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Abstract—Our paper deals with a novel trading algorithm
based on the conventional feedback control methodology. A
profitable trading algorithm design for stock markets constitutes
a very challenging problem of the modern financial engineering.
We apply a model-free version of the classic Proportional-
Integral-Derivative (PID) control to the modern Algorithmic
Trading (AT). The proposed control theoretical application of the
classic PID methodology is combined with a specific statistical
information on the available historical stock market data. We
consider a generic condition of the log-normal distribution of the
available stock data. The log-normal property mentioned above
implies a new efficient calibration rule for the gain coefficients
(gains tuning) for the resulting PID type trading algorithm. We
finally apply the developed PID based optimal AT strategy to a
specific real-world example of the Binance Bitcoin / USD market.
This application illustrates the effectiveness of the proposed
trading algorithm.

Index Terms—algorithmic trading, financial engineering,
model-free PID control, statistical decision making.

I. INTRODUCTION

Consider an idealized stock market model in discrete time.
This trading abstraction includes some ideal assumptions,
among others, the ”no transaction costs” and ”one stock
portfolio” conditions. Moreover, one also assumes ”zero in-
terest” ”continuous trading” and some further simplifying
hypothesises. We refer to [4][14][16] for the necessary tech-
nical details. The discrete time model consideration is mainly
motivated by the real stock market dynamics as well as by the
decision making mechanism. We next introduce the trading
ticks t = 1, ..., and the corresponding time-intervals of the
trading buckets [t, t + 1). Note that the development of the
efficient and robust trading algorithms for the financial markets
constitutes a sophisticated problem. Recall that one deals
with a stochastic dynamic behaviour in that case. The highly
frequent non-regular stochastic nature of the modern markets

makes it impossible any suitable forecasting of the prices of
financial instruments traded on the stock markets.

A systematic, control theory based approach to the AT was
initially developed in [5]-[8] [20]. It studies the model-free
PID trading strategy and proposes to react to the stock price
variations instead of modeling them. An interesting, frequency
domain involved extension of the above approach can be found
in [14]. Let us also refer to [4] for a novel PID related trading
algorithm with a switched structure.

Following [20], we introduce the current gain ∆g(t) and the
current investment level ∆I(t) for a time instant t. Moreover,
by g(t) and I(t) we next denote the cumulative profit and
the cumulative investment, respectively. The initial investment
level I1 is assumed to be given. Consider the nonlinear
discrete-time PID type feedback with a saturation rule:

δ I(t +1) = KP(t)∆g(t)+KD(t)∆̇g(t)+

KI(t)
∫ t

t−T
h(τ)∆g(τ)dτ,

∆I(t +1) = χ(δ I(t +1)), for t = 1, ...,
I(1) = I1.

(1)

Here KP(·), KD(·) and KI(·) are dynamic gains associated
with the proportional, integral, derivative, and second order
derivative terms of regulator (1). We put

K(·) := {KP(·), KD(·), KI(·)}.

Similar to the classic PID control (see e.g., [21]), the integral
term in (1) is defined on a given time interval [t − T, t].
The time instant T belongs to the given discrete time grid.
Moreover, h(·) in (1) is a suitable ”memory loss” function.
One can consider the generic exponentially weighted ”memory
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loss” function h(·) with h(t) = 1. The saturation function χ(·)
in 1 can be defined as follows

χ(δ I) :=

 δ I, if δ Imin ≤ |δ I| ≤ δ Imax;
±δ Imax, if |δ I|> δ Imax;
0, if |δ I|< δ Imin.

(2)

where δ Imax and δ Imin are prescribed maximal and minimal
current investment levels, respectively.

Using the decision about the current investment ∆I(t + 1)
and the corresponding stock price p(ω, t +1), we next calcu-
late the current profit obtained at the time instant (t +1):

∆g(t +1) =
(p(·, t +1)− p(·, t))

p(·, t)
∆I(t +1) (3)

Note that the investment level ∆I(t + 1) in (1) constitutes a
”control input”. We next call it ”investment decision”. Note
that it is deployed at a current time instant t under the natural
unknownness of the market price p(ω, t + 1). Here, ω ∈ Ω

and Ω is a probability state space with a specific probability
measure. The stock price p : Ω×Z+ → R is assumed to be a
measurable (stochastic) function. Note that the current profit
g(t + 1) is an a posteriori value such that p(·, t + 1) in (3)
denotes a concrete realization of a stochastic price p(ω, t+1).
The block diagram of the proposed model-free PID trading
strategy is illustrated in Figure 1.

Profit / Loss

Decision

Time
Delays

Time 
Delays

Market

Fig. 1. Model-free PID based trading algorithm

The general formula for δ I(t + 1) in (1) can easily be
specified in the discrete-time case:

δ I(t +1) = (KP(t)+KI(t)+KD(t))∆g(t)+

(KI(t)h(t −1)−KD(t))∆g(t −1)+

KI(t)
t−2

∑
τ=t−T

h(τ)∆g(τ).

(4)

The main problem in the conventional PID control theory
as well as in the model-free version under consideration
constitutes in searching of adequate gains K(·) tuning rules
(see e.g., [19] and references therein). In the conventional
application areas of the classic model-based PID controllers
these tuning techniques are usually well established [19][21].

In the sophisticated model-free stochastic case, the design of a
suitable PID tuning scheme represents a challenging problem.
It constitutes in fact a key problem of an intelligent investment
decision.

The remainder of this paper is organized as follows: Section
2 contains a general statistical analysis of a generic stock data.
In Section 3, we apply the obtained log-normal distribution of
the available data to backtesting driven tuning (calibration) of
the PID gains. In this section, we also consider an application
of the proposed PID based trading algorithm to a specific stock
market, namely, to the Binance BTC (bitcoin) / USD futures.
Section 4 summarizes our paper.

II. STATISTICAL ANALYSIS OF THE STOCK DATA

The conceptually important PID gains tuning problem men-
tioned in Section I will be considered here from the statistical
point of view. For these aims let us examine the log-normal
hypothesis for the probability distribution of the following
”price/volume” ratio:

θ(ω, t +1) :=
p(ω, t +1)

v(t +1)
.

The (a posteriori) statistical analysis of a wide spectrum of
stock markets has demonstrated that the distribution of the
closing prices normalized by investment volume v(t + 1),
namely the value θ(ω, t) fits well a specific log-normal law
(see [1] and references therein). Recall that v(t + 1) can be
calculated as follows:

v(t +1) :=
∆I(t +1)

p(·, t)
.

Note that in the trader praxis the investment volume is usually
restricted by a maximal investment volume. In the case of
PID based trading algorithm under consideration, the maximal
investment volume is a direct consequence of the bounded
structure of investment ∆I(t +1) in (1).

The log-normal probability distributions in the stock market
data have comprehensively been studied for the stock price
differences and for option prices. Let us refer to the celebrated
Black and Scholes model [12]. A full review of this subject
can be found in [13]. Additionally, the log-normal properties of
the volatility and related market values in the stock prices and
indices are also considered in [15]. In this section, we follow
[1] and analyze the (stationary) statistical law for θ(ω, t +1):

ρ(θ) =
a√

2πσ(θ − s)
exp−(0.5σ

2)(ln(θ − s)−µ)2, (5)

where µ ∈ R is a mean, σ ∈ R+ is a dispersion and s ∈ R
denotes a shifting parameter. Note that (5) is a so called
”three-parameters” {µ,σ ,s} log-normal distribution (see e.g.,
[22]). The necessary parameters of the proposed log-normal
distribution ρ(θ) can be determined using the historical stock
market data. This way, we incorporate the generic backtesting
into the resulting PID based trading algorithm we develop.

As mentioned above, (5) constitutes an adequate distribution
hypothesis for the price/volume ratio θ(ω, t +1). The quality
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of this statistic hypothesis can be established by the standard
Chi-Quadrat-Test for distributions (see e.g., [22]). In this
paper, we consider the normalized value χ2/q for this purpose.
Here q is the number of degrees of freedom.

Consider now the daily market prices and investment vol-
umes data

{p(1), ..., p(T )}, {v(1), ...,v(T )}.

Following [24], we now assume the log-normal distribution
for the value ( p(ω, t +1)

p(·, t)
)
,

where t = 1, ...,T −1. Note that this assumption or the equiv-
alent assumption on the normal distribution of the logarithmic
return

ln
( p(ω, t +1)

p(·, t)
)

is well motivated. We refer to [1][24] for the necessary
statistical consideration. We now consider the following value:

ln(θ(ω, t +1)/θ(·, t)) = ln
( p(ω, t +1)

p(·, t)
)
−

ln
(v(t +1)

v(t)

)
.

(6)

From (6) we next obtain

ln
(v(t +1)

v(t)

)
= ln

( p(ω, t +1)
p(·, t)

)
+ lnθ(·, t)−

lnθ(ω, t +1).
(7)

Expression (7) makes it possible to make a decision related to
the investment volume v(t +1). We evidently have

v(t +1) = exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
]
.

(8)

Considering (8), we observe that θ(·, t) and v(t) and the
corresponding logarithms are known values. Moreover, the
price/volume ration θ(ω, t + 1) can be simulated using the
above log-normal distribution (5). As mentioned above, we
can also forecast the value ln

(
p(ω, t +1)/p(·, t)

)
using a

suitable log-normal distribution (see [24]). Note that the nec-
essary parameters of the log-normal distributions for values
θ(ω, t + 1) and p(ω, t +1)/p(·, t) needed to be determined
using the available historical data.

III. APPLICATION OF THE LOG-NORMAL DISTRIBUTION
TO THE PID GAINS CALIBRATION

The main problem of interest for many researchers working
in the financial engineering is to anticipate the behavior of
stock markets giving a certain amount of historical data. For
this purpose we study the PID type trading algorithm (1)
in combination with the statistical log-normal characteristics
discussed in Section II. We now apply formula (8) and obtain
M ∈ N simulations v j(t + 1), j = 1, ...,M. of the expected

investment value at (t+1). Using the given algebraic structure
of the PID algorithm (1), we next calculate the necessary
(three-dimensional) gain coefficient K(·) as a solution of the
following optimization problem

M

∑
j=1

(
χ(δ I(t +1))− v j(t +1)p(·, t)

)2 → min

δ I(t +1) = KP(t)∆g(t)+KD(t)∆̇g(t)+

KI(t)
∫ t

t−T
h(τ)∆g(τ)dτ,

(9)

where the nonlinear function χ(·) is given by (2). Evidently,
(9) constitutes a specific nonlinear regression. This nonlinear
optimization problem finally leads to some optimal gains

Kopt(·) := {Kopt
P (·), Kopt

D (·), Kopt
I (·)}.

for the PID type trading algorithm (1). Finally, we use Kopt(·)
and define the deployed (optimal) investment level ∆Iopt(t+1)
by expressions (1)-(2). The really deployed investment volume
vopt(t +1) can be calculated as follows:

vopt(t +1) :=
∆Iopt(t +1)

p(·, t)
.

Note that the trading decision at the future time instant (t +
1) can be expressed by the current optimal investment level
∆Iopt(t+1) calculated above. It also can be determined by the
pair {sign[∆Iopt(t +1)], |vopt(t +1)|}, namely, by the current
trade direction sign[∆Iopt(t+1)] and by the associated absolute
value |vopt(t+1)| of the investment volume. The resulting PID
based strategy (1) combined with the optimal gain selection
(9) is next called Optimal PID (OPID) trading algorithm.

We now present an application of the developed PID based
AT technique to a real-world stock market data. Consider the
Binance Bitcoin / USD futures and apply the proposed AT
technique. The BTC futures price dynamics is presented in
Figure 2.

Fig. 2. Binance BTC / USD one day price index

We have applied the novel OPID trading algorithm to
the above example. The corresponding profit dynamics is
presented in Figure 3.
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Fig. 3. Binance BTC / USD one day price index

Note that the operation time of the OPID in that example is
timely restricted. The stock market under consideration has an
obvious high-frequency behaviour. This fact naturally implies
some (expected) difficulties of the common trading algorithms.
In particular, this concerns the widely used moving average
based trading strategies.

As one can see, the developed OPID constitutes a High-
Frequency Trading (HFT) strategy. The time ticks in the
above trading example under consideration are very dense.
The length of the corresponding intervals of trading buckets
is equal to 1.728 sec. Let us also note that the typical ”hy-
perregulation and stabilization” dynamics of the proposed PID
based strategy is visible (see Figure 3). The presented practical
example illustrates the implementability of the developed PID
involved AT scheme.

IV. CONCLUSION AND FUTURE WORK

In this paper, we developed a combined trading algorithm
that involves the PID control methodology and some a priori
given statistical characteristics of the stock market data. We
studied an idealized market under the assumption of only
one asset. However, the proposed analytic approach and the
resulting trading methodology can easily be extended to the
real-time multi-asset trading. Moreover, it can incorporate
some additional efficient data driven optimization techniques.

The given historical stock market data and the statistical
properties mentioned above are constructively used for an
adequate calibration (tuning) of the PID controller gains. This
calibration is based on the backtesting procedure. The resulting
optimal trading strategy generates adequate (profitable) deci-
sions of the ”buy/sell/hold” market orders at every subsequent
time instant. The proposed approach to the AT involves a
combination of two mathematically rigorous tools, namely,
the classic PID control methodology and applied statistics.
It also contains a specific data driven optimization procedure.
This combination finally leads to a novel and very promisingly
trading strategy. The resulting algorithm and the corresponding
real-world scenario based simulation technique conceptually
extend the family of the feedback based trading algorithms.

Note that the developed PID based trading approach can be
used as an additional tool in the several theoretic frameworks
of the modern financial engineering. For example, it can be
applied in combination with the well established financial time
series analytics. The proposed PID based trading algorithm is
also compatible with the generic price prediction techniques
(see e.g., [17]).

Finally note that the algorithmic trading strategy proposed
in our paper constitutes an initial (conceptual) development.
We are mostly concentrated on the formal algorithmic aspects
of the proposed technique. The financial solutions for the
stock market considered in our contribution need additional
comprehensive simulations and prototyping, further backtest-
ing, adequate data driven optimization and applications to
the real markets. We also expect a profitable application of
the proposed trading methodology specifically in the High-
Frequency Trading.
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