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Abstract—The success of user-centric networks depends on
the willingness of the participants to cooperate by sharing
resources and services. Reputation-based incentives and remu-
neration (based either on fiat money or on virtual currency)
have emerged as two complementary incentive mechanisms to
increase users’ motivation and to discourage selfish behaviors.
In this paper, we conduct a formal study of the benefits of the
joint application of these two mechanisms in the context of a
cooperation model recently proposed for user-centric wireless
networks. To this purpose, several performance properties of
cooperation incentives mechanisms are defined and analyzed
through model checking of probabilistic systems with an
underlying Markov process semantics.

Keywords-trust, virtual currency, model checking, user-
centric networks.

I. INTRODUCTION

As more and more people get involved in any kind of
online communities, ranging from social networks to sharing
communities and online games, user centric networking is
becoming more and more relevant for the future of the
Internet. User centricity, however, entails cooperation among
members of broad communities who usually do not know
each other in person. Hence, cooperation incentives and trust
mechanisms are essential requisites of any community, the
success of which strongly depends on the willingness of its
members to cooperate and can be impaired by mistrust and
selfishness. This is particularly true in user-centric wireless
networks (UCNs), where even the underlying communica-
tion infrastructure is dynamically built by users who share
their Wi-Fi connections, and the inherent limitations of
mobile devices (in terms of battery, CPU, and bandwidth)
can keep users from adopting prosocial behaviors.

When inherent motivations (including fairness, synergy,
and sense of community) provide no sufficient cooperation
incentives [1], they need to be complemented by extrinsic
motivations, such as reputation, reciprocity, and monetiza-
tion. It has been recently shown that a suitable support for
the implementation of extrinsic cooperation incentive mech-
anisms in UCNs can be provided by the joint application of
trust management [2] and virtual currency [3] systems [4].
Trust and virtual currency infrastructures provide the means
for implementing the so-called soft security, which is charac-
terized by relaxation of the security policies and enforcement
of common ethical norms for the community [5]. Such
means do not rely on pervasive controls concerning, e.g.,

assurance of payment or service delivery, thus exposing the
system to dishonest behaviors that, however, are contrasted
by the adoption of cooperation incentives. Hence, it is
important to verify to what extent the incentives can deal
successfully with mistrust, selfishness, and cheats.

A game-theoretic analytical study [6] has recently re-
vealed that reputation-based and price-based strategies must
be integrated in order to optimize the effects of cooperation
incentives. Game theory has been widely used to conduct
a mathematical analysis of the complex interactions among
nodes of wireless ad-hoc networks [7], [6]. The results of
the analytical study are consolidated by simulation results
showing the fast convergence towards cooperative behaviors
in the case of mixed incentive strategies.

This work provides an orthogonal view of the benefits of
mixed cooperation incentives by employing formal analysis
techniques for the evaluation of quantitative properties of
systems. In particular, as a real-world case study, we analyze
several performance metrics of the cooperation process
envisioned by Bogliolo et al. [4] for UCNs.

Formal methods provide mathematically rigorous tech-
niques and tools for the design and verification of systems.
More precisely, formal specifications are mathematical mod-
els (e.g., automata), formal verifications are based on well-
formed statements (e.g., in a temporal logic), and automatic
checks rely on analysis algorithms (e.g., model checking).
In this paper, we evalute the cooperation model under study
through the probabilistic model checker PRISM (see, e.g.,
[8], [9] for a survey of the approach). The modeling language
of PRISM is a state-based mathematical formalism based
on the Reactive Modules introduced by Alur and Hen-
zinger [10], from which different types of probabilistic mod-
els can be derived, including discrete-time Markov chains
(DTMCs) and Markov decision processes (MDPs) [11], [12].
Performance properties are expressed in a temporal logic –
subsuming both probabilistic computation tree logic (PCTL)
and linear time logic (LTL) – which is expressive enough to
specify state-based and path-based properties, and including
both probabilistic and reward operators [13].

In the remainder of the paper, we briefly introduce the co-
operation model of [4] and the related modeling assumptions
(Section II), we report and discuss the results of the model
checking analysis (Section III), and we draw conclusions
(Section IV).

32Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet



II. COOPERATION MODEL

This section briefly outlines the cooperation model under
study [4] and the modeling assumptions adopted for analysis
purposes. Cooperation involves users providing services,
hereafter called requestees, and recipients of such services,
hereafter called requesters. According to [4], the cooperation
process entails four phases, which rely on trust management
and virtual currency.

In the first phase, called discovery and request, the
requester searches for a requestee offering the required
service. Reputation of the requestee is a parameter guid-
ing the choice. If the requester is trustworthy enough to
access the required service, then the issued request can
be accepted. However, it may be also refused because of,
e.g., lack of willingness to cooperate. In the second phase,
called negotiation, requester and requestee establish service
parameters and reward, possibly taking into account the
trust of the requestee on the requester. In the third phase,
called transaction, service is delivered and then the related
payment is provided. In the fourth phase, called evaluation
and feedback, the transaction results are used to adjust, if
necessary, reputation of the involved parties.

A. Reputation System

As usual in several trust-based systems [5], we model trust
(reputation) as a discrete metric. Basically, the cooperative
attitude of the requestee depends on two parameters: the
dispositional trust dt , representing the initial willingness
to trust incoming requests, and the service trust level st ,
representing a threshold below which the service is not
accessible. Then, given a requestee i and a requester j, the
computation of the trust level of i towards j is obtained by
mixing direct experience and indirect recommendations:

Tij = α · trust ij + (1− α) · recsij

where α ∈ [0, 1], trust ij is the trust metric deriving from
previous direct interactions of i with j (the initial value of
trust ij is set to the dispositional trust of i, dt i), and recsij

is the average of the trust metrics towards j of other users
(different from i) that in the past negotiated directly with j.
Notice that, if Tij < st i then the service request of j cannot
be accepted by i.

B. Virtual Currency System

Reputation-based and reward-based incentives are com-
bined by including the trust level T of the requestee towards
the requester as a parameter affecting the cost of the nego-
tiated service. The other parameters are Cmin , which is the
minimum reward (cost) asked by the requestee regardless of
his/her trust on the requester, Cmax , which is the maximum
reward asked to serve untrusted users, and T ′, which is the
trust threshold above which the minimum cost is applied to

the requester. Then, the cost function C proposed in [4] is
defined as follows:

C(T ) =
{
Cmin + Cmax−Cmin

T ′ · (T ′ − T ) T < T ′

Cmin T ≥ T ′ (1)

C. Modeling Assumptions

For the sake of simplicity, here we assume that users do
not play the roles of both requester and requestee. Moreover,
we consider a unique type of service that is offered by
each requestee in the network. Trust values range in the
interval [0, 10], such that null = 0, low = 2, med = 5,
high = 8, and top = 10. Based on the system described
above, the modeling assumptions concerning the four-phase
cooperation process are as follows.

1) Discovery and request. The choice of the requestee can
be nondeterministic, prioritized (precedence is given
on the basis of (i) requestee’s reputation and then
(ii) requestee availability to negotiate; choice among
requestees with the same reputation is random), or
probabilistic (probabilities are weighted by requestee’s
reputation). By default, the chosen requestee i refuses
the request of requester j if and only if Tij < st i. The
default initial reputation is low for every requestee.

2) Negotiation. The agreement between i and j is suc-
cessful. The cost C determined by i through the ap-
plication of Equation (1) is accepted by j without any
further negotiation. The default values are Cmin = 0,
Cmax = 10, and T ′ = high .

3) Transaction. By default, the service is delivered with
success. Then, j decides whether to pay or not, either
nondeterministically or probabilistically with parame-
ter p ∈ [0, 1], namely j pays the obtained service with
probability p.

4) Evaluation and feedback. Since the service is satisfac-
tory, the reputation of i as perceived by j is increased
by 1. On the other hand, the trust of i towards j
increases (decreases) by 1 (by a factor k) in the case
j pays (or not) the service. Feedback is provided by i
to the other requestees.

The reader interested in the PRISM formal specifica-
tions of the cooperation model and of the logic-based
properties analyzed in the following section can refer to:
http://www.sti.uniurb.it/aldini/prism_uloop/.

III. MODEL CHECKING OF THE COOPERATION MODEL

The analysis of the cooperation process through model
checking is divided into two steps. First, we study the
vulnerabilities of the trust-based mechanism with respect to
a possibly cheating requester that may decide not to pay the
obtained services. Based on the results of such an analysis,
we then verify the efficiency of the mixed cooperation
incentives in discouraging selfish behaviors of the requestees
and motivating honest behaviors of the requester.
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Figure 1: MDP analysis: verification of Property 1 for 27 combinations of parameters α/st/k.

A. MDP Analysis

The effectiveness of the trust-based mechanism with
respect to cheating requesters is expressed through the
following property:

Property 1. What is the maximum number of services (out
of nr requests) that can be obtained by a requester without
honouring the payment?

This property is investigated in a scenario with a single
requester and three alternative requestees. With respect to
the assumptions of Section II-C, we consider requester’s
choices to be nondeterministic. Hence, the requester can be
viewed as an adversary controlling the way in which the
nondeterminism is solved adaptively. The aim of such an
adversary is to find out the strategy maximizing the number
of unpaid services, thus revealing the worst case from the
viewpoint of the requestees.

Formally, the semantics of the model turns out to be
an MDP on which Property 1 is evaluated by solving

the nondeterminism in all possible ways. Then, the model
checker returns the result for the best adversary strategy.
Notice that such a strategy corresponds to the most powerful
adversary, which can observe the behavior and the configu-
ration parameters of all the requestees.

We assume three equal requestees characterized by
the configuration of parameters α/st/k, where: α ∈
{0.5, 0.8, 1} is the contribution of direct experience to trust,
st ∈ {low ,med , high} is the service trust threshold, and
k ∈ {1, 2,∞} denotes the rapidity with which the trust to-
wards a cheating requester is decreased each time a payment
is not honoured (∞ stands for the immediate assignment of
the value null to the trust level). The dispositional trust is
chosen to be equal to the service trust threshold in order
to make it possible for a new requester to start negotiating
services with the requestees.

All the 27 combinations of the parameters introduced
above are analyzed, as illustrated in Fig. 1. The horizontal
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axis denotes the total number of requests nr, ranging from 1
to 25, while the vertical axis reports the maximum number
of unpaid services. From the analysis, we observe that for
each value of α and st the success of the cheating strategy
is inversely proportional to the factor k. In practice, the
higher the value of k is, the faster the reaction to dishonest
behaviors and, therefore, the negative effect upon trust. For
the same reason, the higher the service trust level st is, the
lower the number of unpaid services. When α = 1, however,
the service trust level does not affect the results because any
decision depends only on previous direct experience. The
analysis could be extended to values of α < 0.5, obtaining
results similar to those related to 0.5/low/ , regardless of
the value of st . These results reveal a typical attack of a
dishonest requester cheating only one requestee, which gives
too much weight to the positive recommendations provided
by the other requestees.

The results of Figure 1 suggest to categorize the behavior
of the requestee according to two limiting profiles:
• risky profile, for which the unpaid services increase

linearly and most of the served requests are unpaid (see,
e.g., configurations 0.5/low/ , 0.8/low/ and / /1).

• cautious profile, for which the number of unpaid ser-
vices is essentially constant (see, e.g., configurations
/high/∞, 0.8/med/∞, and 1/ /∞).

B. DTMC Analysis

The two profiles defined above give a clear and precise
perception of requestee’s attitude to take prosocial decisions
in an environment where requesters are possibly cheating.
This subsection reports the results of further investigations
conducted by considering risky requestees represented by
configuration 0.5/low/1 and cautious requestees represented
by configuration 0.8/med/∞. Whenever the profile is not
specified, configuration 0.8/low/1 is taken as default.

In order to analyze more specific properties, we assume
prioritized choice of the requestee and payment honoured
probabilistically with parameter p (see Section II-C). Hence,
now the semantics of the model is a DTMC, on which both
steady-state and transient-state analyses can be conducted.

On one hand, the steady-state analysis reveals the success
of the cooperation mechanism on the long run. Indeed, it
turns out that at steady state for each p < 1 the requester
becomes untrusted with probability 1 by any requestee. On
the other hand, the transient analysis is important to study
the convergence speed towards such a result.

Property 2. What is the probability for a cheating re-
quester of being untrusted by each requestee after nr re-
quests?

We evaluate this property by varying parameter p and by
assuming nr ∈ {10, 25, 50, 100}. Moreover, we consider:
(i) three risky requestees (see Fig. 2a), (ii) three requestees
among which one is risky and one is cautious, while
the default configuration is adopted for the third one (see

(a) 3 risky requestees.

(b) 1 risky, 1 cautious, and 1 default requestee.

(c) 3 cautious requestees.

Figure 2: DTMC analysis: verification of Property 2.

Fig. 2b), and (iii) three cautious requestees (see Fig. 2c).
All the curves tend rapidly to 1 for p < 0.5 and converge to
zero as p tends to 1. In particular, notice that in the case of
3 cautious requestees, for nr ≥ 25 the curves approximate
a step function, meaning that a cheating requester is almost
immediately untrusted by each requestee.

Three more properties are tested in order to investigate
the economic aspects of the cooperation mechanism:

Property 3. What is the number of requests accepted by
each requestee?

Property 4. What is the total expected earning for each
requestee?

Property 5. What is the average earning per accepted
request?
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(a)

(b) Cmin = 0 (c) Cmin = 2

(d) Cmin = 0 (e) Cmin = 2

Figure 3: DTMC analysis: verification of Properties 3, 4, and 5.

We use these properties to compare the two profiles in
a scenario with 50 requests and three requestees like those
of Fig. 2b. Fig. 3 reports the performance of the risky and
cautious requestees as a function of parameter p. The curves
show the following results.

The number of services accepted by the risky requestee is
higher than that related to the cautious requestee, see Fig. 3a.
The difference is due to the relaxed conditions applied by
the risky requestee, in particular the assumption k = 1 (resp.
k =∞ for the cautious requestee). In fact, by setting k =∞
also for the risky requestee, its curve would collapse with
that of the cautious requestee. Notice that in case of honest
requester (i.e., p = 1), the profile of the requestees does not
play any role, so that the requests are equally distributed

among them, because they are assigned with the same initial
reputation.

As p increases, the total expected earnings of the risky
requestee become much higher than those of the cautious
one, see Fig. 3b. The difference can be interpreted as a
reward for taking more risk.

Similarly, Fig. 3d shows that the average expected re-
ward/cost per service grows with the value of p up to a maxi-
mum point beyond which the expected reward/cost decreases
because of the effect of the trust-based discount applied to
trustworthy requesters. Such a maximum point is reached
earlier by the risky requestee, thus motivating the better
performance of the cautious requestee for p ∈ [0.6; 0.9].
We also observe that in such an interval the trust level of
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the requester becomes stably high from the viewpoint of the
risky requestee, as emphasized by the total earnings curve
of Fig. 3b. For p ≥ 0.95, the result is better for the risky
requestee, because the requester becomes trustworthy also
from the viewpoint of the cautious requestee, with a positive
impact upon the number of services such a requestee accepts,
see Fig. 3a.

In general, the combined effect of cost function and
trust management works as an incentive to adopt a ”risky”
prosocial behavior. On the other hand, it is clear that the
requester obtains more services at a lower average cost
whenever adopting a honest behavior.

In order to show that the shape of the reward/cost curves
is not purely a side effect of the assumption Cmin = 0, in
Figs. 3c and 3e we show the total and average expected
reward/cost obtained in the case Cmin = 2. The major
earnings with respect to the corresponding curves of Figs. 3b
and 3d reflect the difference between the minimum costs
applied in the two experiments.

In order to emphasize the effect of parameter k on trust,
in Fig. 4 we show the performance of the risky requestee
for k ∈ {1, 2,∞} and by assuming the same scenario of
Fig. 3. Observe that the curves related to number of accepted
services and total earnings improve their performance as
k decreases. Indeed, as we have previously seen, k and
tolerance to cheating behaviors are inversely proportional.
Instead, we observe the opposite result for the average
earnings, because a high value of k corresponds to a fast trust
decrease and, therefore, higher costs per service. Also notice
that whenever the requester is honest and, as a consequence,
k is never used, the three curves converge to the same values.

Similarly, we now study the impact of the dispositional
trust. By varying parameter dt ∈ {low ,med , high}, in Fig. 5
we show the performance for the risky requestee in the
same scenario of Fig. 3. Increasing the dispositional trust
has a twofold impact. On one hand, it works as an incentive
to accept more services and augment the total earnings
whenever the requester is not always honest. On the other
hand, as p tends to 1, the service cost rapidly converges
towards the minimum cost thus impairing the total earnings.
The same considerations apply to the analysis of the relation
between average reward/cost and dispositional trust.

C. Requestee’s Reputation

Requestee’s reputation is an orthogonal aspect the effects
of which are analyzed in Fig. 6. The objective is to measure
the impact of requestee’s reputation with respect to Property
3. In Fig. 6a we consider prioritized choice of the reques-
tee, one risky requestee with reputation high, one cautious
requestee with reputation low, while the reputation of the
third requestee (with default profile) is med. Regardless of
the profile, all the requests are served by the requestee
with highest reputation, as imposed by the choice strategy
followed by the requester. In fact, an analogous result would

(a)

(b)

(c)

Figure 4: DTMC analysis: verification of Properties 3 to 5
for the risky requestee by varying parameter k.

be obtained by swapping the reputations of the risky and
cautious requestees. Giving less importance to reputation
during the discovery phase has the effect of mitigating such a
drastic behavior, as confirmed by the following experiment,
in which the prioritized model of choice is replaced by
the probabilistic one (see Section II-C). The results, shown
in Fig. 6b, emphasize that also the cautious requestee can
obtain some service. However, regardless of the value of p,
it is always outperformed by the risky requestee.

The effect of requestee’s reputation is investigated also by
testing the performance of a paranoid requestee (α = 0.5,
dt = low , st = med , k = ∞) replacing the cautious
requestee in the experiment of Fig. 3. In Fig. 7a we evaluate
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(a)

(b)

(c)

Figure 5: DTMC analysis: verification of Properties 3 to 5
for the risky requestee by varying parameter dt .

Property 5 for the paranoid requestee in two possible cases
depending on its initial reputation. Apparently surprising,
a paranoid requestee with reputation med, when put in
competition with the other requestees (whose reputation is
low), does not obtain any reward. This result is motivated by
the fact that, initially, the paranoid requestee does not accept
any request until a sufficiently high number of positive
recommendations is received, because its service trust level
is higher than its dispositional trust. Moreover, such requests
are accepted by the other requestees, which gain reputation,

(a) Prioritized choice (risky rep. = high, cautious rep. = low)

(b) Probabilistic choice (risky rep. = high, cautious rep. = low)

Figure 6: DTMC analysis: verification of Property 3 with
mixed reputations.

thus causing preemption over the paranoid requestee during
the prioritized discovery phase. In order to observe some
request served by the paranoid requestee, it is necessary to
set its initial reputation to high. In this case, we evaluate also
Property 3 (see Fig. 7b). Notice that the paranoid requestee
accepts a very low number of services for p < 0.9, while
it outperforms the risky requestee only for p = 1, the
reason being that the honest requester becomes trustworthy
rapidly enough to overcome the non-cooperative attitude of
the paranoid requestee.

In a real-world setting, reputation of the requestees may
also decrease, e.g., because the quality of the delivered
service does not match the negotiated parameters. This
aspect is not captured by the experiments reported so far.
In order to analyze the importance of requester’s feedback,
we extend the cooperation model to represent the (possibly
negative) change of requestee’s reputation due to requester’s
evaluations. In particular, we model probabilistically with
parameter q ∈ [0, 1] the event of a service failure causing a
negative evaluation.

Property 6. How does requestee’s reputation impact the
number of accepted requests in the case of fallible services?

In a pessimistic scenario, upon each served request re-
questee’s reputation has the same probability (namely, 0.33)
of remaining unchanged, being increased by 1, or being
decreased by 1. In an optimistic scenario, with probability
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(a) risky rep. = low

(b) risky rep. = low, paranoid rep. = high

Figure 7: DTMC analysis: verification of Properties 5 and 3
with paranoid requestee.

0.8 requestee’s reputation is increased by 1, with probability
0.15 is maintained, and with probability 0.05 it is decreased
by 1. We compare these two scenarios with the original one
(modeling an ideal service provider) in which requestee’s
reputation is always incremented. Therefore, the three sce-
narios are characterized by q = 0.33, q = 0.05, and q = 0,
respectively. Moreover, for the analysis we consider a honest
requester, one cautious requestee with reputation high, one
requestee with default profile and reputation med, and one
risky requestee. In Fig. 8 we evaluate Property 6 for the
risky requestee, by varying its initial reputation from 1 to
10. For q = 0, the risky requestee is always outperformed
by the cautious requestee in every case in which its initial
reputation is less than high. The two requestees share the
same amount of services if the initial reputation of the risky
requestee is high as well, while the risky requestee takes all
the requests in the remaining cases. These results depend
on the fact that the reputation level high of the cautious
requestee never decreases. The other curves approximate
such a behavior (the lower q is, the closer the approximation
becomes) and reveal that the possibly negative feedback
provided by the requester affects the performance of the
requestees.

In an orthogonal way with respect to the previous ex-

Figure 8: DTMC analysis: verification of Property 6.

periment, we now consider the case of non-cooperative
requestees, which may refuse a request even if the requester
is trustworthy enough to access the service. To this aim,
we model probabilistically with parameter ci ∈ [0, 1] the
cooperative attitude of requestee i, such that i accepts a
trustworthy request with probability ci and refuses it with
probability (1−ci). Obviously, refusing a trustworthy request
is evaluated with a reputation decrease, as opposite to the
reputation increase determined by a satisfactory service.

Property 7. How does requestee’s reputation vary in the
case of non-cooperative requestees?

For analysis purposes, we consider a honest requester
and three risky requestees with initial reputation low = 2.
In Fig. 9a we evaluate Property 7 for the first requestee
as a function of parameter c1. In particular, we report its
average relative reputation variation after 50 requests in
two different cases, depending on the behavior of the other
two requestees. In the first case, they are fully cooperative
(i.e., c2 = c3 = 1), while in the second case they are
partially cooperative (i.e., c2 = c3 = 0.5). In general, the
lack of cooperation has a negative impact upon reputation
of the first requestee, while it converges towards the top
level as c1 increases. We also observe that the reputation
variation is slower in the first case with respect to the
second case. The reason is that in the first case most of
services are required to the two cooperative requestees,
whose reputation increases rapidly thanks to their prosocial
behavior. In order to emphasize the benefits of cooperative
behaviors, in Fig. 9b we evaluate Property 3 for the first
requestee in the two cases above. Notice that in the second
case the number of services accepted by the first requestee
increases dramatically whenever its attitude to cooperate
becomes higher than that of the other two requestees.

Finally, we verify how the observed results scale by
considering five requestees (four risky and one cautious with
the same parameters assumed in the analysis of Fig. 3). It
is worth comparing the obtained results, see Fig. 10, with
those of Figs. 3a and 3b. The analogy is emphasized by the
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(a)

(b)

Figure 9: DTMC analysis: verification of Properties 7 and 3
with non-cooperative requestees.

fact that the average expected earnings are exactly the same
as those of Fig. 3d.

IV. CONCLUSION

Mixed incentive strategies, combining reputation and
price-based mechanisms, have proved effective in inducing
prosocial behaviors while isolating selfish or cheating nodes
in a community [6]. A cooperation process entailing both
trust management and virtual currency to support mixed
incentive strategies has been recently proposed for user-
centric wireless networks [4]. This paper has reported the
results obtained by applying model checking techniques to
provide formal evidence of the properties of such a process.

In summary, cooperation incentives work properly for
both the requester and the requestee. On one hand, a honest
behavior of the requester is motivated by a higher number
of accepted services at a lower average cost with respect to
the results obtained by a possibly cheating requester. On the
other hand, both the reputation and the cooperative attitude
of the requestee have a positive impact upon the amount
of delivered services and the related earnings. This relation
is exacerbated whenever the requester adopts a prioritized
model for choosing the requestee during the discovery phase.
Moreover, from the viewpoint of the requestee, cautious
choices for the values of dispositional trust, minimum trust

Figure 10: DTMC analysis: verification of Properties 3 and
4 with 5 requestees.

level required to access the service, and all the configuration
parameters affecting the trust adjustment, impair directly the
trading volume and indirectly the reputation if in the same
network cooperative requestees are active.

The formal approach adopted in this work is currently
under development in order to build a design tool to be used
to assist the design and configuration of mixed incentive
strategies in real-world user-centric networks. In particular,
we are considering variants of the formal model taking into
account more requestee’s profile combinations and configu-
ration parameter settings. This extended study is intended
to integrate the overview provided in this work with a
complete sensitivity analysis. We conclude by observing that
the perspective provided in this paper is under consideration
for being adopted by the ULOOP Consortium [14].
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