
Generating Fill-in-the-Blank Tests to Detect Understanding Failures of Programming

So Asai, Yoshiharu Yamauchi
Graduate School of Information Science and Engineering

Ritsumeikan University, Shiga, Japan
email:{asai, yamauchi}@de.is.ritsumei.ac.jp

Yusuke Kajiwara, Hiromitsu Shimakawa
College of Information Science and Engineering

Ritsumeikan University, Shiga, Japan
email:{kajiwara, simakawa}@de.is.ritsumei.ac.jp

Abstract—This paper proposes a method to generate a fill-in-
the-blank test to detect the understanding failures of students
in introductory programming course as early as possible. In
programming class in educational institutions, what is important
for novices is to make them acquire abilities to exert knowledge
and skills in programming in an appropriate way according to
each situation. The method pays special attention to the fact that
students sharing specific understanding failures are likely to write
similar inappropriate code. To generate a fill-in-the-blank test,
the proposed method determines code fragments to be blanked
out in model code, differentiating inappropriate code written by
past students from the model code. An experiment has revealed
the method can detect students having understanding failure with
high precision rates. The fill-in-the-blank tests generated with our
method prevent students from leaving their understanding failure
unsolved, because teachers can intensively supervise students who
fail to acquire abilities to fully exert the knowledge and the skills
in the early stages of the programming course.

Keywords—Programming; e-learning; text mining; clustering.

I. INTRODUCTION

In information technology industry, there is a serious lack
of workers due to increase of demand for digital products
and services [1]. Educational institutions are urged to educate
students who have programming skills to resolve the problem.

In educational institutions, students learn how to write pro-
gram code in a recommended way to exert the knowledge and
the skills according to each situation. The goal of programing
learning is to make students understand the knowledge and
acquire the skills needed to write programs in recommended
ways. However, since the instructor teaches all of the stu-
dents in a uniform manner, some of them have difficulties
to immediately understand the recommended ways to write
programs. Such students would write slack programs to avoid
missing submission deadlines of assignments, neglecting the
lecture goals [2]. If the students understanding failure remains
unsolved, they will not learn and, if the process continues,
they will fail to learn programming.

Teachers are required to detect understanding failures of
students as early as possible. To achieve it, they should exam-
ine students understanding every class with a test. The way to
test the students is at the instructor’s discretion. In addition,
it imposes a big burden on them, if they have to manually
assess answers of many students. Students often submit the
same erroneous code as answer to identical assignments in
educational institutions. This means, past and current students

have identical understanding failures. In this work, we propose
a method to detect understanding failures of programming. We
adopt a fill-in-the-blank test for the detection of understanding
failures, to mitigate the burden on teachers. Fill-in-the-blank
tests placing blanks in the part of program where many
students are likely to write inappropriate code are expected to
be effective to find understanding failure of students. We focus
on programs past students wrote to detect code fragments
to blank out in fill-in-the-blank tests. Programs past students
submitted are represented by vectors figured out in terms of
the word similarity to example code and explanations from
a textbook. To identify the part involving inappropriate code
fragments, the vectors are classified into clusters, to distinguish
ones that are the most different from model code. The clusters
consisting of pieces of code that are the most different from
the model code are referred to as inappropriate clusters. The
difference of program code in an inappropriate cluster from
the model code is identified to determine code fragments to
be blanked out. The method proposed in the work provides an
environment to score the fill-in-the-blank tests automatically.
It is expected that the fill-in-the-blank tests along with the
scoring environment would detect understanding failures of
present students without a great effort from the part of the
teachers.

In this paper, Section II introduces understanding failures
and the efficacy of fill-in-the-blank test on learning program-
ming. Section III explains our method to generate a fill-in-
the-blank test. This section illustrates the automatic scoring
environment. Section IV indicates the experiment to validate
the method with its result. Section V evaluates the result to
discuss the validity of the method. Section VI summarizes our
work.

II. UNDERSTANDING FAILURE OF PROGRAMMING

A. Problems in Programming Class

In the C programming course in educational institutions,
students learn programming in each teaching unit, which
corresponds to one combination of a lecture class and an
exercise class. Students learn knowledge and skills in each
teaching unit. To acquire programming ability comprehen-
sively, students are required to solve assignments in a specific
teaching unit, using the knowledge and skills they have already
learned in the preceding ones. In exercise classes, it is not
enough for students only to write a program that behaves in

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

a required in the assignment. They should train themselves
to write the program code in an appropriate manner as they
are written in model code. Through the training, they would
get abilities to handle the knowledge and skills they have
learned. In order to proceed with the training along with the
arrangement of units, students must understand all the contents
taught in every teaching unit.

Nowadays, various example programs are provided on the
Internet and in books [3]. Students try to find example code
[2]. If they do not understand the example code well, they
would construct program in a cut-and-paste manner, using
code fragments extracted from the example code. Such pro-
grams involve inappropriate code fragments to implement the
required program behavior. They submit executable programs
which are composed in the above way, without understanding
how to write a program in a recommended way. They should
understand each of the code fragments to organize the program
as a sequence of code appropriate for the behavior. Even
though this behavior can help with the assignment at hand,
students should avoid this reckless copying of code fragments
without understanding. It might lead the students to another
understanding failure in coming classes because they fail to
attain sufficient understanding and abilities. Successive under-
standing failures would drive them to give up programming.
Once the students give up programming, it is difficult to direct
them again to its learning. Teachers should find students who
fail to attain enough understanding in programming classes as
early as possible.

B. Appropriate Code and Inappropriate Code

It is required to write programs according to their specifica-
tions and a specified programming style [4]. It means there is
a recommended way to write a program to be concise and easy
to read to accomplish the specific behavior in programming.
A program is represented by a sequence of statements meeting
a specific pattern.

Students should write the program in a manner model code
illustrates to satisfy the requirements in the programming
exercises. They can write code similar to the model code,
if they sufficiently understand the sequence of statements
meeting a specific pattern taught in every teaching unit. This
paper refers to a program which implements specified behavior
in the recommended way as appropriate code. Appropriate
code is represented by a sequence of statements meeting a
specific pattern. It becomes similar to the model code in terms
of the appearance and the frequency of the statements. On the
other hand, code of students who cannot write an appropriate
code contains parts different from the model code.

Let us consider two pieces of code for the assignment
to understand iteration as shown in Figure 1. Both of them
take the same behavior. Code A is described with a for-
statement, and code B is described with a while-statement
whose condition is true. Code B uses a break statement
inside the if-statement to exit from the loop. Although both
of them behave as specified, code B is different from the

#include <stdio.h>

int main() {

 int i = 0;

 for (i = 0; i < 10; i++){

 printf("%d\n", i);

 }

 return 0;

}

#include <stdio.h>

int main() {

 int i = 0;

 while (1) {

 printf("%d\n", i);

 i++;

 if (i >= 10)

 break;

 }

 return 0;

}

Code A

Code B

Figure 1. Appropriate and inappropriate code examples

recommended way. In this paper, code which implements
specified behavior with a sequence of statements against the
recommended pattern is referred to as inappropriate code. It
is assumed that inappropriate code is caused by understanding
failure of students for correct programming.

C. Fill-in-the-blank Assignments to Identify Understanding

It is important to evaluate whether students have acquired
the knowledge and the skills of programming. Since this
evaluation reveals the student achievement, it benefits not only
to students but also the teachers, because teachers can plan
how to supervise students.

A general way to measure understanding of programming is
a scratch test, as which we refer to a test requesting students
to write whole program code from scratch. Several patterns
of code sequences can construct the program which generates
the specified output for the same input. Even if students do
not understand the code sequences to be learned, they can
meet the requirement by other patterns. In addition, there
is a possibility that they have combined code fragments in
a reckless manner to generate a program. To assess such
a program, the teacher has to read it in order to identify
whether they have understood. He needs enormous time and
effort because he takes care of many students. Since students
proceed with learning of programming based on what they
have learned, it is difficult for them to make progress, if
they leave understanding failure. The teacher must evaluate
the understanding every programming class despite enormous
time and effort needed to do so. The teacher should also
provide various assignments for students to confirm their
understanding. It is not feasible to measure the understanding
of programming for many students by scratch tests.

The alternative way to measure programming skills is a
fill-in-the-blank test. The teacher blanks out a specific part
of the sequence of statements which implements specified
behavior, to measure the understanding of a student focusing
on a specific point. A few kinds of code are suitable to fill
the blank. The blanks are so small that the standard to assess
students does not vary with teachers.

In addition, fill-in-the-blank tests are useful to measure
program understanding [5]. Appropriate code to implement a

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

specific behavior consists of a sequence of statements meeting
a specific pattern. Suppose a test has a blank hiding a part of
a program, so that the blank cannot be filled without knowl-
edge on a sequence of statements matching a recommended
pattern. Unless students have programming skills to write the
recommended code, they cannot fill the blank with correct
code. Such fill-in-the-blank test can measure whether they
have learned the programming skills. When they fill some
answers to the blank, they read the entire program as well as
the code fragments around the blank, to guess the behavior.
Since they try to consider a procedure implemented by code
around the blank, a proper fill-in-the-blank test makes the
students understand how to write the recommended code.

However, when either the place or the size of blanks are
irrelevant, it will not detect understanding failures on how to
write the recommended code. Thoughtless setting of blanks
impedes revealing their understanding failure. A support is
necessary for teachers to determine the parts to be blanked
out in order to reveal the students who have understanding
failure.

D. Related Work

Kashihara et al. [6] generated fill-in-the-blank tests with a
program dependence graph to find a blank suitable to measure
the understanding of program code. This method makes only
one blank in a program. It is considered there are several kinds
of inappropriate pieces of code in a program. In particular,
the diversity of inappropriate code is prominent in advanced
assignments. Many fill-in-the-blank tests must be prepared
in advance to detect various understanding failures with the
method.

Ariyasu et al. [7] support the automatic generation of fill-
in-the-blank tests meeting intention of teachers with syntactic
analysis of program code. However, the teachers themselves
must look over the understanding status of all the students to
determine what should be examined in the test. It depends on
the abilities of the teacher to generate fill-in-the-blank tests
which can reveal programming understanding. These works
take into account neither of latent understanding failure nor
supports to determine what should be examined.

Funabuki et al. [8] proposed a Java learning system to
generate a fill-in-the-blank assignment function which assists
learning of reserved words. This system blanks out in the
model code by selecting reserved words randomly. It is diffi-
cult to measure understanding failure for all of programming
skills to be acquired since teaching units other than reserved
words are not covered. An alternative method is necessary to
generate fill-in-the-blank tests to solve these problems.

III. REVEALING UNDERSTANDING FAILURE FROM PAST
STUDENT CODE

A. Goal and Significance

To complete a fill-in-the-blank test, students have to deter-
mine a code fragment to fill in a blank after they understand

a sequence of code around the blank. It forces them to
understand the meaning of the code fragments before and
after the blank. An automatic scoring system, which allows the
students to retry the test many times, allows them to become
aware of their own understanding failures.

Since any fill-in-the-blank assignment is issued based on a
model code, programming novices can study how to organize
a program with code fragments appropriately to achieve the
required behavior of the program. For each assignment issued
in previous programming courses, the teacher has accumulated
examples of inappropriate code many of the past students
in the educational institution wrote. Understanding failures
seem to vary with educational institutions, because students
with similar understanding belong to a specific educational
institution. Teachers should not issue universal assignments
presented in commercial textbooks. Using the information
from past students, teachers can generate fill-in-the-blank
tests suitable to detect understanding failures specific to the
educational institution. Furthermore, the automatic scoring
system releases teachers from boring tasks to examine a lot
of program code of the students. The teachers can concentrate
on the intellectual work to generate fill-in-the-blank tests to
identify students who have understanding failures.

B. Inappropriate code of Past Students

In this work, we propose a method to generate fill-in-the-
blank tests to identify understanding failures which cause
students to write inappropriate code. Figure 2 shows the
method overview. In a specific educational institution, students
who have identical understanding failures have a tendency to
write the same kind of inappropriate code over the years.
Using this tendency, the method generates fill-in-the-blank
assignments from program code past students wrote. It is
assumed that the same assignments are given in the past and
the present years. Present students are likely to write almost
the same inappropriate code as past students did, if both of
them have identical understanding failures. It is possible to
find a code fragment to be blanked, if we reveal inappropriate
code fragments past students wrote.

In order to find inappropriate code fragments, we classify
programs written by past students. The similarity of a program
to example code in each teaching unit is calculated based on
the appearance frequency of statements such as if-statements
and for-statements. Every program code is represented by
a vector in a coordinate space. Each element of the vector
corresponds to a teaching unit. Programs are classified into
clusters in terms of the similarity to example code in the
teaching units. Student code submitted for an assignment is
regarded as inappropriate, if it is very different from a model
code of the assignment.

It is conceivable that there are several inappropriate frag-
ments in a program. To determine which parts of code are
inappropriate, the method computed the difference between
student code and the model code. This method reveals parts

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

Codes of

past students

Model code

Assignments

.C

.C.C.C

Appearance

frequency

of statements

- Iteration

- Branch

- Variable
 declation

Quantification

Appropriate
cluster contains model code

Inappropriate

cluters

.C .C .C

.C .C .C

.C .C .C

while () {

 sum += arr[];

}

ClusteringBlanking out

New assginment to

identify understanding

failures

P1

P2

P3

Each code is
represented with vector

..
.

e.g.

Take

a difference

Figure 2. Method overview

involving inappropriate code. The parts express the code
fragments to be blanked out.

Fill-in-the-blank tests generated by the method reveal
whether each of current students understands the blanked-out
parts. Students who cannot fill the blanked-out parts correctly
are likely to have a specific kind of understanding failure.
Teachers should supervise those students, to prevent them
from leaving the understanding failure for any teaching units
unsolved.

C. Extraction of Characteristics with Text Classifier

For each assignment, a teacher would prepare a model
program to show students how to write an appropriate code in
a recommended way as it is written in a textbook like [9]. The
proposed method represents quantitatively how student code
is appropriate like the model code.

Novice programmers of conventional programming lan-
guages such as C learn programming skills according to
teaching units such as iteration and arrays. The characteristics
of example code and sentences to explain them vary with
teaching units in a textbook for C novice programmers. A
program similar to example and their explanation in a teaching
unit is regarded to be in accordance with what are learned
there. For each assignment, the proposed method treats its
model code and student code as source code to calculate their
similarity to the teaching units in the textbook. A program
is represented by a set of the probability that the program is
similar to every teaching unit in the textbook.

Program code and comments in a program as well as
example code and sentences in the textbook are divided into
words with MeCab [10], which is a tool for morphological
analysis. The text classifier implemented with the Naive Bayes
filtering [11] records of the appearance degree of words in
every teaching unit of the textbook in advance. For a program,
the text classifier calculates the appearance degree of words
used in every teaching unit of the textbook. The appearance
degree probabilistically represents to which teaching unit of
the textbook the source code is similar in terms of the

#include <stdio.h>

int main() {
 int number = 0;
 printf(”%d”, number);

 return 0;
}

STRING INTVAR
STDIO MAINFUNCTION
INTVAR = NUM printf
return NUM

Abstraction
algorithm

Restoration
algorithm

Map file

int number = 0;

INTVAR = NUM

Replacing
by abstraction algorithm

Figure 3. Translation to abstracted code

appearance frequency of the words. First, the proposed method
calculates the appearance degree representing the similarity to
every teaching unit. It selects a specific number of teaching
units of high similarity. To address characteristics of source
code, the proposed method uses a vector whose elements
correspond to those teaching units. Second, the method rep-
resents characteristics of source code written by past students
with vectors having those elements. The vectors of student
programs obedient with the teaching units would be similar to
that of the model code.

Let us calculate the characteristics of programs, including
model code and student code. To represent the characteristics
of programs, it is preferable to eliminate the variance of
identifier names and literal values in every program. To achieve
it, the method translates source code into abstracted code.
Figure 3 shows an example of the abstraction. In the figure,
integer variables, numerical values, and for-loop statements
are replaced with INTVAR, NUM, and FOR, respectively.
The abstraction makes it explicit which statements are used
frequently in source code. Although this abstraction causes
the order of words to permute, it does not matter because the
method calculates only the appearance frequency of words.
Using correspondence of replacing words to original code, the
abstracted code can be restored to the original code.

The vectors of programs past students submit for an as-
signment is compared with that of the model program for the
assignment. The vectors of programs, which use appropriate
code like the model program are placed near the vector of the
model program. Inappropriate code involves eccentric code
sequences or redundant processing, which are not found in
the model code. It is considered the vector of a program
composed of them is considerably far from the vector of the
model program. The method classifies the programs written
by past students into 2 categories; one is appropriate like a
model program, while the other is inappropriate.

D. Classifying into Appropriateness and Inappropriateness

In this work, it is assumed that both of past and present
students who have a same understanding failure write a similar
inappropriate code.

The proposed method classifies student program and the
model program for an assignment to find inappropriate code
the students are likely to write. The method applies a cluster

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

analysis for vectors which represent student programs and the
model program. The number of clusters cannot be determined
in advance, due to the variance of inappropriate code for every
assignment. The method adopts the Ward’s method for the
clustering. At first, each assignment is assumed to have less
than three kinds of inappropriate code. Using a dendrogram
generated as a result of the analysis, the method partitions
clusters so that code which seems to be inappropriate should
not be placed in the same cluster as the model code. The
method refers to the cluster containing the model code as an
appropriate cluster, while the other cluster as an inappropriate
cluster.

Progmras classified into appropriate cluster have high sim-
ilarity with the model program. Students whose code in the
appropriate cluster are considered to write their code, after
they understand knowledge and skills to be acquired. Mean-
while, programs classified into inappropriate clusters contain
some inappropriate code fragments. Students who wrote the
programs in the inappropriate clusters seem to be accompanied
with understanding failures corresponding to the inappropriate
code. Those students should be supervised as early as possible
not to leave their understanding failures uncorrected.

E. Blanking Out Code from Differences

If students write programs falling into an inappropriate
cluster, teachers should notify the students that they may
have a specific understanding failure. The students with the
understanding failure should understand why the model code
has code fragments different from theirs. Since it leads them
to the right understanding, they could modify their program
closer to the model program.

A filling-in-the-blank test is generated to examine whether
the students who wrote programs in an inappropriate cluster
commit the specific understanding failure. A program in the
inappropriate cluster has a code fragment where the usage of
statements in programming is different from that in the model
program. A filling-in-the-blank test is generated with a part of
the code fragment blanked out.

The proposed method has to identify what part is to be
blanked out in the model code. All programs in an inappropri-
ate cluster have same tendency in its usage of programming
statements. One of programs in the inappropriate cluster is
picked up, to take its difference from the model code. As
it is pointed out in Section III-C, variance of identifiers is
inconvenient to figure out the difference. Abstracted code
made from the inappropriate code is used to take differences,
in the same way as in the classification. When we use the
abstracted code, the difference does not come from variance
of identifier names, but from discordance of statement usages
in C programming. In the model code, the proposed method
detects the code fragments corresponding to the difference. In
case of Figure 4, a part of the iteration statement in the model
code is replaced with a blank, because there is difference in
the while statements between the two programs. For example,
the condition of the while-statement should be blanked out

printf STRING VAR VAR
< NUM STDIO MAINFUNCTION
INTVAR WHILE VAR ++
return NUM

printf STRING VAR NUM
STDIO MAINFUNCTION INTVAR
WHILE VAR ++ IF VAR >= NUM
break return NUM

#include <stdio.h>

int main(void) {
 int i = 0;
 while (i < 10) {
 printf("%d\n", i);
 i++;
 }

 return 0;
}

#include <stdio.h>

int main(void) {
 int i = 0;
 while (1) {
 printf("%d\n", i);
 i++;
 if (i >= 10) break;
 }

 return 0;
}

Code in the appropriate cluter (model code) Code in the inappropriate cluter

Figure 4. Difference between appropriate and inappropriate code

in the model code. Students having understanding failure
for the iteration with while-statement cannot fill the blank
correctly, because they always try to use an infinite loop. The
above procedure is applied to all the inappropriate clusters
to determine blanks suitable to detect understanding failure
corresponding to each of the inappropriate clusters.

A blank in a filling-in-the-blank test implies the part where
the students might write inappropriate code. Suppose they
cannot fill one blank, while they can fill appropriate code for
other blanks. It means they have a specific kind of understand-
ing failure regarding to the code fragment around the blank.
Providing students with various filling-in-the-blank tests, we
can identify students committing every kind of understanding
failure. Teachers should supervise the students to understand
not only the code to fill the blank, but also why they should
write the code, because they wrote the inappropriate code
based on a wrong way of understanding.

F. Automatic Scoring for Fill-in-the-Blank Tests

It is important that fill-in-the-blank tests have the students
consider what a correct answer is. Various fill-in-the-blank
tests given to students clarify understanding failures of stu-
dents. The proposed system provides an automatic scoring
system of fill-in-the-blank tests, so that students may check
the correctness of their answers at any time. This system is
executed on Web server. Students engage in fill-in-the-blank
tests on Web pages. When a student submits a fill-in-the-blank
test filling its blanks with his code, the system scores it to
notify him the result immediately. The immediate notification
makes students strongly conscious of the tests they fail. It
prevents the students from leaving themselves unaware of the
understanding failures.

Conventional ways to automatic scoring of filling-in-the-
blank tests mainly use string comparison of student’s answers
with ones teachers expect. It judges that the student’s answers
are correct when they are fully matched with the expected
ones. Students send diverse answers with trivial differences.
For example, when several variables are initialized with lit-
erals, their order does not matter. Since correct answers exist
infinitely, the string comparison is unsuitable for the automatic
scoring.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

Blank1 Blank2 Blank3

x = 0; while 255

x=0; for 0xFF

CORRECT

x=0; while 255

x = 0; for 255

x = 0; while 0xFF

CORRECT

WRONG

CORRECT

Model answers

Student’s Answers

Execute

for each blank

Output

Figure 5. Working example of the automatic scoring system

The proposed method in this work adopts an alternative way
which compares execution results of programs to address the
diverse answers. Programming assignments for novices would
require students to write a program with some outputs on
CUI. The way of automatic scoring in the proposed method
generates an executable code using both of strings a student
answers and ones a teacher prepares. Only one of the blanks
is filled with the student answer corresponding to it, while the
others with the ones the teacher prepares. The filled code is
executed to verify whether the execution output is the same as
the output of the code filled with all of the strings the teacher
prepares. It enables each of student’s answers to be separately
scored, even if a filling-in-the-blank test has multiple blanks.

Let us explain the scoring way with a fill-in-the-blank test
with 3 blanks shown in Figure 5. Let the prepared answers
for Blank1, Blank2, and Blank3 be code fragments “x = 0”,
“while”, and “255”, respectively. When they are specified for
the blanks, the output is expected to be string “CORRECT”,
which is printed on CUI. Suppose a student specify code
fragments “x = 0”, “for”, and “0xFF” as his answers.

First, Blank1 is filled with student’s answer “x = 0”, while
the other blanks with the prepared answers. This program
code prints string “CORRECT” when it is executed. Since
the output is the same as the expected one, the student’s
answer is judged to be correct. Second, Blank2 is replaced
with student’s answer “for”, while Blank1 and Blank3 are
replaced with their prepared answers. The execution result
of this program code is different from the expected one. It
turns out student’s answer “for” is wrong. Finally, Blank3 is
filled with student’s answer ”0xFF”. Suppose “CORRECT”
is printed as a result of the execution. Although the student
specifies a code fragment different from the prepared one for
Blank3, he is judged to answer correctly, because the output
is identical with the expected one. The student is notified that
he presents correct answers for both of Blank1 and Blank3,
while fails for Blank2.

IV. EXPERIMENT

A. Method and Purpose

We conducted an experiment to verify that the fill-in-the-
blank tests generated by the proposed method can detect
understanding failures. 122 students at College of Information
Science and Engineering of Ritsumeikan University partici-
pated in the experiment. All of them attended an introductory

C programming course, which consists of lectures and exer-
cises, over a year ago.

In the experiment, each student answered the assignments
with 3 phases. In the first phase, the student wrote a program
from scratch. Let us refer to it as a scratch test. In the second
and the third phases, the student solved the two types of fill-
in-the-blank tests. One type of the fill-in-the-blank tests is
generated with the method, and the other is produced manually
by a teacher. The students repeated the answering for these
fill-in-the-blank assignments. For the former type of the fill-in-
the-blank assignment, the fill-in-the-blank tests were produced,
blanking out several code fragments of its model code. To
prevent the students from reusing code fragments, variable
names in the model code differ in the two fill-in-the-blank
tests. For the latter type, when a teacher produced fill-in-the-
blank tests, he was provided with the assignment and its model
code. He specified code fragments to be blanked out in the
model code, as well as his intention regarding what he wanted
to confirm with the blanking.

They signed in a website for the experiment with personal
user ID and password to challenge the tests. To make students
engage in programming assignments as usual, the students
were permitted to carry out the tests in any environment
such as home and in the university. We settled 2 weeks for
the experiments. There was no time constraint other than the
submission deadline. Since we intend that they solved the tests
for themselves, code copied from websites and digital books
should be excluded from the experiment data as cheatings.
In order to find the cheating, we examined rapid character
filling for blanks. In the scratch test, students can compile their
programs at any time to check the output. In the fill-in-the-
blanks tests, they could check whether the answers are correct,
submitting their answers to the automatic scoring system. The
system notified them the scoring result immediately. When
they finished or gave up trying a test, they pressed the button
to move to the next test.

B. Generating Fill-in-the-Blank Tests

We prepared fill-in-the-blank tests from past programming
exercises based on the method. Among assignments given in C
Programming Exercise Courses, which College of Information
Science and Engineering of Ritsumeikan University offered in
the first semester of 2016 academic year, the following five
ones are chosen as the tests for the experiment. They are
related to knowledge and skills for which students are likely
to have understanding failure, such as iterations, functions,
arrays, and pointers [12]. We refer to each of the followings
as Test A to Test E, respectively. The parentheses indicate
teaching units to which the problem relates.
Test A (iteration) Calculate to print interior angles of each regular

N-sided polygon for the integer N from 3 to 12 with a while-
statement. When the interior angle is not an integer, skip the
iteration with a continue-statement.

Test B (function and array) Print the number of characters from A
to Z included in any character strings specified from the standard
input.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

Test C (iteration) Let us build up a pyramid, placing cube stones
without gaps. Given the number of cube stones, figure out the
number of pyramid steps and remaining stones.

Test D (function and array) Implement a function to make product
of two-by-three matrix and a 3-dimensional vector. Print the
product for element values given from the standard input.

Test E (function, pointer and iteration) Inserting a hyphen before
non-vowel characters in any character strings given from the
standard input, print the string which has the same length as the
original one. Use the given function to judge whether a character
is a vowel.

For each of the assignments, a teacher wrote a model code,
while students submitted their programs. To generate a fill-
in-the-blank test for the assignment, the proposed method
classifies vectors representing the model program and past
student programs.

In order to generate a fill-in-the-blank test, the method
picked up a program from the inappropriate clusters, respec-
tively, to take its difference from the model code. On the other
hand, the fill-in-the-blank tests were produced by a teacher
who engaged in the class of C Programming Exercise. After
he determined the intention of each test, he blanked out several
parts in the model code, referring to assignments and their
model programs.

C. Scoring Results

We obtained answers for the tests from the 122 subjects.
Some of the answers were not finished solving tests completely
or suspected of the cheatings. We do not use such invalid
answers for evaluation of the proposed method. To ensure the
fairness in the experiment, we used answers that each subject
submitted for the first time. We score all the scratch tests by
hand to find inappropriate code fragments. We judged answers
for the scratch tests incorrect, if we find inappropriate code in
them. The followings are inappropriate code fragments found
in the scratch tests. For example, A1 and A2 are found for
Test A.

A1 The place to do increment for the loop.
A2 The condition to call continue statement.
B1 The place to call the function toupper.
B2 Counting the number of each alphabetic character.
C1 The initial value to count the steps.
D1 Not initializing an array to store the matrix product.
D2 Not using for-statement for the matrix products.
E1 The direction to search character strings.
E2 Escaping from the loop with break statement.

Table I shows the rate of correct answers which the subjects
have given finally in the scratch tests and the both kinds of fill-
in-the-blank tests from the proposed method and the teacher
production. The rate is calculated within the valid answers. In
the scratch tests, correct code means an executable program
working normally without any inappropriate code. The values
in parentheses indicate the rate difference of each fill-in-the-
blank test against the scratch test.

TABLE I. RATE OF CORRECT ANSWERS

TEST SCRATCH METHOD TEACHER
A 0.87 0.92 (0.05) 0.94 (0.07)
B 0.29 0.83 (0.54) 0.83 (0.54)
C 0.60 0.60 (0.00) 0.92 (0.32)
D 0.61 0.74 (0.13) 0.87 (0.26)
E 0.20 0.70 (0.50) 0.31 (0.11)

TABLE II. CONDITIONAL PROBABILITIES

CLUSTER n(B) n(S) n(S ∩B) P (B | S) P (S | B)
A1 11 14 9 0.64 0.81
A2 8 8 4 0.50 0.50
B1 37 70 28 0.45 0.75
B2 23 27 17 0.63 0.73
C1 40 38 25 0.66 0.63
D1 30 36 18 0.50 0.60
D2 24 35 19 0.54 0.79
E1 14 17 14 0.82 1.00
E2 11 10 8 0.80 0.73

D. Conditional Probabilities

In the experiment, we focus on the subjects whose answers
were incorrect for either the scratch tests or the fill-in-the-
blank tests. A conditional probability is defined in order to
prove relevance of fails in the fill-in-the-blank tests generated
by the proposed method with incorrect answers in the scratch
tests. P (Y | X), the probability of Y under the condition X ,
is given by the formula:

P (Y | X) =
n(X ∩ Y)

n(X)
(1)

Where n(X) denotes the number of event X . We let S
and B represent, respectively, an event where the scratch test
is incorrect, and a fail in the fill-in-the-blank test. Table II
shows the conditional probabilities.

V. EVALUATION AND DISCUSSION

A. Causing Inappropriate Code Fragments

Table II shows the conditional probabilities students write
inappropriate code for the scratch tests and the fill-in-the-blank
tests generated by the method.

P (B | S) indicates the probability a subject who writes a
specific inappropriate code in the scratch test mistakes in the
filling-in-the-blank test presenting a blank he might fill with
the same kind of inappropriate code. It is the recall, which
implies to what rate fill-in-the-blank test can detect subjects
who has understanding failure. On the other hand, P (S | B)
indicates that a subject who have mistaken in the blank of
the fill-in-the-blank test writes the same kind of inappropriate
code in the scratch test. It is the precision, which implies how
much we can trust results of fill-in-the-blank tests generated
by the method.

From the table, P (S | B) shows the high values over 0.70
in the six inappropriate clusters, A1, B1, B2, D2, E1, and E2
of the fifteen. Meanwhile, P (B | S) was more than 0.70 only
in the two items. It suggests students giving the wrong answer
in fill-in-the-blank tests are likely to write inappropriate code
fragments in the corresponding scratch tests. That suggests
the teacher may conclude that they have the understanding

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

failure for the code fragments to be filled in the test. The
teacher should supervise them to correct their understanding
failure. The recall rates, which are not high enough, mean fill-
in-the-blank tests generated by the method fail to detect many
students who are likely to write the inappropriate code. We
need to deal with this problem.

Since the proposed method automatically scores fill-in-the-
blank test as explained in Section III-F, it does not require
heavy effort of the teacher to score. They can give students
more fill-in-the-blank tests than scratch tests. In the exper-
iment, we gave only one test for each kind of inappropriate
code. To achieve specific behavior of a program, students need
to acquire programming knowledge or skills corresponding to
it. When students commit understanding failure for the knowl-
edge or the skills, they are likely to write inappropriate code to
achieve the program behavior. Even in other assignments, they
would use the same kind of inappropriate code to write code
founding on the identical programming skill. The teacher can
detect more students with the understanding failure who write
the inappropriate code, giving several fill-in-the-blank tests to
examine the identical programming knowledge or skills.

B. Comparison with Correct Answer Rates

In the experiment, students engaged in two kinds of fill-in-
the-blank tests; one was generated by the proposed method
while the other produced by the teacher. Let us compare the
rate of correct answers for the two kinds of fill-in-the-blank
tests.

Fill-in-the-blank tests are required to detect students who
write inappropriate code caused by understanding failure.
Suppose a fill-in-the-blank test which places blanks in any
part where the students might write inappropriate code for the
assignment. It can detect any kind of understanding failure
which might occur for the assignment. Such fill-in-the-blank
test has a feature to detect the occurrence of every inappro-
priate code in the scratch test. In other words, it is preferable
that the rate of correct answers of the fill-in-the-blank test
approaches to that of the scratch test.

Let us compare the differences of the rate of correct answers
for the fill-in-the-blank test from the rate of the scratch test,
in both cases: the ones generated by the proposed method and
the ones produced by the teacher. See Table I. For Test A, C
and D, the method has smaller difference than the teacher. For
Test B, the difference is identical each other, while the teacher
has smaller difference for Test E. For four tests of the five,
the proposed method has similar correct answer rate to the
scratch test. For Test E, it is considered that difficulty of the
test is advanced and its program is not suitable for blanking
out. It is necessary to select basic assignments which contain
the teaching units to be acquired.

The proposed method assumed students in an educational
institution would commit same understanding failures for same
assignments over years. Under this assumption, the method
analyzes programs of the past students in the same educational

institution quantitatively, to identify where inappropriate code
frequently occur in the model code for each assignment. On
the other hand, the teachers blanked out parts of the model
code without quantitative analysis. Due to the quantitative
analysis, fill-in-the-blank tests by the method were more
successful to find the students who has understanding failure
than the ones by the teacher.

VI. CONCLUSION

In this paper, we have proposed the method to generate
a fill-in-the-blank test which detects understanding failure of
present students. The method classifies programs past students
wrote, to find inappropriate code fragments caused by the
understanding failures. Scoring results of our fill-in-the-blank
test contribute to finding students who would be at loss due
to unconscious understanding failure early.

The high precision values from the experiment indicate that
our fill-in-the-blank tests can reveal students having under-
standing failure for knowledge and skills of programming from
inappropriate writing ways of code. The method enables teach-
ers to supervise students poor in understanding intensively.

In the future, we give more fill-in-the-blank tests to detect
students who have understanding failures completely. In addi-
tion, it is necessary to discuss concrete teaching ways suitable
for each kind of understanding failure, analyzing inappropriate
code caused by it.

REFERENCES

[1] Ministry of Economy, Trade and Industry, “Summary of research
results on latest trends and future estimates of it talent,”
http://www.meti.go.jp/press/2016/06/20160610002/20160610002.pdf
[retrieved: December, 2016].

[2] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in ISESE ’04
Proceedings, 2004, pp. 83 – 92.

[3] Stack Exchange, Inc., “Stack overflow,” http://stackoverflow.com [re-
trieved: January, 2017].

[4] B. W. Kernighan and P. J. Plauger, The Elements of Programming Style
2nd Edition. McGraw Hill, 1978.

[5] A. Kashihara, M. Soga, and J. Toyoda, “A support for program under-
standing with fill-in-blank problems,” JSISE, vol. 15, no. 3, pp. 129 –
138, 1998, in Japanese.

[6] A. Kashihara, A. Terai, and J. Toyoda, “Making fill-in-blank program
problems for learning algorithm,” in ICCC’99, 2001, pp. 776 – 783.

[7] K. Ariyasu, E. Ikeda, T. Okamoto, T. Kunishima, and K. Yokota, “Au-
tomatic generation of fill-in-the-blank exercises in adaptive c language
learning system,” in DEIM Forum, 2009, pp. 776 – 783, in Japanese.

[8] N. Funabiki, Y. Korenaga, T. Nakanishi, and K. Watanabe, “An extension
of fill-in-the-blank problem function in java programming learning
assistant system,” in 2013 IEEE Region 10 Humanitarian Technology
Conference, Aug 2013, pp. 85 – 90.

[9] M. Moriguchi, “Worried C,” http://9cguide.appspot.com/en/index.html
[retrieved: December, 2016].

[10] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional
random fields to japanese morphological analysis,” in Proceedings of
EMNLP, 2004, pp. 230 – 237.

[11] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal
of Machine Learning Research, vol. 12, pp. 2825 – 2830, 2011.

[12] L. Kaczmarczyk, E. Petrick, J. P. East, and G. L. Herman, “Identifying
student misconceptions of programming,” in Proceedings of SIGCSE’10,
2010, pp. 107 – 111.

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

