point.

VI. STRUCTURAL-PARAMETRIC OPTIMIZATION
ALGORITHMS FOR THE EXPERIMENTAL DATA

REGRESSION DESCRIPTION

To obtain the variant, which represents the most
accurate sampled data description, the calculated results
are ranked in descending accuracy order. Therefore, the
first output is the parametric optimum of the problem
being solved.

However, there are many results that often satisfy
the permissible approximation error. For example, the
calculation of all structural variants of a polynomial of
order 4 over an array of m22 defined from 20
experimental data (see Figure 2) leads, according to (5),
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Figure 2. The data array of the investigated dependence.

to the receipt of 77,811 solutions. At the same time,
from this total number of variants of the polynomial (4),
only a few fall under the chosen error limit. Therefore,
this is quite accessible for sorting and deciding on the
best structural choice by using a conventional PC.

In a particular case, a complete search of all
investigated dependence variants is an acceptable
approach for identifying the optimal terms combination
of the describing polynomial. However, in the case
when investigating the large multidimensional
dependencies, a full search due to NP-completeness
becomes an unsolvable problem. Therefore, it is
proposed to solve it with EGA, which performs the
suboptimal structure search of the describing
polynomial in an acceptable time. However, it cannot
guarantee the finding of the optimal polynomial
structure.

In this paper, the set of polynomial variants for the 2
approaches is presented, which is characterized both by
errors and by structural-parametric estimates of the
complexity of the description. For such estimates,
different polynomial parameters are considered, such as
its order, the total number of its terms, and so on. The
regularization of this, largely informal, task is not
considered here. The possibilities of this approach are
well traced in the example below.

VII. AN EXAMPLE OF APPLYING THE PROPOSED
METHODS IN THE FRAGMENTS APPROXIMATION

OPTIMIZATION.

As an example of the proposed approximation
approach, the m22 matrix is examined (see Figure 2),
and is defined as a fragment of an experimental data
array obtained when describing the dependence of the

aerodynamic moment values of an airship with the
velocity v and the angle of its roll α taken from [5][6].

At the first stage, the investigated dependence
(fragment) is described with the help of a complete 4th

order polynomial. Using the classical regression
analysis, the coefficients of the polynomial are
calculated, from which, by using the obtained
coefficients, the analytical estimates of the investigated
fragment experimental values for the matrix are found.
On the basis of this analytical data and the available
experimental data, the regression estimate errors with
the greatest relative error for the experimental values
are calculated. If the describing relationship accuracy of
the complete n-order polynomial is insufficient, the
dependence is further investigated by looking through
all possible variants of the n-th order polynomial in
order to identify the optimal combination of polynomial
terms, as well as with EGA.

The total number of variants of polynomial (4) is
21,209, which fulfill the 5% approximation error. The
study of the dependence by means of EGA is using the
following parameters structure:

Number of individuals in the population = 100
Number of generations = 100
The probability of crossing-over = 60%
Probability of mutation = 30%
Selected approximation error of 5%, for which there

are 1059 variants.
When studying the structure by means of the 2

presented methods, it was noted that the data
description by the complete 4-order polynomial has the
maximum absolute error value of ~ 291.43, and relative
error value of ~ 0.0573 (5.73%), which did not fall
within the set error limit.

Among the selected variants, the correlation
between the complexity of the structure of a polynomial
and the approximation accuracy is provided.

In the columns of Table I and Table II, the members
of the complete 4th order polynomial appearing in (4)
with the corresponding code indicated in the upper line
are represented. Their absence is indicated by the
symbol "-". The last 2 columns give the maximum
estimates for the approximated absolute and relative
errors, showing the approximation accuracy for the
polynomial variants.

TABLE I. POLYNOMIAL STRUCTURE RESULTS BY MEANS OF EGA

0 1 2 11 12 22 111 112 122 222 1111 1112 1122 1222 2222 Max absolute error

Relative

error

0 1 2 11 12 22 111 -- -- -- 1111 1112 1122 -- -- 47,93095 0,0196

0 1 2 11 12 22 -- -- -- 222 -- -- -- -- -- 173,10336 0,02196

0 1 2 11 12 22 -- -- -- 222 -- -- 1122 -- -- 178,19125 0,0226

0 1 2 11 12 22 -- -- 122 222 -- 1112 -- -- -- 57,50005 0,02486
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TABLE II. POLYNOMIAL STRUCTURE RESULTS BY MEANS OF A COMPLETE COMBINATORIAL SEARCH FOR ALL VARIANTS

0 1 2 11 12 22 111 112 122 222 1111 1112 1122 1222 2222

Max
absolute

error

Relative

error

0 1 2 11 12 22 111 112 -- 222 1111 1112 1122 -- -- 25,32678 0,0103

0 1 2 11 12 22 111 112 -- 222 -- 1112 1122 -- -- 25,53261 0,0104

0 1 2 11 12 22 111 -- 122 222 1111 1112 1122 -- -- 26,89585 0,011

0 1 2 11 12 22 111 -- 122 222 -- 1112 1122 -- -- 27,10168 0,0110

Among all the options presented in Table 1, the top
row can be considered as optimum, because it has the
smallest error. However, despite the fact that the second
combination has a large error of about 2%, its structure
is more economical than the structure of the first, third
and fourth rows. Its combination is the structurally
optimal polynomial variant for investigating m22
dependence (see Figure 2).

In Table 2, the first line represents the best
polynomial combination found by means of EGA,
which can be considered as an absolute structural
parametric optimum, since it has the smallest error for
all orders. The second combination has more than 100%
greater error and has a more economical structure than
the first, but less precise for the data approximation.

For comparing the results of the developed methods,
it is worth noting that the results obtained with EGA are
not inferior in accuracy to the results obtained by a full
search. However, the amount of time that was spent to
study the same data structure, in the EGA case is 9 sec,
significantly reduce the time of a full search to 65
seconds.

VII. CONCLUSION

This study has shown that the use of different
criteria for estimating the accuracy of constructing the
regression equation (MNC) and for estimating the
accuracy of the mathematical description of data leads
to a significant ambiguity between structural
complexity and error, which opens the possibility for
investigating the solution based on the structural
parametric optimization of the created experimental
data mathematical model.

The developed algorithm and its respective software
implementation make this approach efficient to find the
structure and parameters of the suboptimal polynomial
variant for the investigated dependence fragment.

It is well known that, when the dimension and the
order of the complete polynomial are sufficiently small,
the search for all its possible variations is feasible.
However, when the dependence dimension and
approximation polynomial order increase, finding its
best structure by direct selection is not possible, since it
is NP-complete. Thus, this identified complexity fully
justifies the proposed EGA application in order to make
it solvable.
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