
Towards a Semantic Model for Wise Systems
A Graph Matching Algorithm

Abdelhafid Dahhani
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: abdelhafid.dahhani@univ-smb.fr
0000-0001-6314-662X

Ilham Alloui
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: ilham.alloui@univ-smb.fr
0000-0002-3713-0592

Sébastien Monnet
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: sebastien.monnet@univ-smb.fr
0000-0002-6036-3060

Flavien Vernier
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: flavien.vernier@univ-smb.fr
0000-0001-7684-6502

Abstract—Wise systems refer to distributed communicating
software objects, which we named Wise Objects, able to au-
tonomously learn how they behave and how they are used.
They are designed to be associated either with software or
physical objects (e.g., home automation) to adapt to end users
while demanding little attention from them. Construction of such
systems requires at least two views: on one hand, a conceptual
view relying on knowledge given by developers to either control
or specify the expected system behavior. On the other hand,
wise systems are provided with mechanisms to generate their
own view based on behavior-related knowledge acquired during
their learning processes. The problem is that, while a conceptual
view is understandable by humans (i.e., developers, end users,
etc.), a view generated by a software system contains mainly
numerical information with mostly no meaning for humans.
In this paper, we address the issue of how to relate both
views using two state-based formalisms: Input Output Symbolic
Transition Systems for conceptual views and State Transition
Graphs for views generated by the wise systems. Our proposal is
to extend the generated knowledge with the conceptual knowledge
using a matching algorithm founded on graph morphism. This
provides the ability to make wise systems’ generated knowledge
understandable by humans and to enable human evaluation of
wise systems’ outputs.

Keywords—statecharts; monitoring systems; adaptive system
and control; knowledge-based systems; discrete-event systems;
graph matching.

I. INTRODUCTION

Software systems are now everywhere in our daily life.
Their usage may vary depending on the end user and may
evolve in time. A wise system should be able to adapt itself
gracefully according to its usage. It can be seen as a particular
Multi-Agent System [1][2] that monitors only its internal
changes and does not observe its external environment. To
tackle this issue, we have previously proposed Wise Objects
(WO) and Wise systems. A WO is a piece of software able
to monitor itself: the way it is used and the way it could
be used (through introspection). A Wise system is simply

a collection of communicating WOs. The main specificity
of a WO is that it is able to autonomously learn about
itself: it monitors its method invocations and their impact,
it can also simulate method invocations to envision possible
use and explore/discover new states. A method implements a
service or functionality provided by a WO. Then, the collected
monitoring data can feed a learning process to be able to
determine usual and unusual behavior (for instance). The
autonomic behavior is a key property: the end user should not
be required to interact with the WO to help it in its learning
process. An example is that of a home-automation system that
collects someone’s behavior in a room and analyses it to be
able to act “silently” when necessary. Such systems should
require the minimum attention from their end users while
being able to adapt to changes in their behavior.

To meet those requirements and as the development of
such systems is non-trivial, we developed an object based
framework named Wise Object Framework [3] (WOF) to help
developers design, deploy and evolve wise systems. Generally,
knowledge in Artificial Intelligent (AI) enabled systems can
be provided according to two ways: describing a priori the
arrangement of activities to be performed by the system,
or, letting the system acquire the required knowledge using
learning mechanisms.

In the former case, ontologies and/or scenarios are usually
used to describe the arrangement of activities to achieve a
goal as in [4][5]. In [4], functional behavior as well as inter-
operation of system entities are described a priori using state-
diagrams. Reference [5] goes a step forward by combining
ontologies to design ambiant assisted living systems with
specifications based on logic and analyzers to check in logic
clauses before system deployment to create relevant scenarios.
In those approaches, the end user is at the heart of the
scenario creation process, as described in [6][7]. In the second
case, knowledge is provided by the AI-enabled system in

27Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

representations and views not necessarily understandable by
humans. This relates to the wide problem of comprehensibility
of AI and to the distance between the business domain and
technological domain views [8].

In this context, the WO acquires by itself knowledge about
its capabilities – services to be provided – and its use to
moderate attention from the end-users [9] (Calm technology).
Mark Weiser and John Seely Brown in [10] describe calm
technology as “that which informs but does not demand
our(users) focus or attention”. The WO also analyses this
knowledge to generate new one. As a result, it produces a State
Transition Graph (STG) of the WO behavior. We consider
STGs as the most natural way to model system dynamics.
More precisely, this graph is built by iteration, i.e., step-
wise construction, during a process called introspection. This
process is launched during a phase called dream phase in
which the WO discovers all its states (configurations) [11]. The
downside of an STG generated by a WO is that numeric data
provided has no meaning for humans. In the literature [12][13],
others graphs like Input Output Symbolic Transition System
(IOSTS) are often used to model the behavior of systems to
manage them using oracle or controller synthesis. Since this
type of graph is conceptually understandable by humans and
it has semantics, it can increase the knowledge of WO and
brings semantic to STGs.

Our proposal is to extend the generated knowledge with the
conceptual knowledge using a matching algorithm based on
graph morphism [14][15]. This provides the ability to make
wise systems’ generated knowledge understandable by humans
and to enable human evaluation of wise systems’ outputs.
Explicitly, the contribution presented in this paper attempts
to relate both views, consequently enabling machine-human
communication: (a) a conceptual view relying on knowledge
given by developers to either describe or control the system
behavior, and, (b) behavior-related knowledge acquired during
wise system’s learning process. In this way, we use two state-
based formalisms:

• STGs for representing behavior-related knowledge gen-
erated by the wise systems.

• IOSTSs for modelling conceptual views of develop-
ers/experts,

For many years, graphs have been used in many fields to
represent complex problems in a descriptive way (e.g., maps,
relationships between people profiles, public transportation)
for various purposes: analysis, operation, knowledge modeling,
etc. Although initiated in the 18th century with Euler’s work
on the now famous problem of Königsberg bridges [16], Graph
theory remains a powerful tool for software-intensive system
development. Among the most well-known operations on
graphs is the comparison of two or more graph representations
that requires many theoretical and complex concepts [14],
like graph matching and graph morphism. These are at the
basis of our proposal in this work. The rest of the paper
is organised as follows. Section II presents the basic idea,
describes the architectural overview and gives the definition

of important terms. Section III presents STG and IOSTS
formalisms and illustrates them through examples. Finally,
Section IV presents our graph matching algorithm, before
Section V, which concludes the paper.

II. BASIC IDEA & ARCHITECTURAL VIEW

The first step toward WO concept is to respect the notion
of “calm technolog” claimed by Mark Weiser and John Seely
Brown in [17], by giving an entity the ability to autonomously
adapt itself to its usage. We sketch in this section an overall
view of how we designed the WO concept to meet this
requirement.

A. Basic idea & definitions

The basic idea underlying the WO concept is to give
a software entity (object, component, subsystem) the core
mechanisms for learning behavior through introspection and
analysis. Our aim is to go further by enabling software to
execute “Monitoring”, “Analyze”, “Plan” and “Execute” loops
based on “Knowledge”, called MAPE-K [3]. At the core of
this concept, we built the WOF [18] with design decisions
mainly guided by reusability and genericity requirements:
the framework should be maintainable and used in different
application domains with different strategies (e.g., analysis
approaches).

Seeking clarity, we borrowed some terms used for humans
to refer to abilities a WO possesses. Awareness and wisdom
both rely on knowledge. Inspired by [19], we give some
definitions of those terms commonly used for humans [20]
and present those we chose for WOs.

Knowledge: refers to information, inference rules and infor-
mation deduced from them, for instance: “Turning on a heater
will cause temperature change”.

Awareness: represents the ability to collect - to provide
internal data - on itself by itself. For instance, it is when
an entity/object/device collects information and data about its
capabilities (what is intended to do) and its use (what it is
asked to do). Capabilities are the services/functionalities the
WO may render. They are implemented by methods that are
invoked by the WO itself during the “dream” phase or from
outside during the “awake” phase.

Wisdom: is the ability to analyse collected information and
stored knowledge related to their capabilities and usage to
output useful information. It is worth noticing that a WO is
highly aware, while the converse is false.

Semantic: is the meaning given to something so that it
can be understood by humans as mentioned in [20]. This
definition also applies to objects/devices, as semantic is used
to communicate with humans. The value “100” of a variable
“data” means nothing to an end user if we do not give her/him
the information that it represents a percentage of humidity.

B. WO from an architectural view

From an architectural perspective, according to the target
application, a WO may be considered as [3]:

• a stand-alone software entity (object, component, etc.),

28Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 1. Generic functional architecture of a WO.

• a software avatar designed to be a proxy for physical
devices (e.g., a heater, vacuum cleaner, light bulb) [21],

• a software avatar designed to be a proxy for an existing
software entity (object, component, etc.).

A WO is characterised by its:
• autonomy: it is able to operate with no human interven-

tion,
• adaptability: it changes its behavior when its environment

evolves,
• ability to communicate: with its environment according

to a publish-subscribe paradigm.
Figure 1 illustrates a partial view of a WO’s functional

architecture defined in the WOF. As depicted, the WO uses
awareness to collect data on itself, either in simulation mode
or usage mode. It analyses those data and generates a be-
havioral graph represented by an STG (Section III-A). States
are constructed by the WO from attribute values of invoked
methods and transitions from method invocations. On another
hand, when designing an application, developers provide a
conceptual model describing/specifying the way they view the
behavior of the system’s entities associated to WOs. Such
models are represented using IOSTS and contain the semantic
given by developers to WOs (Section III-B). The IOSTS for-
malism is mostly known in simplifying system modelling by
allowing symbolic representation of parameters and variable
values instead of concrete data values enumeration [22].

The STG and IOSTS will be given to the matching al-
gorithm (Section IV) by the WO to automatically add the
developer’s semantic to the STG. A concrete implemented
example will illustrate this matching.

III. BEHAVIORAL MODELS, DEFINITIONS AND
ILLUSTRATIONS

Modeling the behavior of a system is enabled by tools and
languages that result in informal, semi-formal (e.g., UML) or
formal representations based on already proven theories [23]
like graph theory. We have chosen STG and IOSTS graph-
based theories to WO’s behavior representation, respectively

at the conceptual level (i.e., developer’s view) and the wise
system level (WO’s generated view).

A. Definition of an STG

An STG is a directed graph where vertices represent the
states of an object and transitions represent the execution of
its methods. Let us consider an object defined by its set of
attributes A and its set of methods M . According to this
information (A and M) on the object, the STG definition is
given in Definition 1.

Definition 1: An STG is defined by the triplet G(V,E, L)
where V and E are, respectively, the sets of vertices and edges,
and L a set of labels.

• V is the set of vertices, with |V | = n where each vertex
represents a unique state of the object, and conversely,
each state of the object is represented by a unique vertex.
Therefore vi = vj ⇔ i = j with vi, vj ∈ V and i, j ∈
[0, n[.

• E is the set of directed edges where ∀e ∈ E, e is defined
by the triplet e = (vi, vj ,mk), such that vi, vj ∈ V and
mk ∈ M . This triplet is called a transition labeled by
mk. The invocation of method mk from state vi switches
the object to state vj .

• L is a set of vertex labels where any label li ∈ L is
associated to vi.
A label li is the set of pairs (attj , valuei,j) ∀attj ∈ A,
with valuei,j the value of attj in the state vi and
Dom(attj) the value domain of attj , i.e., the set of
valuei,j for all i. By definition, 2 states vi and vj are
different vi ̸= vj , iff ∃attk ∈ A, such that valuei,k ̸=
valuej,k. Conversely, if ∀k ∈ [0, |A|[valuei,k =
valuej,k, the states vi and vj are considered the same,
i.e., vi = vj , thus i = j.

The matching algorithm we propose in Section IV takes as
input an STG with a specific property we name exhaustiveness.
The definition of “exhaustive STG” is given in Definition 2.

Definition 2: An exhaustive STG is an STG such that from
each vertex vi there exist |M | transitions, each labeled by a
method mk in M :

∀vi ∈ V,∀mk ∈M,∃vj ∈ V |(vi, vj ,mk) ∈ E.

It is worth noting that vi and vj may be different or same
states (vi ̸= vj or vi = vj).

Consequently, an exhaustive STG is deterministic, i.e., from
any state, on any method invocation, the destination state
is known. Moreover, the number of transitions |E| in an
exhaustive STG depends on the number of vertices |V | and
methods |M | such that:

|V | × |M | = |E|.

Figure 2 illustrates an exhaustive STG for an object’s
behavior, defined by the attribute “level” (A = {level}) and
2 methods “open” and “close” (M = {open(), close()}).
The methods “open” and “close” increase and decrease the
level by 50, respectively. In the STG generated by an object

29Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

0

2

level = 0

1
close()

ope
n()

open()

level = 50

level = 100

op
en

()clo
se(

)close()

Figure 2. Example of an exhaustive STG.

for the shutter, except the methods that give semantic to the
transitions, the states have no semantic. Considering the level
is initialized to 0, the corresponding STG has 3 states and its
exhaustive form has 6 transitions.

B. Definition of an IOSTS

An IOSTS is a directed graph whose vertices, called local-
ities, represent different states of the system (in our case, the
system is a software object) and whose edges are transitions.
The localities are connected by transitions triggered by actions.
In graph theory, an IOSTS allows us the definition of an
infinite state transition system in a finite way, contrary to
an STG where states are defined by discrete values. IOSTS
are used to verify, test and control systems. Verification and
testing are formal techniques for validating and comparing two
views of a system while control is used to constrain the system
behavior [13].

The definition of IOSTS given in Definition 3 is taken from
[13][24] and especially from the use case given in [22].

Definition 3: An IOSTS is a sixfold ⟨D,Θ, Q, q0, Σ, T ⟩
such as:

• D is a finite set of typed data consisting of two disjoint
sets of: variables X and action parameters P . The value
domain of d ∈ D is determined by Dom(d).

• Θ : an initial condition expressed as a predicate on
variables X .

• Q is a non-empty finite set of localities with q0 ∈ Q being
the initial locality. A locality q is a set of states such that
q ∈ Dom(X), with Dom(X) being the cartesian product
of the domains of each x ∈ X . Let us note that a state is
defined by a single tuple of values for the whole variables.

• Σ is the alphabet, a finite, non-empty set of actions.
It consists of the disjoint union of the set Σ? of input
actions, the set Σ! of output actions, and the set ΣT

of internal actions. For each action a in Σ, its signature
sig(a) = ⟨p1, . . . , pk⟩|pi ∈ P is a tuple of parameters.
The signature of internal actions is always an empty tuple.

• T is a finite set of transitions, such that each transition
is a tuple t = ⟨qo, a,G,A, qd⟩ defined by:

– a locality qo ∈ Q, called the origin of the transition,

– an action a ∈ Σ, called the action of the transition,
– a boolean expression G on X ∪ Sig(a) related to

the variables and the parameters of the action, called
the transition guard. Transition guards allow us to
distinguish transitions that have the same origin and
action but disjoint conditions to their triggering.

– An assignment of the set of variables, of the form
(x := Ax)x∈X such that for each x ∈ X , Ax is an
expression on X ∪ Sig(a). It defines the evolution
of variable values during the transition,

– a locality qd, called the transition destination.

According to this definition, each variable has a subdomain
in each locality. Thus, let us define the function dom(q, x)
that returns the definition domain of the variable x ∈ X in the
locality q ∈ Q; consequently dom(q, x) ⊆ Dom(x).

Figure 3 shows an example of an IOSTS given by a
developer to control a roller shutter. This IOSTS expresses
that the roller shutter expects an input up?/down? ∈ Σ?

carrying the parameter step ∈]0, 100], the relative elevation
to respectively increase or decrease the shutter level. Let us
note that the shutter elevation is between 0 and 100.

There are 2 localities:

• The locality where the system is closed (i.e., height =
0). If the system receives the up?(step) command, the
transition will be made from the Closed to Open locality
by increasing the value of the height variable by step,
but if the system receives the down?(step) action, it will
not perform any operation (NOP).

• The locality where the system is open (i.e., height ∈
]0, 100]). If the system receives the action up?(step), the
transition will be reflexive from Open to itself and will
compute the value of the variable height by executing
this assignment height = min(height + step, 100),
the shutter elevation cannot be increased more than the
maximum of elevation. If it receives the down?(step)
action and the action closes the shutter less than it is
open (step < height), height is decreased by step,
otherwise the transition will be from the locality Open to
the locality Close by assigning 0 to the variable height.

According to Definition 3, this IOSTS is composed of the
sets of variables X = {height} with Dom(height) ∈ [0, 100]
and parameters P = {step} with Dom(step) ∈]0, 100], the
set of localities Q = {Open,Closed} and the set of actions
Σ = {up?, down?} where the signatures of the actions are
Sig(up?) = Sig(down?) = ⟨step⟩. This IOSTS models an
infinite state system based on 5 guarded transitions in T :

T = ⟨ tClose−Open,
tOpen−Close,
t1Open−Open,

t2Open−Open,

tClose−Close ⟩

30Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

〈 Closed,up?(step),True,height:=height+step,Open 〉
up?(step)

True
height := height + step

down?(step)
True
NOP

up?(step)
True

height := min(height + step, 100)
down?(step)
step ≥ height
height := 0

Closed Open

IOSTS

down?(step)
step < height

height := height - step

step]0,100]ϵ

height [0, 100]ϵ

height = 0 height]0, 100]ϵ

Figure 3. IOSTS representation of a roller shutter.

such as:
tClose−Open = ⟨ Open, up?(step),

T rue, height := height+ step,
Open⟩

tOpen−Close = ⟨ Open, down?(step),
step ≥ height, height := 0,
Close⟩

t1Open−Open = ⟨ Open, down?(step),

step < height, height := height
−step,Open⟩,

t2Open−Open = ⟨ Open, up?(step),

T rue,min(height+ step, 100),
Open⟩,

tClose−Close = ⟨ Close, down?(step),
T rue,NOP,
Close⟩.

As can be noticed, there exists an infinity of paths and states
represented by the variables height since its domain is the
interval [0, 100].

IV. GRAPH MATCHING ALGORITHM

In this section, we introduce the matching algorithm we
propose to relate WO’s generated STG to developers’ semantic
expressed in an IOSTS. In the example of Figure 2, the
generated STG is composed of states automatically labelled
by the object: 0, 1 and 2 according to the value of attribute
level: 0, 50, 100. The main challenge is how to match states
0, 1 and 2 to the localities defined by developers in the IOSTS
of Figure 3.

A. Matching algorithm
Constraint: The STG and IOSTS must meet certain criteria

to properly apply the algorithm.
1) There are two equivalent characteristics: a variable xe

belonging to the set of variables X of the IOSTS and
an attribute atte belongs to the set of STG attributes A.
Moreover, to simplify the problem in this paper, let us
consider they are unique:

∃!xe ∈ X,∃!atte ∈ A|xe ≡ atte,

xe ≡ atte means that both represent the same informa-
tion, thus:

Dom(atte) ⊆ Dom(xe).

Let us note that Dom(atte) is a subset of Dom(xe) due
to the fact that xe is theoretically defined into the IOSTS
and atte is partially discovered by the WO at runtime.

2) The domains of xe in the different localities in the
IOSTS are disjoint:

∀q, q′ ∈ Q, dom(q, xe) ∩ dom(q′, xe) = ∅,

Algorithm: According to the definitions of STG and IOSTS,
and both constraints, a vertex vi ∈ V matches a locality qj ∈
Q (noted vi =⇒ qj) if and only if valuei,e ∈ dom(qj , xe),
with valuei,e the value of atte in the vertex vi:

∀vi ∈ V,∃!qj ∈ Q
valuei,e ∈ dom(qj , xe)⇔ vi =⇒ qj .

As the matching algorithm is a graph morphism, this latter
needs to respect the structure of the matched graphs [25]. In
our context, each vertex matches one locality and a locality
is matched by at least one vertex. Moreover, the adjacency
relations must be respected by the matching; if 2 vertices are
linked by a transition in the STG, their matched localities are
the same or linked by an equivalent transition in the IOSTS.
The STG → IOSTS maching is surjective homomorphism
called epimorphism [25].

The pseudo-code in Algorithm 1 is the first version of the
matching algorithm we have developed.

B. Matching illustration

In the previous examples: the STG in Figure 2 is auto-
matically generated by a WO and the IOSTS in Figure 3 is
provided by a developer. Both represent the same roller shutter
behavior. The STG uses discrete values with a level of opening
of 50%, while the IOSTS uses continuous intervals, without
any constraint on the step that is a real value.

Figure 4 illustrates the result of matching both graphs using
our graph matcher implemented with Python. Localities in the
IOSTS are Closed and Open, each containing variables with

31Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

Algorithm 1 Graph matching algorithm
1: Inputs:

iosts: IOSTS,
stg: Exhaustive STG

2: Outputs:
match: Dictionary<state, locality>

3: Locales:
Set of possible attribute/variable pairs
E: Set Of Tuples< (attribute, variable) >
Possible matches for each possible
equivalent pair
M : Dictionary< (attribute, variable), <state,
locality>>

4: Initialize:
Build possible equivalent attribute/variable
pairs, such that dom(a) ⊆ dom(x)
E ← compatibleDomain(stg.A, iosts.X)

5: for (a, x) ∈ E do
6: for vi ∈ stg.V do
7: # Get the locality where the domain of variable x contains

the value of a in vi, according to the second constraint,
qi is unique

8: qi ← iosts.getLocality(x, vi.getV alue(a))
9: M((a, x))(vi)← qi

10: end for
11: # As the matching is a surjective application, remove the

pair if it does not generate surjective matching
12: if M((a, x)).getKeys() ̸= stg.V
13: or M((a, x)).getV aluesAsSet() ̸= iosts.Q then
14: E.remove((a,x))
15: M.remove((a,x))
16: else
17: # If the application is surjective, check the transitions’

consistency
18: for e ∈ stg.E do
19: v1 ← e.getSource()
20: v2 ← e.getDestination()
21: q1 = M((a, x))(v1)
22: q2 = M((a, x))(v2)
23: if iosts.getTransition(q1, q2) is null then
24: E.remove((a,x))
25: M.remove((a,x))
26: end if
27: end for
28: end if
29: end for
30: # Checking that just only one matching exists according

to constraints defined in Section IV-A
31: if M.getKeys().size() == 1 then
32: match←M.getV alues()[1]
33: else
34: exception(“Required conditions not satisfied”)
35: end if
36: return match

disjoint domains, in our example, a single variable named
height that takes different values depending on its locality.

According to the constraints of the matching algorithm:
1) there are equivalent characteristics between the STG

and the IOSTS, the attribute “level” and the variable
“height”, respectively,

2) the domains of “height” in the different localities are
disjoint from the others: in Closed locality, the variable
can only take the value 0 and in Open locality, the
variable can take any value in the range]0, 100].

On the STG side, there are three vertices, each one labeled
with a set of attribute-value pairs (att, value). In our case, the
unique attribute level takes the values (0, 50, 100) respectively
for (v0, v1, v2). Therefore, to establish a correspondence be-
tween the two graphs, a comparison between the definition
domain of the attribute level in each vertex of the STG with
the definition domain of the variable height in each locality
of the IOSTS must be done.

Those comparisons lead us to a correspondence of state v1
with locality Closed meaning that the roller shutter is closed,
and a correspondence of states v2 and v3 with locality Open
meaning that the roller shutter is open.

This first version of the matching algorithm has been
developed and tested as a first step towards human semantics.

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of relating numer-
ical representations generated by wise systems to developers’
semantics. The contribution is a matching algorithm that
computes a morphism between two behavioral graphs:

1) an STG generated by a WO along its learning process,
2) an IOSTS representing a developer conceptual view.

That algorithm extends a WO’s view with semantics that allow
it to communicate with humans. From the developer’s per-
spective, the resulted matching may help developers discover
errors and/or inconsistencies between the conceptual view and
the system implementation. In its first version, the algorithm
has obviously several limitations, the strongest being over
the number of equivalent attributes/variables in STG/IOSTS.
Another limitation is the constraint on the existence of only
one matching between an STG and an IOSTS. Ongoing work
is being done to gradually generalize the algorithm and raise
those restrictions. We also intend to investigate other matching
algorithms towards other semantic formalisms than IOSTS,
such as ontology and scenario-based ones [4][5].

ACKNOWLEDGMENT

This research was supported by French National Research
Agency (ANR), AI Ph.D funding project.

REFERENCES

[1] R. A. Flores-Mendez, “Towards a standardization of multi-agent system
framework,” XRDS, vol. 5, no. 4, pp. 18–24, 1999.

[2] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28573–28593, 2018.

32Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

up?(step)
True

height := height + step
down?(step)

True
NOP

up?(step)
True

height := min(height + step, 100)

down?(step)
step ≥ height
height := 0

Closed Open

IOSTS

down?(step)
step < height

height := height - step

step]0,100]ϵ

height [0, 100]ϵ

height = 0 height]0, 100]ϵ

0

2

level = 0

1

close()

ope
n()

open()
level = 50

level = 100

open()

clo
se(

)

close()

: Match to

STG

Figure 4. Algorithm result of the graph matching.

[3] I. Alloui and F. Vernier, “WOF: Towards Behavior Analysis and Rep-
resentation of Emotions in Adaptive Systems,” Communications in
Computer and Information Science, vol. 868, pp. 244–267, 2018.

[4] D. Bonino and F. Corno, “Dogont - ontology modeling for intelligent
domotic environments,” in The Semantic Web - ISWC 2008, pp. 790–
803, Springer Berlin Heidelberg, 2008.

[5] H. Kenfack Ngankam, H. Pigot, M. Frappier, C. H. Souza Oliveira, and
S. Giroux, “Formal specification for ambient assisted living scenarios,”
UCAmI, pp. 508–519, 2017.

[6] J.-B. Woo and Y.-K. Lim, “User experience in do-it-yourself-style smart
homes,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 779–790, 2015.

[7] R. Radziszewski, H. Ngankam, H. Pigot, V. Grégoire, D. Lorrain, and
S. Giroux, “An ambient assisted living nighttime wandering system
for elderly,” in Proceedings of the 18th International Conference
on Information Integration and Web-Based Applications and Services,
iiWAS ’16, pp. 368–374, Association for Computing Machinery, 2016.

[8] R. S. Michalski, “A theory and methodology of inductive learning,”
in Machine Learning: An Artificial Intelligence Approach, pp. 83–134,
Springer Berlin Heidelberg, 1983.

[9] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 66–75, 1991.

[10] A. Tugui, “Calm technologies in a multimedia world,” Ubiquity,
vol. 2004, pp. 1–5, 2004.

[11] I. Alloui and F. Vernier, “A Wise Object Framework for Distributed
Intelligent Adaptive Systems,” in ICSOFT 2017, the 12th International

Conference on Software Technologies, pp. 95–104, 2017.
[12] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Validation of Reactive

Systems,” in Modeling and Verification of Real-TIME Systems -
Formalisms and software Tools, pp. 51–76, Hermès Science, 2008.

[13] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating Formal
Verification and Conformance Testing for Reactive Systems,” IEEE
Transactions on Software Engineering, vol. 33, no. 8, pp. 558–574, 2007.

[14] M. R. Garey and D. S. Johnson, “Computers and intractability. a guide
to the theory of np-completeness.,” Journal of Symbolic Logic, vol. 48,
no. 2, pp. 498–500, 1983.

[15] V. A. Cicirello, “Survey of graph matching algorithms,” technical report,
Geometric and Intelligent Computing Laboratory, Drexel University,
1999.

[16] H. Sachs, M. Stiebitz, and R. Wilson, “An historical note: Euler’s
königsberg letters,” Journal of Graph Theory, vol. 12, pp. 133 – 139,
2006.

[17] M. Weiser and J. S. Brown, “Designing calm technology,” PowerGrid
Journal, vol. 1, pp. 75–85, 1996.

[18] I. Alloui, D. Esale, and F. Vernier, “Wise objects for calm technology,”
in Proceedings of the 10th International Conference on Software
Engineering and Applications - ICSOFT-EA, (ICSOFT 2015), pp. 468–
471, INSTICC, SciTePress, 2015.

[19] T. Davenport and L. Prusak, Working Knowledge: How Organizations
Manage What They Know, vol. 1. Harvard Business School Press, 1998.

[20] “Cambridge Dictionary Online,” 2022.
[21] I. Alloui, E. Benoit, S. Perrin, and F. Vernier, “Wise objects for IoT

33Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

(WIoT): Software framework and experimentation,” Communications
in Computer and Information Science, pp. 349–371, 2019.

[22] P. Moreaux, F. Sartor, and F. Vernier, “An effective approach for home
services management,” in 20th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 47–51, 2012.

[23] M. N. Nicolescu and M. J. Matarić, “Extending behavior-based systems
capabilities using an abstract behavior representation,” in AAAI 2000,
pp. 27–34, 2000.

[24] V. Rusu, H. Marchand, and T. Jéron, “Automatic verification and
conformance testing for validating safety properties of reactive systems,”
in Formal Methods 2005 (FM05), vol. 3582 of Lecture Notes in
Computer Science, pp. 189–204, Springer-Verlag, 2005.

[25] G. Hahn and C. Tardif, “Graph homomorphisms: structure and symme-
try,” in Graph Symmetry: Algebraic Methods and Applications, pp. 107–
166, Springer Netherlands, 1997.

34Copyright (c) IARIA, 2022. ISBN: 978-1-61208-990-4

ADVCOMP 2022 : The Sixteenth International Conference on Advanced Engineering Computing and Applications in Sciences

