
High-Performance Computing on the Web:

Extending UNICORE with RESTful Interfaces

Bernd Schuller, Jedrzej Rybicki

Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH

Jülich, Germany
Email: {b.schuller,j.rybicki}@fz-juelich.de

Krzysztof Benedyczak

Interdisciplinary Center for
Mathematical and Computational Modelling

Warsaw, Poland
Email: golbi@icm.edu.pl

Abstract—UNICORE (UNiform Interface to COmputing RE-
sources) is a Grid middleware for accessing high-performance
computing capabilities and storage resources in a secure and
seamless fashion. In its current version (7.0), it offers web services
using SOAP (Simple Object Access Protocol) in conjunction
with a security stack based on the Security Assertions Markup
Language (SAML) and the WS-Security specification. To accom-
modate recent integration use cases, the need for more lightweight
ways to access resources through UNICORE has arisen. This
work describes the architecture, design, and first implementation
results of an interface to UNICORE services based on the REST
(Representational State Transfer) architectural style. Crucial
boundary conditions included a lightweight security layer, and
full interoperability with the existing SOAP-based interfaces. This
RESTful interface will greatly simplify access to and interaction
with the UNICORE services and enable new use cases. It
will allow integrating high-performance computing and data
management services into web-based and mobile applications.

Keywords–UNICORE; REST; Security; High-Performance
Computing

I. INTRODUCTION

UNICORE was developed in the course of several German
and European projects since 1997 [1]. It is a mature software
suite for building federated systems and Grids. It is deployed
and used in a variety of settings, from small projects to
large (multi-site) infrastructures involving high-performance
computing (HPC) resources. UNICORE can be characterized
as a vertically integrated Grid system, that comprises the
full software stack from clients to various server components
down to the components for accessing the actual compute or
data resources. Its basic principles are abstraction of resource-
specific details, openness, interoperability, operating system
independence, security, and autonomy of resource providers. In
addition, the software is easy to install, configure and adminis-
trate. UNICORE software is available as open source from the
SourceForge repository [2] under a permissive, commercially
friendly license.

The UNICORE services can be accessed through a SOAP
web service stack, realising stateful services through the Web
Service Resource Framework (WSRF) specification [3]. The
security layer is based on Transport Layer Security (TLS),
SAML, and XML digital signatures. All these are open,
well-documented standards, and in principle it is possible to
implement clients to access the services in any language, and

Web Service tooling exists for many programming languages.
However, practical experience has shown that due to the high
complexity of WSRF and SAML only Java and C# have been
used. In fact, UNICORE had to provide an implementation of
the WSRF specification, since none of the Java web service
toolkits offers one.

Consequently, it can be difficult or even impossible to
use the current Web Service APIs offered by UNICORE.
For example, this may occur when integrating UNICORE
services into existing applications or community workflows
using different technologies than the above mentioned Java and
C#. Thus, simpler, more easily accessible APIs are required.
To this end we are working on two concrete use cases. The
first one originates from the European Human Brain Project
[4]. UNICORE will form the basis for the project’s HPC
Platform. It comprises of four major HPC sites, cloud storage
and other resources. Here, developers want to write Python
applications for accessing services of the HPC Platform, such
as job management or data transfer. Lightweight mechanisms,
such as OpenID Connect (OIDC) [5], should be used for
authentication. The second use case is a standalone client
for the UNICORE file transfer protocol (UFTP) [6], which
allows users to access their data without requiring the use of
a full UNICORE client. Common for the both use cases is the
requirement for strong authentication and delegation of rights.
Subsequently, it is important to stay compatible with the usual
access through UNICORE despite the introduction of the new
interfaces.

A popular alternative to SOAP are RESTful services [7].
These are usually more lightweight and more easily accessible
for a number of reasons. Typically, they make use of JSON [8]
instead of XML for resource representations and exploit HTTP
semantics for the resource manipulation instead of defining
their own. To make implementation of clients easier, one would
like to avoid having to handle digital signatures on the client,
so more lightweight mechanisms, such as OpenID-Connect,
are of interest.

The remainder of the paper is organized as follows. Section
II describes the UNICORE services and service container and
how RESTful services have been realized within this context.
A review of the UNICORE security solution as it applies to
this work is given in Section III. The initial APIs and some
first performance results are given in Section IV. The paper
concludes with an outlook and the next steps.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

II. SERVICES, INTERFACES AND TECHNOLOGIES

UNICORE is a four-tiered system, consisting of the client,
gateway, services and target system tiers. All components with
the exception of the target system tier are implemented in Java.

The Gateway is essentially a HTTPS reverse proxy, that
serves as a firewall transversal point to avoid having to
configure many open firewall ports. The Gateway forwards
information about the connecting client (such as the IP address
or the client’s SSL certificates) to the servers behind it.

The UNICORE/X server is the central component of a
UNICORE installation. It is built around the XNJS execu-
tion engine [9], which provides the execution backend and
communicates with the target system tier, and a set of service
interfaces. The basic services include a Registry service that
provides information about available services, job submission
and management services as well as file access and file transfer.

Finally, the target system tier consists of the interface to the
local operating system, file system and resource management
(batch) system. This target system interface (TSI) is responsi-
ble for submitting jobs, performing file I/O, and checking job
status. The TSI is implemented in Perl, as a server running
on the resource (e. g., the login node in case of a compute
cluster).

The WSRF specification introduces the concept of service
instances, which can be individually addressed, and are compa-
rable to objects in an object-oriented system. The conceptually
most important UNICORE services are listed in the following,
where many instances of each service will usually exist in a
UNICORE container:

• Sites are abstracted compute resources. They have a
set of properties (e. g., number of cores), have a set of
storages attached, and accept job submissions.

• Storages are abstracted file system like data resources,
which offer typical operations, such as listing files. To
give access to files, storages act as factory services for
file transfer resources.

• Jobs represent actual compute jobs on the underlying
batch system. Jobs always have a working directory,
which is accessible through a Storage resource. To
create a new job, a job description and optionally some
input data is required. The job description details what
is to be executed, gives the required resources (e. g.
number of CPUs), and a list of date files to be staged
in and result files to be staged out. Jobs are submitted
to a Site resource.

• File transfers are used to read or write to a physical
remote file. UNICORE supports both client-server
data transfers and server-server transfers, with several
available data transport protocols.

• Site factories support virtualization technologies, since
a Site is always created through a Site factory.

• Storage factories allow the creation of storage service
instances, and can support multiple backends (e. g.
plain file systems or the Hadoop file system).

The services are hosted in a container called UNICORE
Services Environment (USE) that is built from well-established
open source components, such as Apache CXF, Jetty and many
others. USE provides the web server, security layer, service

configurations, a persistence subsystem and the base classes
on which the actual services are built.

Care has been taken to decouple the front-end service
implementations (e. g. SOAP WSRF) from the internal state
and from the representations that are sent to the clients, aiming
to implement the model-view-controller pattern.

Building upon Apache CXF, RESTful services following
the JAX-RS standard [10] can be deployed in the USE. The
RESTful services can access all USE subsystems (e. g. for
persistence) and can thus access the same resources as the
WSRF services. One positive side-effect of this approach is
that the same state (e. g. storage) can be accessed consistently
through different interfaces.

III. SECURITY

The flexible security system in UNICORE is one of its
main assets. In this section, we briefly describe how au-
thentication, authorization and delegation of rights work in
UNICORE.

The goal of the authentication process is that the UNI-
CORE/X server knows the X.500 name (distinguished name,
DN) of the user and has verified that it is correct. Traditionally,
authentication required that each entity in the system (users and
servers) required an X.509 end-entity certificate. This was used
for establishing SSL connections where both parties (client
and server) could check that the other party was trusted. In
UNICORE 7, the security architecture has been made much
more flexible through the new Unity service [11], which can
authenticate users using some other means (e. g., username and
password). Client certificates are no longer necessary, though
they can still be used. Server certificates are still required, for
instance for securing the communication channel.

The authorization process takes the DN established by
authentication and maps it to a set of user attributes, which
are used for two purposes. First, the server’s access control
policies (written in XACML) are evaluated to decide whether
the user is allowed to perform the current operation. Second,
the attributes are used later by the services’ business logic. For
example, two typical attributes are the local Unix username and
groups, which are required, e. g., for job submission.

All of the authentication and authorization process is
configurable by the UNICORE administrator, in accordance
with the principle of autonomy of the resource provider.

Finally, delegation is needed, for example when a user
submits a job that requires data to be downloaded from another
UNICORE server. In such a case it is not acceptable to
impersonate the user by passing along her credentials. This
would pose a potential security risk. Instead, a delegation token
is required that cryptographically asserts the original user’s
identity and asserts that the original user delegates rights to
the server (for performing particular action on her behalf).
Delegation is implemented in UNICORE via signed SAML
assertions, where the user delegates her trust explicitly to
another party (which can be a server or another user), which
is identified via a DN. The trusted party can then work on
the user’s behalf, even delegate trust again, forming a trust
delegation chain. For more details we refer the reader to the
more extensive description in [12].

When the user does not have a X.509 private key, she
cannot sign any assertions. Thus, in UNICORE 7 the Unity

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

server can be used as the source of the “bootstrap” trust
delegation that asserts that the user trusts the first server. As
the trust delegation mechanism is based on SAML and requires
heavy weight XML processing, it does not readily lend itself
to a RESTful architecture, especially it has to be avoided on
the client side.

In delegation, two use cases need to be considered:

1) REST-to-REST : the user invokes a RESTful service,
which needs a delegated call to another RESTful
service

2) REST-to-SOAP : user invokes a RESTful service,
which needs a delegated call to a SOAP service

IV. FIRST RESULTS

We have implemented a number of extensions to link
the JAX-RS implementation provided by Apache CXF to
the UNICORE resources framework provided by USE. These
include

• an authentication handler uses the HTTP basic au-
thentication header (i. e., username and password) and
maps them to a X.500 DN using a configurable chain
of authentication components. Available authentica-
tion options are a local username/password file or the
admin can delegate the authentication to Unity;

• mechanisms are used to inject the requested resources
and other required information into the JAX-RS ser-
vice class;

• access control checks using the XACML policy deci-
sion point.

As a baseline, we have started the implementation of
RESTful services for the fundamental UNICORE entities listed
in Section II.

Both JSON and HTML representations of individual re-
sources can be served, as well as lists of all the resources
available to the current user. Table I shows the current state of
the API.

TABLE I. INITIAL REST API FOR UNICORE SERVICES.

HTTP method on resource Description Media type
GET /jobs Lists user’s jobs JSON, HTML
POST /jobs Submits a new job JSON
GET /jobs/{id} Get job properties JSON, HTML
DELETE /jobs/{id} Remove a job
GET /storages Lists user’s storages JSON, HTML
GET /storages/{id} Get storage properties JSON, HTML
DELETE /storages/{id} Remove a storage
GET /storages/{id}/files/{path} Get file properties JSON, HTML
GET /storages/{id}/files/{path} Download a file Binary
PUT /storages/{id}/files/{path} Upload a file Binary
POST /storages/{id}/imports Create a new file import JSON
POST /storages/{id}/exports Create a new file export JSON
GET /sites Lists user’s sites JSON, HTML
GET /sites/{id} Get site properties JSON, HTML
DELETE /sites/{id} Remove a site

It is possible to consistently access these resources through
both the WSRF layer (using standard UNICORE clients) and
through the REST layer (using HTTP clients, such as curl).

Data can be downloaded and uploaded through the web
server using the HTTP protocol using GET and PUT requests.
In addition, other file transfer protocols (e.g., UFTP) are

supported as well by explicitely creating new file import/export
resources.

The services API is currently under discussion and further
development. The UNICORE resources form a tree with many
interconnections. For example, a job has a working directory,
which is a storage resource. Thus, the working directory
resource should be accessible via both /jobs/{j_id}/wd
and storages/{s_id}. In the WSRF API, these links
between resources are discovered by the client, and in RESTful
designs this dynamic discovery of resource links is considered
the most elegant (according to the “HATEOAS” principle
in [7]). On the other hand, having to dynamically discover
everything can lead to increased network traffic and latencies,
and clients may want to leverage certain knowledge of the
REST API.

The delegation issue is solved partly: when authenticating
a user using Unity, the REST authentication handler also
receives a SAML assertion, which can be used later to make
invoke services on behalf of the user. However, this only works
when invoking SOAP/WSRF services. A solution for delegated
access to resources through the REST API still needs to be
agreed upon. Several possible solutions are conceivable. For
example, a JSON rendering of the SAML assertions used by
UNICORE is possible. Since these would be handled entirely
on the server, the clients would not be made more complex.

A. Job submission example
For job submission, a simple JSON job description is

used, which consists of the executable, arguments, environment
settings as well as data stage-in and stage-out and required
consumable resources such as wall time. This is currently
translated into UNICORE’s internal XML format before being
submitted to the internal execution engine. As a trivial exam-
ple,

{
Executable: "/bin/echo",
Arguments: ["Hello World"],

}

would be a valid job. This JSON job description syntax is
already in use in the UNICORE commandline client [13], and
thus well known to UNICORE users. Using curl as a simple
HTTP client, the submission of a job in file “job.u” can be
done by (ignoring security for the moment):

curl -X POST <base_url>/jobs
-H "Content-type: application/json"
--data-binary @job.u -i

The server will reply with a “201 Created” status and the
location of the new job:

HTTP/1.1 201 Created
Location: <base_url>/jobs/<id>

B. Initial performance tests
Since the new REST interface shares the back-end and

business logic with the WSRF interface, any performance
improvements are due to the smaller overhead of the REST
interface. To quantify these improvements, we have run a num-
ber of simple performance tests, comparing a “GET” operation

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

on a resource via both the WSRF and the REST interfaces. We
have used a production-like setup, where the REST service is
accessed via SSL and via a UNICORE Gateway. All servers
and the client code was run on “localhost”. The test machine
was a quad-core Intel i7 at 2.8GHz, with 8 GBs of RAM
running Java 7 (OpenJDK 1.7.0_65).

TABLE II. THROUGHPUT FOR GET REQUESTS VIA WSRF AND REST.

Client threads Interface Requests/sec
1 WSRF 27

REST 79
2 WSRF 57

REST 193
4 WSRF 80

REST 286
8 WSRF 76

REST 332

We sent 1000 requests each using 1,2,4 or 8 client threads.
As table II shows, using the REST interface has much higher
throughput, and scales better to higher numbers of concurrent
client threads.

As a second example, we have evaluated job submission,
using simple ’hello world’ jobs as shown above. Here we
submitted 400 jobs. Table III shows the results. Again the
REST interface is onsistently better in terms of throughput
and scalability.

TABLE III. THROUGHPUT FOR JOB SUBMISSION VIA WSRF AND REST.

Client threads Interface Jobs/sec
1 WSRF 5

REST 34
2 WSRF 11

REST 54
4 WSRF 12

REST 75

These initial tests already show that significant performance
improvements can be expected from the REST interface.

V. SUMMARY AND OUTLOOK

We have extended UNICORE to allow building REST-
ful services that are fully consistent with the existing
SOAP/WSRF based services. This includes the security stack
used for RESTful services, which is fully compatible and
consistent with the rest of the UNICORE world.

One fundamental issue remains to be fully solved: del-
egation to allow a server to make delegated calls to other
RESTful services. One option is to use Unity to provide SAML
assertions once the user has authenticated, and translate the
SAML delegation assertions to a JSON rendering.

The new RESTful APIs will open up the world of HPC
and access to large-scale scientific data to a much wider
audience, by allowing applications to use simple authentication
mechanisms, submit compute tasks to HPC machines, manage
results, move data and much more.

The basic REST support and initial service implementa-
tions will be released with UNICORE 7.1, and will be evolved
further towards a major release, UNICORE 8.

Next steps will focus on finalizing the security architecture
and implementing OpenID-Connect support, i. e. validating
OIDC tokens and if required creating SAML trust delegation

assertions from them using Unity. Furthermore, the service
APIs will be developed further, aiming at basic job submission
and management for the first release, and adding full capabil-
ities in the UNICORE 8 release.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project)

REFERENCES
[1] “UNICORE Website,” http://www.unicore.eu/, [accessed: 2014-07-10].
[2] “UNICORE Open Source project page,”

http://sourceforge.net/projects/unicore/, [accessed: 2014-07-10].
[3] “Web Services Resource Framework,” http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf, [accessed:
2014-07-10].

[4] “Human Brain Project,” http://www.humanbrainproject.eu/, [accessed:
2014-07-10].

[5] “OpenID Connect,” http://openid.net/connect, [accessed: 2014-07-10].
[6] B. Schuller and T. Pohlmann, “UFTP: High-Performance Data Transfer

for UNICORE,” in Proceedings of 7th UNICORE Summit 2011, ser.
IAS Series, no. 9. Forschungszentrum Jülich GmbH, 2011, pp. 135–
142.

[7] R. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[8] D. Crockford, “The application/json media type for javascript object
notation (JSON),” RFC 4627, Jul. 2006.

[9] B. Schuller, R. Menday, and A. Streit, “A Versatile Execution Manage-
ment System for Next-Generation UNICORE Grids,” in Proceedings of
2nd UNICORE Summit 2006 in conjunction with EuroPar 2006, ser.
LNCS, no. 4375. Springer, 2006, pp. 195–204.

[10] “Java API for RESTful Services (JAX-RS),” https://jax-rs-spec.java.net/,
[accessed: 2014-07-10].

[11] “Unity Identity Management Solution,” http://www.unity-idm.eu/, [ac-
cessed: 2014-07-10].

[12] K. Benedyczak, P. Bała, S. van den Berghe, R. Menday, and B. Schuller,
“Key aspects of the UNICORE 6 security model,” Future Generation
Computer Systems, vol. 27, 2011, pp. 195–201.

[13] “UNICORE commandline client job description format,”
http://unicore.eu/documentation/manuals/unicore6/files/ucc/ucc-
manual.html#ucc_jobdescription, [accessed: 2014-07-10].

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

