
Didactic Embedded Platform and Software Tools for Developing Real Time
Operating System

Adam Kaliszan
Poznan University of Technology

Chair of Communication and Computer Networks
Email: adam.kaliszan@gmail.com
http://www.adam.kaliszan.yum.pl

Mariusz Głąbowski
Poznan University of Technology

Chair of Communication and Computer Networks
Email: mariusz.glabowski@et.put.poznan.pl

Abstract—This paper presents a new didactic platform that is
capable of running an embedded Real Rime Operating System.
The proposed platform consists of hardware, firmware and
software tools. The project of the hardware part is distributed
according to GPLv2 license. The firmware of the platform
is based on FreeRtos distributed according to the modified
GPL license, ported by the authors on the microcontrollers
not originally supported, i.e., Atmega128 and Atmega168. All
the software tools work on the Linux operating system and are
free of charge; most of them have open source code. The main
aim of the proposed platform is to familiarize students with
the basics of embedded RTOS.

Keywords-Embedded systems, Real Time Operating System,
Multitasking, Interprocess communication

I. INTRODUCTION

An important addendum of an embedded and operating
systems theory course is practice. The practical part of
the course is often conducted with the help of one of
the existing operating systems, usually Linux or Windows.
Linux has advantages, such as its versatility ranging from
small embedded devices to powerful supercomputers. Owing
to the Linux open source code, there are many written
kernel modules [1] supporting new devices, what ensures
such a great versatility of the system and it is applicable in
many embedded systems. Microsoft offers different versions
of its own operating system, ranging from Windows CE
or Windows Mobile that are working on mobile phones,
PDA devices and car navigation, to Windows Server. On
account of Microsoft .NET framework, it is possible to
write software in a very easy way. It should be noted that
the software produced by Microsoft is not free. The fact
that its code is closed complicates porting the operating
system to new, not particularly common, hardware devices.
Its application is limited to few basic CPU architectures.

Irrespective of a chosen operating system, the practical
part is often limited to learning the basis of operating
systems, i.e., learning Linux fundamental commands such
as creating and removing files or directories, changing file
attributes and launching programs. Such laboratory classes
do not introduce the subject of embedded systems, as well

as they have no connection to the operating system theory,
since the laboratories do not cover topics like multitask-
ing, interprocess communication and its synchronization
or operations on file system. The mentioned difficulties
are caused by the absence of a proper platform with a
simplified programming interface that is capable of building
(compiling) in a short amount of time. In the Linux case, the
complication results mostly from a required compatibility
with various standards, e.g., Linux is compatible with posix
and sysV standards [2]. In order to provide the compatibility
with each of these standards, separate interfaces have been
introduced. Consequently, it takes a lot of time to get familiar
with the whole programming interface and, finally, students
getting prepared to their laboratories are generally focused
on studying the documentation instead of understanding the
sense of presented mechanisms of the operating systems.
Additionally, the build time of the embedded Linux requires
about one hour, while laboratory classes last usually 90
minutes. In view of the above-mentioned difficulties the
authors felt encouraged to elaborate a new didactic plat-
form, including hardware, firmware and software tools. In
the presented system the handling of mechanisms such as
files, multi-tasking, interprocess communication and process
synchronization, have been simplified. The software code,
worked out to meet the demand of the new platform, is open,
distributed according to GPLv2 [3] license and it allows
students to get familiar with particular mechanisms of the
operating systems.

The remaining part of the paper is organized as follows.
Section II presents the hardware of the proposed platform. In
Section III the software architecture is described. In Section
IV an exemplary exercise conducted with the help of the pro-
posed platform is presented. Section V concludes the paper.

II. HARDWARE

The hardware part was designed with the help of a
freeware version of Eagle [4] CAD software. The dimen-
sion of PCB board was limited to 10 by 8 centimeters
(i.e., the maximum dimensions of PCB board allowed by
freeware version of Eagle CAD software). The complete

77

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 1. Modular schematic of the platform’s hardware

project of the hardware is available at svn repository http:
//akme.yum.pl/eagle/ssw, where the login and the password
is "student". In order to download the project, the following
command must be executed in the shell prompt: svn co
http://akme.yum.pl/eagle/ssw. The limited dimension of the
board allows students to modify the project using freeware
version of Eagle CAD. The hardware was designed in
a user friendly manner: it uses a common interface and
does not need any external power supply. The platform is
connected to a PC by via USB, since RS 232 is not very
common in modern personal computers. There is a place
on the main controller for power converter. It allows the
platform to work as a standalone device that does not require
power supply from USB. The hardware project bases on
AVR microcontrollers [5], [6]. This reduces instruction set
computing CPU architecture is preferred by students because
of its simplicity, freeware C compiler (avrgcc) and high
performance in comparison with other 8-bit microcontroller
architectures.

Figure 1 shows a schematic diagram of the platform.
The system is distributed and consists of the main con-
troller and executing modules. Both modules are being
programmed, using universal programmer designed for the
platform purposes. The solid line rectangles belong to the
platform’s hardware. The solid lines indicate communication
interfaces or buses and the dotted lines indicate the program-
mer interfaces. The main controller is connected with the
executing modules by RS 485 bus. The programmer module
has also RS 485 interface in order to facilitate debugging
or controlling the executing module if the main controller is
disabled.

A. Main controller

The main controller is responsible for controlling the
executing modules connected to the RS 485 bus, storing
logs in its memory and communication with users by USB
or Ethernet interface. The modular schematic of the main
controller is presented in Fig. 2. The functional modules
are presented as solid line rectangles and connectors or

Figure 2. Ideological schematic of the main controller

jacks are presented as dotted line rectangles. The main
controller consists of: microcontroller Atmega128, 64 kB of
data external memory, USB interface (Ft232Rl chip), RS 485
interface (Max481 chip), Ethernet interface (Enc28j60 chip)
and Secure Digital card reader. The microcontroller uses SPI
bus to communicate with Ethernet driver and SD card reader.
It is also possible to connect 8 additional devices to this bus
through a SPI connector placed on the main controller. The
controller also has the optional pulse step down converter,
which can be useful if we want to use external power supply.
This converter provides power supply to executing modules.
In order to communicate with external devices, sensors and
modules, the controller uses the following buses: SPI, I2C
and RS 485. All buses have their own connectors. In order
to reduce costs, a user communicates with the controller
by console (VTY100 protocol) connected to USB port. The
main controller has neither display nor keyboard. The CPU
is programmed using JTAG interface that allows the user
to debug the software. Additionally, there is connector (AC
Con) with analogue inputs and connector (Int Con) with
inputs generating interruptions.

B. Executing module

The executing module is responsible for switching on/off
various devices, for example lights or roller shutters in an
intelligent home. The executing module consists of: micro-
controller Atmega168, RS 485 interface, 4 relays, 2 outputs
for LED, two connectors with two inputs each, 5 jumpers for
setting device address. The relays have independent power
supply in order to avoid brownouts. The executing module
can be programmed using SPI bus (STK 500v2 programmer)
or RS 485 bus (bootloader with xModem protocol).

78

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

C. Programmer module

The Programmer module was designed to provide various
functionality and reduce the costs. The programmer module
uses USB interface and therefore it does not require addi-
tional power supply. Its main function is flashing firmware
to the main controller or executing modules. Both devices
have different programming interfaces (JTAG and SPI). The
constructed programmer provides additional RS 485 and
RS 232 TTL interfaces. The JTAG programmer bases on
Atmega16 microcontroller and Atmel JTAG ICE firmware,
therefore is compatible with AVR Studio. The archetype
of SPI programmer is an open source project [7]. The
hardware was slightly modified but the firmware remained
unchanged. The SPI programmer uses STK 500v2 protocol
and is compatible with AVR Studio.

III. FIRMWARE

The firmware was written in C language. The complete
source code is available at svn repository http://akme.yum.
pl/FreeRtos/FreeRtos, where the login and the password
is "student". The firmware part of the presented didactic
platform consists of two basic parts: the firmware for the
main controller and the firmware for the executing modules.
Each device has a different microcontroller and has other
functions, therefore it needs specialized firmware. There
is embedded RTOS on both modules. The authors chose
FreeRtos as RTOS because it is distributed under modified
GPLv2 license [8]. FreeRtos uses two methods of providing
multitasking: tasks and coroutines. Its kernel needs 4 kB of
program memory, hence it is possible to use FreeRtos on
microcontrollers with 8kB of program memory. Originally,
FreeRtos was ported to the Atmega32. In the case of the
proposed platform, it was necessary to make a port for
Atmega168 and Atmega128 microcontrollers.

A. Main controller

Main controller is responsible for controlling the execut-
ing modules and communication with users. It stores logs
and allows to schedule some operation, e.g., moving up the
roller shutters. The main modules of the main controller
firmware are the following: kernel, Command Line Inter-
preter, file system, Communication protocol, TCP/IP stack
and xModem protocol.

1) Kernel: Multitasking in the main controller is provided
with the help of tasks without preemption. Such an approach
has numerous and significant advantages. Tasks are simple,
have no restrictions on use and support full preemption (not
used in our case). Moreover, they are fully prioritized [9].
The firmware was written without preemption, so re-entry
to the task does not need to be carefully considered. The
main disadvantage is that each task has its own stack. The
Atmega128 has 128 kB of program memory and 4 kB of
internal data memory extended by external chip to 64 kB and
allows us to use FreeRtos with tasks. It is recommended to

Figure 3. Architecture of main controller firmware

place stacks of the tasks in internal memory, hence there is
4 kB for stacks available. There are three tasks: Command
Line Interpreter task, device monitor task and TCP/IP stack
task. 4 kB is enough for three stacks. In order to save internal
memory, buffers and other structures were moved to two
times slower external memory. Constant strings and constant
structs are stored in flash memory. In Figure 3 the firmware
architecture of the main controller is presented. It bases on
the mentioned three tasks.

The Command Interpreter task is responsible for com-
munication with users through a console attached to USB
port. This task uses serial port UART 1 for its exclusive
use. This simplifies the implementation because it is not
necessary to add the semaphore, which is responsible for
blocking simultaneous access of many tasks to serial port
UART 1. This task uses additionally the SPI bus and serial
port UART 0. Other tasks are also using these resources,
therefore they required semaphores to synchronize tasks.
The semaphore blocks simultaneous access to one of the
resources by more than one task. In Figure 3 the semaphores
are marked by a racing checkered flag symbol. When the
task is attempting to enter the critical section (e.g., read
or write to serial port UART 0), it has to pass through the
semaphore. If the semaphore is locked, the task is suspended
as long as the semaphore is locked. Once the semaphore
is unlocked, the task is released automatically and the
semaphore is locked again by this task. The task unlocks the
semaphore again after leaving the critical section. FreeRtos
provides special API for handling semaphores. The task is
suspended as long as the semaphore is locked, or until its
optionally specified timeout.

FreeRTOS supports API for buffer handling in order to
simplify the implementation of the main controller firmware.

79

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

There is a special function for writing to the buffer. If the
buffer is full, the task is suspended as long as the buffer
is full and optional specified timeout is not exceeded. The
function informs (returns the result) if the operation was
successful or not. Similarly there is a function for reading the
buffer. If the buffer is empty, the task is suspended. The task
is released when data is available in the buffer or timeout is
exceeded. All the mentioned FreeRTOS API functions are
not blocking. If the task is suspended, the microcontroller is
executing other, not suspended, tasks. The developer has to
care about avoiding deadlocks. Programming tasks is thus
complementary to the operating systems theory within the
range of topics related to deadlocks.

The task of the device monitor is to check the state of
modules connected to RS 485 bus or SPI bus. This includes
polling all devices connected to the RS 485 bus, reading
analogue inputs values and communicating with devices
connected to SPI bus (e.g., RTC clock). The task uses the
resources such as SPI BUS or serial port UART 0. The task
is synchronized with other tasks by semaphores.

The TCP/IP stack task is responsible for listening and
establishing new TCP connections and handling them. The
task uses SPI bus and is also synchronized. This tasks has
a lower priority than two other tasks.

2) Command Line Interpreter: The main controller pro-
vides interactive communication with a user thanks to Com-
mand Line Interpreter. Initially, the CLI was taken from
the AVRlib project [10]. Original CLI was not designed for
multi task environment: only one instance of CLI was possi-
ble and, furthermore, it was working on global variables. The
original CLI was not ready to cooperate with stdio C library.
As a result, for the purpose of the proposed platform, most
of the codes of the original CLI has been rewritten. Now, it
is possible to use many independent instances of CLI. Each
CLI has the history of 4 last commands and works on a new
engine. The proposed CLI is compatible with stdio library
and it is possible to use fprintf functions in order to make
a print.

The new CLI API is friendly (it allows users to add
new commands easily) and communication with the main
controller is simple. The command help displays all available
commands and its description.

3) File system: An important part of operating system
theory is devoted to file systems. For the purpose of the di-
dactic platform, a simple file system, the so-called Fat8, has
been written. It can address up to 256 clusters. Each cluster,
contrary to CP/M operating system, has 256 bytes instead
of 128, what simplified the file system implementation. The
whole implementation takes about 500 lines of code and
is compatible with avr-libc [11] API. The file is visible as
a stream. Writing to a file is possible using fprintf function.

4) Communication protocol: The main controller and the
executing modules are connected to a common medium –
RS 485 bus. The communication model looks as follows.

The main controller (master) starts the transmission on the
bus. Each frame sent by the master main controller has
an address of a slave device (an executing module) – the
receiver of the message. The slave device can answer to the
message. The frame format is Type Length Value. The frame
fields are the following: synchronization sequence, address,
type of message, message length and message data. Two
bytes with CRC sum end the frame.

5) TCP/IP stack: The TCP/IP stack implemented in the
presented didactic platform is based on the stack proposed
within HTTP/TCP with the Atmega88 microcontroller (AVR
web server) [12] project. For the purpose of our project,
the TCP/IP working on Atmega88 with 8 kB of program
memory was adopted for multitasking system. The TCP/IP
stack is supported in the presented didactic platform only
partially. At the current stage, only the ICMP protocol and
a simple WWW server is working. The next releases of
the didactic platform will also include an implementation
of servicing several TCP connections.

6) Xmodem protocol: This protocol allows to send or
receive files. It cooperates with stdio library and input/output
stream. This protocol is useful for bootloader handling. It
allows to flash executing module by new firmware image.
Implementation of TFTP protocol is much more compli-
cated.

B. Executing module

The executing module controls 4 relays and reads four
inputs. It is suitable for controlling two roller shutters or four
light sources. Some controlling functions can be fulfilled
automatically, e.g., after pressing the button the relay is
switched on. The relay state may be changed after receiving
special command from main controller.

1) Kernel: The executing module is not well equipped.
Its microcontroller has 16 kB of program memory and 1 kB
of data memory. In order to save data memory, the FreeRtos
is using coroutines. The coroutines share common stack.
The coroutines in FreeRTOS are automatically restored by
the scheduler and a developer does not need to focus on
them. Moreover, they are very portable across other architec-
tures [9]. The disadvantage of the coroutines is a requirement
of a special consideration. The lack of stack causes that
data stored in local variables are destroyed after restoration
of coroutine, what complicates the use of coroutines. The
coroutine API functions can be called only inside the main
coroutine function. In FreeRTOS, the cooperative operation
is only allowed among coroutines, not between coroutines
and tasks. For this reason there are only coroutines and no
tasks in firmware of the executing module.

In Figure 4 the architecture of the executing module that
controls two roller shutters is presented. For driving single
roller shutter two relays are required; since one executing
module can coordinate two roller shutters. The firmware
consists of 4 coroutines, presented in Fig. 4 as solid line

80

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 4. Architecture of executing module firmware

rectangles. Two coroutines drive the rollers, additionally
there is a coroutine that scans the keyboard connected to
the executing module and another one responsible for com-
munication within RS 485 bus. The coroutines communicate
with each other by 2 buffers presented in Fig. 4 as circles.
The coroutine responsible for communication with RS 485
bus can send appropriate commands to driving roller shutter
coroutine with the help of the buffer. The same buffer can be
used by the scanning keyboard coroutine to send a message.
The messages sent by the buffer includes information about
relay (its number), which should be switched on or off at a
specified time.

2) Communication protocol: Executing modules work as
slave devices. The communication is always started by a
master device by sending a message with a slave device’s
address (destination address). All slave devices check des-
tination address of the received messages. If the address
is matching, the slave device answers and executes the
command issued by the main controller. In most cases,
messages with not matching address are ignored. There is
only one exception to this rule, which is presented in the
next section.

3) Bootloader: The bootloader is mainly used when
STK 500v2 programmer is not available or when it is not
connected. The main controller can flash firmware to the
executing module. With the help of the xModem protocol
the firmware image is first uploaded to the main controller
and stored in a file. Next, the main controller sends restart
command to the executing module and if the address is
matched, the device restarts. Otherwise, the device discon-
nects from RS 485 bus for 60 seconds – this is enough
to write firmware to the executing module. After restart
of the executing module the bootloader code is executed.
The bootloader waits 30 seconds for flash command. After
receiving it, the executing module is trying to download
firmware using the xModem protocol. The main controller
sends firmware according to the xModem protocol.

Figure 5. IDE and Hello world function

4) Keyboard scanner: There is a coroutine described
in Section III responsible for keyboard scanning. It can
distinguish a key press from stick bumping on keyboard.

C. Software tools

The prepared toolset for the platform purposes works
on Linux and consists of editor (Integrated Development
Environment – IDE), compiler, repository and programmer
software. In the Ubuntu distribution all of required programs
are available in its repositories and can be installed using
apt-get install command. Thanks to this advantage it is very
easy to write the instruction for students, explaining how to
prepare the system for work.

IV. LABORATORY EXERCISES

The presented platform allows users to prepare many
exercises. For example, students can add new commands
to main controller’s CLI as it is shown in Fig. 5, as well as
modify the interface of the application programming system
File System API. It is also possible to add a new task to
the main controller that is periodically sending messages to
executing modules, for example to move roller shutters up
or down.

An exemplary exercise for students can be focused on
modification of executing module firmware. It is possible to
use the execution module for controlling 4 light sources. The
code is very similar to the code of executing module that is
controlling roller shutters. The architecture of the firmware
is presented in Fig. 6. Each light source, analogically to
roller shutter firmware, is controlled by a separate coroutine.
Therefore, it was necessary to add two more coroutines.
Each coroutine that controls light shares the same code and
has its own buffer with messages. The message format is
one byte long. There is information in the message for how
long the light has to be switched on. If the value is equal
to zero, the light has to be switched off. The algorithm
of the coroutine is shown in Fig. 7. Initially – during the
initialization phase – the light is switched off, therefore

81

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 6. Architecture of executing module firmware controlling 4 light
sources

Figure 7. Algorithm for coroutine handling single light source

the variable time is equal to zero (analogically to message
format). In the next step, the coroutine checks the value of
time variable. If it is grater than zero, the light is switched
on. Otherwise, the light is switched off. Next, the coroutine
is waiting for a new message in the buffer, not longer than
the time of switching on the light. If the timeout is exceeded
and there is no message, the algorithm goes back to the
initialization phase and the light will be switched off in the
next step. If there is a new message, the light is switched
on for a time specified in the message.

The solution based on using multitasking is easier and
more readable. Each coroutine in this case is responsible
for a different job.

V. CONCLUSION

The presented didactic system is a valuable addition to the
theory of operating and embedded systems. It enables stu-
dents to get familiarized with the aspects like multitasking,
interprocess communication, and process synchronization.
The platform has been designed in such a way as to facilitate
its quick and easy implementation. For this effect AVR

microcontrollers, which are increasingly popular among
students taking interest in electronics, have been used. The
presented solution is inexpensive and most of students can
afford to build the presented platform and use it for didactic
or practical purposes limited only by their imagination.

The paper focuses on technical details to assists other
users in building a similar didactic platform that would
support teaching of the theory of operating systems. Because
of the limited size of the present article, only a selection
of possible didactic exercises supported by the platform is
presented, while further possibilities are only indicated.

Further refinement of the platform, with active partici-
pation of students, will include an implementation of the
TCP/IP stack, telnet server (enabling CLI communication)
and the operation of the FAT32 file system and SD cards.

The aptitude tests carried out among students indicate
that the introduction of the presented didactic platform to
the process of teaching the theory of operating systems
have resulted in a considerable improvement in the exam
performance (by 25%).

ACKNOWLEDGEMENT

The authors would like to thank all the developers taking
part in open source projects cited in the article.

REFERENCES

[1] R. Love, Linux Kernel Development, 2nd ed. Novell Press,
2005.

[2] W. R. Stevens and S. A. Rago, Advanced Programming in
the UNIX Environment. Addison-Wesley, 2005.

[3] F. S. Foundation, “Gnu general public licence v2,” http:
//www.gnu.org/licenses/gpl-2.0.html, 1991.

[4] Cadsoft, “Eagle,” http://www.cadsoft.de, 2010.

[5] Atmel, “Atmega128 datasheet,” http://www.atmel.com/dyn/
resources/prod_documents/doc2467.pdf, Aug. 2010.

[6] ——, “Atmega168 datasheet,” http://www.atmel.com/dyn/
resources/prod_documents/doc2545.pdf, Jul. 2010.

[7] G. Socher, “Avrusb500v2 – an open source atmel avr pro-
grammer, stk500 v2 compatible, with usb interface,” http:
//tuxgraphics.org/electronics/200705/article07052.shtml.

[8] FreeRTOS, “Copyright notice,” http://www.freertos.org/
copyright.html.

[9] ——, “Freertos api reference,” http://www.freertos.org.

[10] P. Stang, “Procyon avrlib api,” http://www.mil.ufl.edu/
~chrisarnold/components/microcontrollerBoard/AVR/avrlib,
2006.

[11] “Avr-libc api,” http://avr-libc.nongnu.org/, 2010.

[12] G. Socher, “Http/tcp with an atmega88 microcontroller (avr
web server),” http://www.tuxgraphics.org/electronics/200611/
embedded-webserver.shtml, 2006.

82

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

