
In-network Hop-aware Query Induction Scheme for
Implicit Coordinated Content Caching

Kensuke Hashimoto, Yumi Takaki, Chikara Ohta, and Hisashi Tamaki
School of System Informatics, Kobe University

Kobe, Hyogo 657–8501
Email: {hashimoto, yumi, ohta, tamaki}@al.cs.kobe-u.ac.jp

Abstract—The breadcrumb scheme was proposed to realize
content distribution in next-generation networks. In the bread-
crumb (BC) scheme, each node maintains a small piece, called a
“breadcrumb,” of query induction information. The BC scheme
can, however, increase the amount of traffic as well as file
acquisition delay since a query for a file is may diverted away
from the nearest server with the file even if the query passes
close to the server. This paper proposes a hop-aware breadcrumb
scheme, in which the query induction information includes latest
file acquisition node ID, which enables a query to be diverted
toward a closer node, the latest file acquisition node, or the server.
Simulations show that the hop-aware breadcrumb scheme yields
shorter file acquisition time than the breadcrumb scheme.

Keywords-breadcrumbs; hop-aware; query induction; in-
network cache.

I. INTRODUCTION

The Internet is now being used to transfer large contents
(or files) such as video and music more often. This has stimu-
lated research on content-centric networking such as Contents
Delivery Network (CDN)[1] and Peer-to-Peer (P2P)[2]. Most
studies consider overlay systems on the current Internet archi-
tecture. Users are, however, interested in contents themselves
rather than where they are. Therefore, more recently, content-
centric architectures have been targeted such as the “clean
slate” approach for the next-generation Internet[4], [7], [8],
[9]. In particular, in-network processing for content naming,
search, routing and storage is one of major issues for content-
centric architectures.

[4] proposed a simple content caching, location, and routing
system that adapts an implicit, transparent, and best-effort
approach towards in-network caching. The system is based
on Transparent En-Route Caches (TERC) [6], [7]. Each node
maintains a small piece, called a “breadcrumb,” of state for
queries and the direction in which a file was transferred.
For convenience, we call the system proposed in [4] the
“Breadcrumb (BC)” scheme. A breadcrumb helps a query to
locate content, so that cache hit-ratio increases, i.e. the access
load for content server is reduced.

In the BC scheme, however, even if a query for a server
passes close to the server of the file, the query may be diverted
away from the server. This may increase the amount of traffic
as well as the content acquisition delay. Furthermore, the BC
scheme is weak against dynamic changes to the topology. This
paper tackles these problems by proposing the Hop-aware BC
(HBC) scheme, which utilizes hop-count information.

The rest of the paper is organized as follows: Section II
briefly explains the BC scheme. Section III introduces the
HBC scheme as a significant improvement over the BC scheme
in terms of file acquisition delay and the amount of traffic.
Section IV conducts simulations to confirm the effectiveness
of the HBC scheme. Finally, Section V concludes this paper.

II. BREADCRUMB SCHEME

The Simple Best-Effort Content Search (S-BEACONS)
scheme, described below, is a traditional implementation of
BC [4].

In the BC scheme like the IP scheme, a query initiated for a
file by a request node is transferred to the (original) server of
the file. Each file (or content) is assumed to be indexed by a
global file ID. In the BC scheme, routers are assumed to have
the function to cache not only files but also their corresponding
BCs. The cache policy is assumed to be Least Recently Used
(LRU), which discards the least recently used item first.

A BC contains the following information:
• Global file ID.
• ID of node from which the file arrived (ID of upstream

node).
• ID of node to which the file was forwarded (ID of

downstream node).
• Previous file transfer time: most recent time the file

passed through the node.
• Previous query transfer time: most recent time the file

was requested at the node.
A BC is generated in a router when a file is transferred

through the router for the first time, and it is updated every
time the file or the corresponding query traverses the node.

A. Query Induction

In the BC scheme, if a query for a file traverses a router with
a BC for the file, the query is diverted toward the downstream
node of the file and it traces the corresponding BC trail.
Suppose that a query for a file arrived at time t at a router and
found that the file was not cached at the router. Then, with
timeout thresholds Tf and Tq, the router forwards the query
downstream if-and-only-if

• The file was cached or refreshed (via successful query)
at the router within [t − Tf , t]; or

• The previous query passed through the router within [t−
Tq, t] and sent downstream.

69

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

(F1, A, C, 31, (F1, A, C, 31, (F1, A, C, 31, (F1, A, C, 31, ----InfInfInfInf))))

(F1, (F1, (F1, (F1, nullnullnullnull, B, 30, , B, 30, , B, 30, , B, 30, ----InfInfInfInf))))

(F1, B, (F1, B, (F1, B, (F1, B, nullnullnullnull, 32, , 32, , 32, , 32, ----InfInfInfInf))))

F1F1F1F1

F1F1F1F1

AAAA

CCCC

BBBB

DDDD

Router with BCRouter with BCRouter with BCRouter with BC

Flow of ContentFlow of ContentFlow of ContentFlow of Content

ServerServerServerServer

RouterRouterRouterRouterUserUserUserUser

F1F1F1F1

FFFF1111 U1U1U1U1

U2U2U2U2

BC trailBC trailBC trailBC trail

Fig. 1. BC trail and query transfer.

1) Invalidation of BC: If the query can not find the file over
the BC trail and reaches a dead end, the BC trail is regarded
as being stale, so the invalidation procedure is invoked for the
trail. More precisely, when the query encounters a node with
its downstream entry null (i.e. dead end) and the file is not
cached there, the query turns back along the trail and deletes
the corresponding BCs along the trail.

2) Update of BC: If a file being transferred finds the
corresponding BC in a router, then the BC entries, i.e. the
upstream node ID, downstream node ID, and the most recent
time the file passed through the node, are updated. If a query
for a file finds the corresponding BC in a route, the BC entry
of the previous query transfer time is updated.

B. Example of Query Induction

Fig. 1 shows an example of the query induction in the BC
scheme. Given this figure, suppose that file F1 is transferred
via routers A, B and C and reaches user U1, so that BCs
are newly generated on the path. Note that the entry of the
previous query transfer time is set to −Inf , and the entry of
the upstream node ID in the router A, to which the server is
attached, and that of the downstream node in the router C, to
which the user U1 is attached, are set to “null.” The BC of each
router is updated every time the file or the query traverses the
router. Next, suppose that user U2 requests the same file and
sends its query to the server. It is then transferred via routers D
and B and finds an available BC for the file at router B. In this
case, the query is diverted downstream toward router C instead
of upstream router A. If the query finds the file on the way,
the file is transferred from there instead of the server to user
U2. This reduces the access load of the server. On the other
hand, if the query reaches router C where the downstream BC
entry is “null,” BCs are invalidated in the upstream direction
from router C to the server since the file is not cached on the
path.

C. Problems with BC Scheme

In the BC scheme, even if a query for a file encounters a
BC for the file near the server of the file, it is once diverted
in the downstream direction away from the server. This may

(F1, B, (F1, B, (F1, B, (F1, B, nullnullnullnull, 303, , 303, , 303, , 303, ----InfInfInfInf))))(F1, B, (F1, B, (F1, B, (F1, B, nullnullnullnull, 300, , 300, , 300, , 300, ----InfInfInfInf))))

(F1, (F1, (F1, (F1, nullnullnullnull, , , , nullnullnullnull, 305, , 305, , 305, , 305, ----InfInfInfInf))))

F1F1F1F1
F1F1F1F1 F1F1F1F1

F1F1F1F1

F1F1F1F1AAAA CCCC

BBBB

F1F1F1F1

Router with HBCRouter with HBCRouter with HBCRouter with HBC

Flow of ContentFlow of ContentFlow of ContentFlow of Content

ServerServerServerServer

RouterRouterRouterRouterUserUserUserUser

Fig. 2. Example of HBC trail.

cause not only the requesting node to suffer long acquisition
delay but also an increase in the amount of traffic in the
network. Furthermore, since a BC trail is created as a sequence
of upstream nodes (or downstream nodes), it is weak against
dynamic topology changes.

III. HOP-AWARE BREADCRUMB SCHEME

To tackle the above problems, we propose the HBC scheme
in which a piece, called HBC, of query induction information
contains the ID of the node that acquired the file most recently
instead of the downstream node ID. This modification enables
a query for a file to be transferred to a closer node, the source
of the file or the node that acquired the file most recently.
We assume that the hop information can be obtained from the
routing table.

An HBC contains the following information:
• Global file ID.
• File acquisition node ID: ID of node that acquired the

file most recently.
• ID of the node with HBC for the same global file ID

from which the query arrived (ID of upstream node)
• Previous file transfer time: most recent time the file

passed through the node.
• Previous query transfer time: most recent time the file

was requested at the node.
Note that we assume that each query includes a server ID.

It is highly possible that the node that acquired the file most
recently still has the file in its cache. Since a HBC for a file
directly points to the node that acquired the file most recently
rather than the downstream node, the HBC scheme is robust
against dynamic changes in network topology.

Like the BC scheme, when a file is transferred through a
router, an HBC is newly generated or updated like the BC
scheme. LRU is assumed as the cache policy of HBC scheme,
too. Fig. 2 shows an example of query induction in the HBC
scheme. In this figure, file F1 has already been transferred
from the server to the user. In this case, routers A through B
generate HBCs whose entry indicating the acquisition node is
the ID of the requesting user. Router B is the access router of
the user and its HBC entry of file acquisition node is “null”
to denote the access router itself.

70

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

Unlike the BC scheme, for the invalidation process ex-
plained later, a query has a field to convey an upstream node
ID, which is initially set to “null.” Note that the upstream node
does not have to be a physically neighboring node in the HBC
scheme. The query also has a field to convey an invalidated
node ID, which is also set to “null,” initially.

1) Query Induction by HBC: Suppose that a query for a file
is traveling to the source node of the file and the query finds an
available HBC for the file on the way for the first time. (The
definition of availability will be explained later.) The router
diverts the query toward the closer (hop-count basis) node,
server, or previous acquisition node whose ID is stored in the
HBC.

When the acquisition node is selected, the router enters its
own node ID into the upstream node ID field of the query
before sending it.

Also the router sets the entry of the upstream node ID in
the HBC to “null.” The router then sends the query to the
acquisition node. Every time the query finds an HBC that
points to the same acquisition node for the same file at another
router on the way, the upstream node ID field in the query is
copied into the entry of the upstream node ID in the HBC
of the router, and the router writes its own node ID into the
upstream node ID field of the query before sending it to the
next hop. This process makes the HBCs point to the same
acquisition node for the same file to be linked in a serial
manner in the reverse (or upstream) direction.

If the file is found on the path toward or at the access router
of the acquisition node, the file is transferred from there to
the new request user. Otherwise, the invalidation procedure
explained in Section III-2 is invoked. In this case, the file
will eventually be transferred from the server to the requesting
node.

The availability of the HBC is determined as follows.
Suppose that a query for a file arrives at time t at a router.
If the router has the HBC for the file, the HBC is available
if-and-only-if

• The file was cached or refreshed (via successful query)
at the router within [t − Tf , t]; or

• The previous query passed through the router within [t−
Tq, t].

Otherwise the HBC is deleted.
2) Invalidation of HBC: If the query could not find the file

on the path toward or at the access router for the acquisition
node, the HBCs pointing the acquisition node over the path
should be invalidated (Note that the access router has the HBC
whose the acquisition node field is set to null.) This can occur
due to the cache policy, LRU in this paper. The access router
returns the query toward the upstream node whose ID is stored
in the HBC after the invalidated node ID field of the query is
set to the acquisition node ID. The query is successively sent
back following the upstream node IDs of the HBCs over the
reverse path until it arrives at the router whose HBC entry of
the upstream node ID is null. (Note that the router is the first
one where the query found the HBC for the file.) After that,
the query is diverted to the source, and eventually the file is

AAAA BBBB

FFFF

CCCC

EEEE

DDDD

Router with HBC for Router with HBC for Router with HBC for Router with HBC for F1F1F1F1

(F1, B, C, 400, 730)(F1, B, C, 400, 730)(F1, B, C, 400, 730)(F1, B, C, 400, 730)

(F1, (F1, (F1, (F1, nullnullnullnull, D, 401, 731), D, 401, 731), D, 401, 731), D, 401, 731)

Flow of queryFlow of queryFlow of queryFlow of query
UUUU1111

U2U2U2U2

ServerServerServerServer

RouterRouterRouterRouterUserUserUserUser

Fig. 3. Example of HBC query induction.

transferred to the request node. On the way, if the query finds
an HBC whose entry of the acquisition node for the file is the
same as the invalidated node, the HBC is also invalidated.

3) Update of HBC: When a file traverses a router, an
HBC for the file is newly generated or updated in the router.
At this time, the entries of the upstream node ID and the
previous query transfer time are set to null and the current
time, respectively. The entry of the file acquisition node is
set to the ID of the closer (hop-count basis) node, current
requesting node, or previous file acquisition node. As a result,
the next query will be sent to the closer node. Recall that we
assume that the hop-count is obtained from the routing table.
Similar to the BC scheme, when a query for a file traverses
a router with an existing HBC for the file, the entry of the
previous query transfer time is updated to the current time.

A. Example of Query Induction

Fig. 3 shows an example of query induction in the HBC
scheme. In this figure, suppose that file F1 is transferred via
routers A through C and reaches user U1, so that HBCs are
newly generated. Next, suppose that user U2 requests the same
file and sends a query to the server. It is transferred via routers
F and E and finds an available HBC for the file at router C.
Router C refers to its routing table, and then diverts the query
to router B which is closer (hop-count basis) than the server
from router C. For the invalidation process, the query conveys
the ID of router C which will be written in the entry of the
upstream node of the HBC of router D. On the path from router
C to router B, if the query finds the corresponding file, it will
be transferred from there to user U2, so that HBCs are newly
generated or updated on the file transfer path. Otherwise,
the query deletes the HBCs from router B by following the
upstream entries of the HBCs, and then the query arrives at
router C which has an HBC whose entry of the upstream node
is null. Therefore, the query is transferred to the server, and
the file is downloaded from the server to the request node.

IV. PERFORMANCE EVALUATION

In order to compare the HBC scheme with the BC scheme
and the IP scheme for the case of several thousand routers, we
developed an event-driven simulator in C++ instead of utilizing
ns-2 or ns-3. Router topologies used in the simulations were
generated based on the BA model by BRITE [3].

71

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

TABLE I
BASIC PARAMETER.

Item Value
Link capacity 1 packet/unit time
Number of files 10,000
Number of routers 6,000
Number of servers 300
Number of users 600
Query size 1 packet
File size 100 packets
Router cache size 100 files

We suppose that servers and users are located in the core
and the edges of networks, respectively. Therefore, in the
scenarios of the simulations, the servers are attached to the
routers one by one in decreasing order of link degree. The
users are attached to the routers one by one in increasing order
of link degree. Furthermore, since routes in the core network
cannot be expected to have enough high-speed memory even
in the future, we assume that each router has only a cache to
store BC or HBC, and only edge routers to which users are
attached have enough cache capacity to store files. The query
interval of each user follows an exponential distribution. A
requested file is selected according to a Zipf-like distribution
with α = 0.75[5]. We also assume that query and file transfers
are without packet loss.

Table I shows the parameters used in the simulations.
As shown in Table I, each link is assumed to have the

capacity that one packet can be sent in one unit time, that
is, the transmission time Ts is one. Queueing delay Tw of an
output link of a router is estimated from the amount of traffic
by using the M/M/1 queueing model[10]. Let Dq denote the
average file discovery delay which is the time from the epoch
that a query is issued to the epoch that the query finds the
file. Using the average number hq of hops taken by a query,
which is obtained from the simulation results, the average file
discovery delay Dq is roughly estimated as

Dq = Lq + hq(Tw + Ts), (1)

where Lq denotes query length in packets, and Lq = 1 in this
case. Next, let Df denote the average file transfer delay which
is the time from the epoch that file is found to the epoch that
the file is received by the requesting node. Using the average
number hf of hops taken by a file, which is also obtained
from the simulation results, the average file transfer delay Df

is roughly estimated as

Df = Lf + hf(Tw + Ts), (2)

where Lf denotes file length in packets, and Lf = 100 in the
simulations. Finally, total file acquisition delay D is given as

D = Dq + Df . (3)

A. Simulation Results

1) Influence of Timeout Threshold: Figs. 4 and 5 show the
relative delay ratio in the IP scheme and the download ratio

 60

 70

 80

 90

 100

 110

 100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
de

la
y

ra
tio

 to
 IP

 s
ch

em
e(

%
)

Tf

BC
HBC

Fig. 4. Characteristics of relative delay ratio in IP scheme as a function of
Tf (Tq = 10, Ti = 70).

 15

 20

 25

 30

 35

 40

 45

 50

 55

 100 200 300 400 500 600 700 800 900 1000

D
ow

nl
oa

d
ra

tio
 fr

om
 c

ac
he

(%
)

Tf

BC
HBC

Fig. 5. Characteristics of download ratio from cache as a function of Tf

(Tq = 10, Ti = 70).

from cache (i.e. cache hit ratio), respectively. Here, the average
query interval per user is set to Ti = 70. The timeout threshold
Tf is varied from 100 to 1, 000 while the timeout threshold
Tq is fixed to Tq = 10.

From the figures, we can see that the relative delay ratio of
the BC scheme increases while the download ratio from cache
increases as the timeout threshold Tf increases. This is because
the life time of BC increases and the possibility that files are
transferred from further away increases, which means that, in
one sense, cache is utilized efficiently. On the other hand, it
is shown that the HBC scheme can suppress the relative delay
ratio by about 10 to 18 points compared to the BC scheme.
The download ratio from cache, however, does not increase as
much as that of the BC scheme.

2) Influence of Query Interval: Next, the average query
interval Ti per user was varied from 65 to 200. The timeout
threshold Tq and Tf were fixed to 10 and 1, 000, respectively.
Figs. 6 to 7 show the relative amount of traffic in the IP
scheme, the relative delay ratio in the IP scheme, and the

72

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

 90

 92

 94

 96

 98

 100

 102

 104

 60 80 100 120 140 160 180 200

R
el

at
iv

e
tr

af
fic

 to
 IP

 s
ch

em
e

Average request interval

BC
HBC

Fig. 6. Characteristics of relative traffic ratio in IP scheme as a function of
request interval.

 60

 70

 80

 90

 100

 110

 60 80 100 120 140 160 180 200

R
el

at
iv

e
de

la
y

ra
tio

 to
 IP

 s
ch

em
e(

%
)

Average request interval

BC
HBC

Fig. 7. Characteristics of relative delay ratio in IP scheme as a function of
request interval.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60 80 100 120 140 160 180 200

D
ow

nl
oa

d
ra

tio
 fr

om
 c

ac
he

(%
)

Average request interval

BC
HBC

Fig. 8. Characteristics of download ratio from cache as a function of request
interval.

download ratio from cache, respectively.
Fig. 6 shows that the HBC scheme reduces the amount of

traffic compared to the BC scheme. This is because the HBC
scheme shortens the length of the path on which the query

and the file are transferred.
Fig. 7 shows that the relative delay ratio of HBC becomes

smaller than that of BC as the query interval shortens, i.e. the
offered load increases. For instance, the HBC scheme reduces
the relative delay ratio in the IP scheme by about 34 points
compared to the BC scheme. This is because even a slightly
difference in traffic amount leads to a quite different queueing
delay at high offered loads.

Fig. 8 shows that the download ratio from cache increases in
both the BC scheme and the HBC scheme as the query interval
shortens, i.e. the offered load increases. This is because more
frequent requests for a file lead to more frequent updates of
BCs or HBCs, so they are available for longer times. It is also
shown that the BC scheme has larger download ratio from
cache than the HBC scheme regardless of the offered load.

V. CONCLUSIONS

In this paper, we proposed the HBC scheme which takes
account of hop-count information to reduce file acquisition
delay and decrease the amount of traffic.

Simulations were conducted to compare the HBC scheme to
the BC scheme and the IP scheme. Consequently, it was shown
that the HBC scheme is effective since it suppresses not only
the file acquisition delay but also the amount of traffic, even
though the download ratio from cache increases.

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to Prof. Jim
Kurose and Mr. Elisha Rosensweig who provided valuable
comments and suggestions. We gratefully appreciate the finan-
cial support of Information and Communications Technology
(NICT), Japan.

REFERENCES

[1] Akamai Technologies, http://www.akamai.com, accessed May 16, 2011.
[2] BitTorrent, http://www.bittorrent.com/, accessed May 16, 2011.
[3] BRITE, http://www.cs.bu.edu/brite/, accessed May 16, 2011.
[4] E. J. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort con-

tent location in cache networks,” Proc. IEEE INFOCOM 2009, pp. 2631–
2635, April 2009.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” Proc. IEEE
INFOCOM 1999, pp. 126–134, March 1999.

[6] P. Krishnan, D. Raz, and Y. Shavit, “The Cache Location Problem,”
IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 568–582, Oct.
2000.

[7] S. Paul, R. Yates, D. Raychaudhuri, and J. Kurose, “The cache-and-
forward network architecture for efficent mobile content delivery services
in the future internet,” Proc. Innovations in NGN: Future Network and
Services 2008, K-INGN 2008, pp. 367–374, May 2008.

[8] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
Indirection Infrastructure,” ACM SIGCOMM Computer Communication
Review, vol. 32, no. 4, pp. 73–86, Oct. 2002.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” Proc. CoNEXT 2009,
pp. 1–12, Dec. 2009.

[10] L. Kleinrock, “Queueing Systems: Volume I ―Theory,” Wiley Inter-
science, New York, 1975.

73

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

