
EVALUATION OF FAST ALGORITHMS FOR MOTION ESTIMATION

Ionuţ Pirnog, Cristian Anghel, Andrei Alexandru Enescu, and Constantin Paleologu

Telecommunications Department, University Politehnica of Bucharest, Romania

{ionut, canghel, aenescu, pale}@comm.pub.ro

ABSTRACT

In this paper we present an evaluation of the fast algorithms

used for motion estimation and compensation. The presented

algorithms are classified in two categories. The first category

contains the algorithms with fixed number of iterations, i.e.,

Three Step Search (TSS), New Three Step Search (NTSS),

and Four Step Search (FSS). The second category includes

motion estimation algorithms with variable number of

iterations, i.e., Orthogonal Search (OS), Two Dimensional

Logarithmic Search (TDLS), and Adaptive Rood Pattern

Search (ARPS). It is proved that for the second category of

algorithms the number of iterations depends on the dimension

of the search window. The evaluation is done by comparing

the peak signal-to-noise ratio (PSNR) of the compensated

motion frame and the number of blocks that are used.

Keywords – Motion estimation, fast algorithms, fixed and

variable iterations.

I. INTRODUCTION

Multimedia Information Retrieval (MIR) emerged as a branch

of the Information Retrieval Domain simultaneously with the

increasing interest in multimedia content analysis,

characterization, and retrieval. Since by multimedia content

we understand audio data, video data, textual data (and

combinations of these), the Information Retrieval is defined

for textual data; thus we can easily conclude that MIR means

audio and video content analysis.

Motions estimation played a key role in video

compression [1] and is more successfully used since the

development of the Moving Pictures Experts Group (MPEG)

standards. To enhance the “access to” and “retrieval of”

multimedia content, MPEG has developed a standard called

MPEG-7 that provides a rich set of standardized tools to

describe multimedia content [2]. This set of tools includes

motion descriptors that can be used for classification,

indexing, comparison, and retrieval of video content [2]. For

the video content compressed using the MPEG-4 standard, the

motion information is contained in the form of motion vectors

for the B and P frames and can be used directly for the

extraction of the motion descriptors. If the video content does

not include motion information, then the motion vectors can

be extracted using one of the many fast motions estimation

algorithms developed in the last decade.

The basic idea behind motion estimation is the block by

block comparison of two consecutive frames, i.e., the current

frame and the previous frame. The blocks are rectangular areas

of a frame, having the dimensions chosen according to the

application. Usually, the blocks are 8 8× or 1616× pixels for

compression; when high precision is needed the blocks can

contain only one pixel. In this case, the motion vector has a

dimension equal to the number of pixels, and is referred as

“optical flow.”

Fast motion estimation algorithms are used in order to

minimize the computational complexity with little loss in the

precision of the estimation. This is the case of video

compression because the predicted frames P and B are based

on a full frame I, the motion information, and the difference

between the current frame and the motion compensated frame.

These algorithms are simple but very efficient, so that they are

extensively used in video compression.

The rest of the paper is organized as follows. In Section II

we describe six of the most used motion estimation algorithms

divided in two categories, i.e., fixed number of iterations and

variable number of iterations. Section III contains the

comparative experimental results obtained through

simulations, using three different scenarios. In Section IV, we

present the conclusions of the evaluation and future work.

II. BLOCK MATCHING ALGORITHMS

As stated in the first section, motion is a very important

characteristic of video content and can be used for

compression (e.g., MPEG-4) and retrieval (e.g., MPEG-7).

Combining with image segmentation we can obtain camera

motion information (using the motion vectors of the

background) and object motion information (using the motion

vectors of region labeled as objects).

The block matching algorithms used for motion

estimation split the current frame into non overlapping blocks

of size 8 8× or 1616× pixels and, for every block, the

corresponding block in the previous frame is found [3]. For a

better understanding of the basic method for motion

estimation, let us denote the current frame with (),cF x y , the

previous frame with (),pF x y , and with (), ,
c
m jB x y the block

number j of the current frame. The parameter m is the

dimension of the block and the pair (),x y is the horizontal

and vertical position of the block in the frame. In the

following, in order to simplify the notation, we will omit the

subscript m . For every block (),
c
jB x y of the current frame,

we can define a search window (), ,
p

l jW x y as an extension of

the block in the previous frame (),
p
kB x y , with the same

position as the bloc in the current frame. The parameter l of

the search window represents the dimension of the extension

in all four directions. This means that the search window

107

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

(), ,
p

l jW x y used for the motion estimation of a block

(),
c
jB x y will have the dimension () ()2 2l m l m+ × + .

The corresponding block represents the best block

obtained by comparing the block from the current frame,
c
jB ,

with all the overlapping blocks from the search window,

, 1,
p
kB k N= , where N represents the number of blocks in the

search window.

The corresponding block or the best block is found using

the minimization of a cost function defined as the mean square

error (MSE) or as the mean absolute error (MAE) between the

current block in the current frame and the current block in the

search window, i.e.,

() ()

() ()()

2

2

2
1 1

,

1
, ,

p pc c
j jk k

m m

c p
i j

MSE B B B B

P i j P i j
m = =

= − =

= −∑∑
 (1)

()

() ()
2

1 1

,

1
, ,

p pc c
j jk k

m m

c p
i j

MAE B B B B

P i j P i j
m = =

= − =

= −∑∑
 (2)

where (),cP i j and (),pP i j represents the pixels in position

(),i j from the current and previous frames. The values of the

parameters m and l determines the precision and the

computational complexity of the motion estimation. If the

motion of an object in a video is wide, then, for a good

estimation, it is necessary a large search window, but this

means that the process will be computationally expensive.

This algorithm is known as the Full Search (FS) algorithm

because it searches the best block from all the blocks in the

search window [4]. The precision of this algorithm is very

good, if the window is large enough to include the amplitude

of the motion, but because it uses all the blocks in the search

window it is also computationally expensive.

The class of fast block matching algorithms for motion

estimation was developed with the goal of lowering the

computational time without causing a high loss in precision.

This is done by using for comparison only a small number of

blocks in the search window. The developed fast algorithms

use the same principle but with a different block selection

scheme.

A. Three Step Search Algorithm

The Three Step Search (TSS) is the first fast algorithm that

was developed and, as its name suggests, it uses three steps to

determine the best block. The three steps are as follows [4]:

1. The current block, (),
c
jB x y , is compared to the

centre block in the search window, (),
p
jB x y , and 8

blocks located at a distance S from the centre block.

The cost function for all the blocks is computed and

the best block for this step is determined as the block

with the minimum cost.

Figure 1. The neighboring blocks selected if the best block is one of

the blocks with 1S = .

2. The determined best block is selected as the new

centre, the distance S is halved, and step 1 is

repeated.

3. When the distance is 1, the best block is determined

as the block with the minimum cost.

The values of the motion vector for the current block are

obtained as de difference between the horizontal and vertical

positions of the best block and the positions of the current

block. Usually, the initial distance is set to 4S = and the

search window parameter is set to 7l = . These values where

experimentally determined but lead to good enough results for

estimating motion with low amplitude. Larger values of these

parameters may lead, in some cases, to a better estimation, but

definitely lead to an increase of the computational cost.

Compared to the FS algorithm, the TSS algorithm has a nine

times lower computational cost.

B. New Three Search Algorithm

The improvement introduced by the New Three Step Search

(NTSS) is a better estimation of the motion with low

amplitude [5]. This is done by evaluating in the first step

another 8 blocks located at a distance 1S = from the centre

block. The best block from these initial 17 blocks is

determined based on the cost functions; depending on the

positions of the best block we have three situations:

1. If the best block is the one in the centre of the search

window, then the algorithm stops.

2. If the best block is one of the blocks located at a

distance 4S = , then the TSS algorithm is used.

3. If the best block is one of the blocks located at a

distance 1S = , then its neighbors are compared with

the current block and the best block is determined as

the block with the minimum cost function.

To decrease the number of blocks compared and to eliminate

the re-evaluation of some blocks, the neighbors selected in the

last case depends on the position of the best block as shown in

Figure 1.

C. Four Step Search Algorithm

The Four Step Search (FSS) is performed in four steps [6]:

1. The centre block and the eight block al distance

2S = are evaluated. If the block with the minimum

cost is the centre block, then the algorithm jumps to

step 4. Else it goes to step 2.

2. The block with the minimum cost is selected as the

centre block and the neighboring blocks at distance

108

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

2S = are evaluated. The selection of the neighboring

blocks is similar to NTSS.

3. If the best block is the centre block, then the

algorithm goes to step 4, else step 2 is repeated.

4. The distance is set to 1S = and the centre block and

its eight neighbors are evaluated. The best block is

the block with the minimum cost.

The minimum number of evaluated blocks is the same as in

the case of the NTSS algorithm, but the maximum number

decreases.

D. Two Dimensional Logarithmic Search Algorithm

The Two Dimensional Logarithmic Search (TDLS) algorithm

is similar to the TSS algorithm, but verifies the centre block

and only 4 blocks located at distance S on the horizontal and

vertical axes [6]. The value of S is not fixed, as in the case of

TSS and FSS algorithms, and can be chosen depending of the

dimension of the search window. The steps required by this

algorithm are:

1. The value of the distance parameter S is set. The

centre block and the 4 blocks at distance S are

evaluated, and the block with the lowest cost is

selected.

2. If the selected block is the centre block, then the

distance S is halved. If one of the other blocks is

selected, then this block is set as the new centre and

step 1 is repeated.

3. When the distance becomes equal to one, the centre

block and all its neighbors are evaluated. The block

with the lowest cost is the best block.

It is not always clear that the TDLS algorithm obtains better

results than the other presented algorithms. But the fact that

the initial value of S is not imposed can be very helpful in

case of a motion with large amplitude.

E. Orthogonal Search Algorithm

The Orthogonal Search (OS) is a combination of the TSS and

TDLS algorithms [3]. The algorithm involves the following

steps:

1. The initial distance is chosen as half of de maximum

distance of the search window. The centre block and

two blocks on the horizontal axis are evaluated. The

block with the minimum cost is set as the new centre.

2. The centre block and two blocks on the vertical axis

are evaluated and the new centre is selected.

3. If the distance parameter S is bigger than one, then

the distance is halved and the steps 1 and 2 are

repeated. Else, the last centre block is the best block.

The computational cost for the OS algorithm is smaller as

compared to the TDLS algorithm, but the precision decreases.

F. Adaptive Rood Pattern Search Algorithm

The Adaptive Rood Pattern Search (ARPS) algorithm uses the

motion information of the neighboring block in the left. This is

helpful if the current block and its neighbor on the left belong

to the same object in the frame; in this case, their motion is

similar [6]. The steps of the ARPS algorithm are:

Table 1. PSNR for video “Motion” with 16m = and 7l = .

Algorithm 1-2 2-3 3-4 4-5

FS 34,06 31,93 30,28 29,27

TSS 33,98 31,81 30,15 29,25

NTSS 33,94 31,8 30,15 29,25

FSS 31,73 30,2 28,93 28,05

OS 33,86 31,44 29,56 28,41

TDLS 32,77 30,81 29,46 28,57

ARPS 33,67 31,72 30,01 29,07

5-6 6-7 7-8 8-9 9-10

30,43 29,47 29,92 27,72 27,89

30,27 29,33 29,75 27,55 27,81

30,21 29,33 29,79 27,6 27,83

28,88 28,07 28,78 27,05 27,04

29,26 27,66 28,51 25,82 27,04

29,43 28,44 28,99 27,14 27,18

30,01 29,1 29,47 27,48 27,6

1. The centre block, the block indicated by the motion

vector of the neighbor, and four blocks are evaluated.

The four blocks are selected on the horizontal and

vertical axes at a distance S , chosen as the maximum

value between the absolute values of the motion

vector.

2. The block with the minimum cost is selected as the

new centre block, the distance is set to 1, and the

centre block together with its four axis neighbors are

evaluated.

3. If the block with the minimum cost is in the centre,

then the algorithm stops; consequently, this is the

best block. Else, step 2 is repeated.

For the blocks in the first column, there are no left neighbors,

so that the distance S is set to 2.

The major advantage of this algorithm is that after the

first step the search is moved to the area where the best block

is, without going through intermediary steps. Consequently,

the computational cost is smaller than all the other algorithms.

III. EXPERIMENTAL RESULTS

The goal of this evaluation was to determine the performances

of the fast block motion estimation algorithms, the parameters

that determine the efficiency of the motion estimation, and if

these algorithms can be improved.

In order to evaluate the performances, we have

implemented the algorithms in Matlab using two videos for

estimation of the motion. The first observation we have made

based on our simulations is that the classification of the

algorithms based on the efficiency and computational cost

does not depend on the video selected.

We have stated in the first section that the results are

presented for three scenarios. These scenarios were obtained

by varying the values of the search window parameter and the

block size parameter.

1. First scenario

In the first scenario, we set the blocks to 16 16× pixels and the

search window parameter to 7. The results for the video

“Motion” with 10 frames are shown in Table 1 and Figure 2.

109

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Table 2. Number of blocks verified.

Algorithm Nb

FS 255

TSS 25

NTSS 19

FSS 18

OS 13

TDLS 18

ARPS 11

Figure 2. Motion estimation results for video “Motion”

with 16m = and 7l = .

The results in Table 1 show that the variation of the peak

signal-to-noise ratio (PSNR) is not very high. The difference

between these fast block matching algorithms is results in

terms of the computational cost. This cost is evaluated through

the number of blocks (Nb) in the verified search window for

every block in the current frame. The values of the number of

verified blocks are show in Table 2.

2. Second scenario

In the second scenario we set the blocks to 8 8× pixels and the

search window parameter to 7. The results for the same video,

“Motion”, are shown in Table 3 and Figure 3.

As it can be seen, the PSNR slightly increases if we use

8 8× blocks but the increase in the computational cost is more

significant. So, if the precision of estimation is not imposed it

is recommended to use 1616 × blocks to obtain a smaller

computational cost.

3. Third scenario

In the third scenario we set the blocks to 16 16× pixels and

the search window parameter to 14 and 30. This scenario is

based on the results from the first two scenarios and all of our

simulations. We observed that even if we decrease the

dimensions of the block, the estimation is not perfect. This

happens because the motion amplitude in the videos we used

is bigger than the search window. In Table 4 are presented the

comparative results of the PSNR for these two values of the

search window parameter and the results from the second

scenario. The results are shown for frames 4 and 5 of the video

“Motion.”

Table 3. PSNR for video “Motion” with 8m = and 7l = .

Algorithm 1-2 2-3 3-4 4-5

FS 34,61 32,53 31,28 30,78

TSS 34,19 32,24 30,96 30,49

NTSS 34,16 32,23 30,94 30,49

FSS 32,03 30,44 29,65 29,11

OS 34,09 31,68 29,91 28,88

TDLS 33,11 31,27 30,16 29,3

ARPS 33,27 31,76 30,46 30,02

5-6 6-7 7-8 8-9 9-10

31,91 31,21 31,94 28,71 29,06

31,57 30,85 31,54 28,46 28,9

31,54 30,92 31,69 28,56 28,97

29,83 29,21 29,87 27,82 27,82

29,97 28,78 30,03 26,53 27,76

30,29 29,83 30,49 27,9 28,09

30,75 30 30,97 28,29 28,59

Figure 3.Motion estimation results for video “Motion”

with 8m = and 7l = .

Table 4. Comparative results of the PSNR for different search

window parameters.

Algorithm 7l = 14l = 30l =

TSS 29,25 29,25 29,25

NTSS 29,25 29,25 29,25

FSS 28,05 28,05 28,05

OS 28,41 28,41 28,41

TDLS 28,57 31,3 31,89

ARPS 29,07 30,81 31,04

The results show that the fast algorithms with fixed value

of the search parameter S have the same precision even if we

increase the dimensions of the search window. This was a

predictable result because the search parameter of these does

not depend on the search window dimension, so that the

number of steps will be constant.

Significant improvement of the PSNR appears for the

TDLS and ARPS algorithms, i.e., two of the algorithms that

have variable search parameter and variable number of steps.

110

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Table 5. Comparative results of the number of blocks verified for

different search window parameters.

Algorithm 7l = 14l = 30l =

TSS 25 25 25

NTSS 25 25 25

FSS 18 18 18

OS 13 13 13

TDLS 18 19 20

ARPS 12 14 14

As we specified in Section II, the value of the search

parameter of the TDLS algorithm is not fixed and the number

of steps depends on the search window. The comparative

results for different dimensions of the search window are

obtained for the same value of the search parameter 4S = .

We can see that the value of the PSNR for both the ARPS

and TDLS algorithms in the case of 30l = (Table 5) is higher

than the PSNR for the same frames, 4 and 5, of the FS

algorithm in the case of 7l = .

The computational complexity of the algorithms is

evaluated in terms of the mean number of blocks verified for

every frame. Since the evaluation of the algorithms was done

using Matlab it is difficult to express the computational

complexity in terms of the number of arithmetical operations.

Concerning the number of blocks verified, the FS algorithm

has a number of 255 blocks in the search window for every

block in the current frame, and the ARPS and TDLS

algorithms have blocks verified, even if we increase the search

window.

IV. CONCLUSIONS AND FUTURE WORK

By evaluating a representative number of fast block matching

algorithms for motion estimation, the following conclusions

can be outlined.

1. There are two classes of fast algorithms for motion

estimation: i) fixed search parameter and constant

number of steps, and ii) variable search parameter

and variable number of steps.

2. Although the differences between algorithms are not

very high (in terms of both PSNR and Nb), in the

case of the same search parameters and search

window size, there is no room for improvement for

the algorithms in the first class.

3. The dimensions of the search window determine the

precision of motion estimation for the algorithms in

the second class; as it was shown in Section III, the

improvements brought by increasing the window size

lead to a value of the PSNR higher that the value

obtained for the FS algorithm.

In future work we intend to combine the two classes,

meaning that we will see how the algorithms in the first class

behave for different search parameters and window sizes.

Another track we intend to follow is lowering the number of

block verified, for a large search window, through different

search schemes.

ACKNOWLEDGEMENT

This work was supported by the UEFISCSU Romania

under Grant PN-II-RU-TE no. 7/05.08.2010.

V. REFERENCES

[1] Z. Chen, “Efficient block matching algorithm for motion

estimation,” International Journal of Signal Processing, vol.

5, no. 2, pp. 133–137, 2009.

[2] ISO/MPEG N4358, “Text of ISO/IEC Final Draft

International Standard 15938-3 Information Technology -

Multimedia Content Description Interface - Part 3 Visual,”

MPEG Video Group, Sydney, July 2001.

[3] A. Barjatya, “Block matching algorithms for motion

estimation,” Final Project Paper 2004.

[4] Y. C. Lin and S. C. Tai, “Fast full-search block-

matching algorithm for motion-compensated video

compression,” IEEE Trans. Communications, vol. 45, no. 5,

pp. 527–531, May 1997.

[5] R. Li, B. Zeng, and M. L. Liou, “A new three-step

search algorithm for block motion estimation,” IEEE Trans.

Circuits and Systems for Video Technology, vol. 4, no. 4, pp.

438–442, Aug. 1994.

[6] S. Jamkar, S. Belhe, S. Dravid, and M. S. Sutaone, “A

comparison of block-matching search algorithms in motion

estimation,” in Proc. 15th International Conference on

Computer Communication, pp. 730–739, Mumbai, India,

2002.

111

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

