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Abstract—In this paper, quadrature amplitude modulation – 

trellis coded modulation (QAM-TCM) schemes are designed 

using recursive convolutional (RC) encoders over Galois field 

GF(2
N
). These encoders are designed using the nonlinear left-

circulate (LCIRC) function. The LCIRC function performs a 

bit left circulation over the representation word. Different 

encoding rates are obtained for these encoders when using 

different representation wordlengths at the input and the 

output, denoted as Nin and N, respectively. A generalized 1-

delay GF(2
N
) RC encoder scheme using LCIRC is proposed for 

performance analysis and optimization, for any possible 
encoding rate, Nin/N. The minimum Euclidian distance is 

estimated for these QAM-TCM schemes and a general 

expression is found as a function of the wordlengths Nin and N. 

The symbol error rate (SER) is estimated by simulation for 

QAM-TCM transmissions over an additive white Gaussian 

noise (AWGN) channel. The proposed encoders outperform 

the corresponding binary encoders in terms of structural 
complexity and the availability of a general expression for the 
Euclidian distance. 

Keywords-Recursive convolutional GF(2
N
) encoders; Left-

circulate function; QAM-TCM.  

I.  INTRODUCTION 

Channel encoded transmissions are used in all systems 
nowadays. Several types of channel encoding methods were 
proposed during the last decades. Almost all coding methods 
known in the literature use linear functions.  

The nonlinear functions were used lately in chaotic 
sequence generators to increase the security of 
communications systems.  

In [1], Frey proposed a chaotic digital infinite impulse 
response (IIR) filter for a secure communications system. 
The Frey filter contains a nonlinear function named left-
circulate function (LCIRC), which provides the chaotic 
properties of the filter. In [2], Werter improved this encoder 
in order to increase the randomness between the output 
sequence samples. The performances of a pulse amplitude 
modulation (PAM) communication system using the Frey 
encoder, with additive white gaussian noise (AWGN) were 
analyzed in [3], by means of simulations. All previously 
mentioned papers considered the Frey encoder as a digital 
filter, operating over Galois field GF(2N). Barbulescu and 
Guidi made one of the first approaches regarding the 
possible use of the Frey encoder in a turbo-coded 
communication system [4].  

In [5], it was demonstrated that the Frey encoder with 
finite precision (wordlength of N bits) presented in [1] is a 
recursive convolutional (RC) encoder operating over GF(2N). 
In [6], a new method is proposed for enhancing the 
performances of the chaotic PAM – trellis-coded modulation 
(PAM-TCM) transmission over a noisy channel. These 
encoders follow partially the rules proposed by Ungerboeck 
in [8] for defining optimum trellis-coded modulations by 
proper set partitioning. Using the Ungerboeck optimization 
procedures, GF(2N) encoders using the LCIRC function were 
designed for phase shift keying  – trellis-coded modulation 
(PSK-TCM) transmissions over a noisy channel. Two-
dimensional (2D) TCM schemes using a different trellis 
optimization method for Frey encoder was proposed in [9]. 
The PSK-TCM encoders were introduced into a parallel 
turbo-TCM scheme in [10] and considerable coding gains 
were obtained. The development of optimum GF(2N) 
encoders for quadrature amplitude modulation  (QAM) TCM 
scheme is more difficult than in the case of PAM and PSK 
modulations, due to the larger constellations and non-
uniform power per symbol.  

In the present paper, a generalization of the optimum 
one-delay GF(4) encoder in [5] is performed, for any output 
wordlength N and for any possible encoding rate in 
quadrature amplitude modulation TCM (QAM-TCM) 
schemes. 

The paper is organized as follows. Section II is 
presenting the LCIRC function definition and properties over 
GF(2N), and its use for designing a rate 1 GF(4) RC encoder 
with LCIRC for a QPSK/4QAM-TCM transmission. The 
trellis optimization method is presented in Section III, first 
for a particular case, and then, for any output wordlength N. 
Therefore, in Section III, a generalized optimum GF(2N) RC 
encoder scheme is proposed and an expression is provided 
for the minimum Euclidian distance of these encoders in a 
QAM-TCM transmission. The simulated symbol error rate 
(SER) performance is plotted in Section IV for the optimum 
QAM-TCM transmissions. Finally, the conclusions are 
drawn and some perspectives are presented in Section V. 

II. DESIGN OF QAM-TCM SCHEMES WITH GF(2N) RC 

ENCODERS USING LCIRC 

A. Nonlinear LCIRC Function over GF(2N) 

The main component of the chaotic encoder introduced 
by Frey in [1] and the RC encoder presented in [5] is the 
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nonlinear LCIRC function. This function is determining both 
the  chaotic  properties of  the encoder in [1], [2], and [3] and 
the trellis performances in [6], [7], [9], and [10]. The 
definition of this nonlinear function operating over finite sets 
and some of its properties will be presented in the sequel.  

Let us denote by N the wordlength used for binary 
representation of each sample. The LCIRC function is used 
as a typical basic accumulator operation in microprocessors 
and performs a bit rotation by placing the most significant bit 
to the less significant bit, and shifting the other N-1 bits one 
position to a higher significance. This is the reason why the 
function is named left-circulate. 

Considering the unsigned modulo-2N operations for any 
sample moment n, the LCIRC consists in a modulo-2N 
multiplication by 2 that is modulo-2N added to the carry bit, 
and is given by the expression: 

 
NUUU

nsnxnxLCIRCny 2mod])[][2(])[(][ +⋅==       (1) 
 
where the superscript U denotes that all the samples are 

represented in unsigned N bits wordlength, i.e. xU[n], yU[n] ∈ 
[0, 2N-1], and the carry bit s[n] is estimated as following: 
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We can note from (2) that besides the nonlinearity in the 

modulo-2N multiplications and additions, the carry bit s[n] is 
determining the nonlinearity of the LCIRC function. 

Applying N times consecutively the LCIRC function to 
an N bits wordlength unsigned value xU, it results the original 
value: 
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An example of a GF(4) RC encoder using LCIRC 

function for a QPSK-TCM scheme is presented in the next 
section. 

B. Rate 1 GF(4) RC Encoder with LCIRC for a QPSK-

TCM transmission 

Let us consider a RC encoder working over GF(4) using 
the LCIRC function. This scheme is presented in Fig. 1. 
Here, all the values are represented in the unsigned form. Let 
us assume that N denotes the wordlength used for binary 
representation of each sample. This encoder is composed by 
one delay element with a sample interval, two modulo-2N 
adders, and a LCIRC block. For each moment n, u[n] 
represents the input data sample, x[n] denotes the delay 
output or the encoder current state, and e[n] is the output 
sample.  

The encoding rate for the encoder in Fig. 1 is the ratio 
between the input wordlength Nin and the output wordlength 
N=Nout [5] [6], i.e., R = 1, because Nin = Nout = 2. 

The trellis for the encoder in Fig. 1 is presented in Fig. 2 
and does not follow the Ungerboeck rules [7], [8], [9]. This 
trellis has four states because the sample determining the 
encoder state takes four values, i.e., xU[n]∈{0, 1, 2, 3}.  

In Fig. 2, four different lines are used for representing the 
transitions corresponding to the input sample uU[n]. 

Each transition in Fig. 1 is associated to an unsigned 
output value eU[n]∈{0, 1, 2, 3}. For each originating state, 
the values in the box, from left to right, are associated to the 
transitions in the descending order. 

Mapping an unsigned output symbol value eU[n] into an 
QAM symbol value using the set partitioning (SP) map over 
the n-th sample interval as in [8], a 2N levels QAM-TCM 
scheme is obtained.  

The signal constellation for the QPSK-TCM scheme 
using the encoder in Fig. 1 and the SP mapping is 
represented in Fig. 3. 

Considering the SP mapping for the constellation in Fig. 
3, it results that the QPSK-TCM signal trellis in Fig. 2 
presents a minimum Euclidian distance of d2

E, N=2, R=1, QPSK = 
2·∆0

2 = ∆1
2 = 4, offering no coding gain over the non-

encoded binary PSK (BPSK) signal. 

Figure 1 – Rate 1 GF(4) nonlinear encoder for 2 b/s/Hz. 

Figure 2 – Trellis for rate 1 GF(4) nonlinear encoder (2 b/s/Hz). 

Figure 3 – Signal constellation for QPSK/4QAM-TCM. 
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Figure 5 – Trellis for rate 1/2 optimum GF(4) RC-LCIRC encoder 
(1 b/s/Hz). 

 

Figure 4 – Rate 1/2 optimum GF(4) RC-LCIRC encoder for 1 
b/s/Hz. 

 
Figure 6 – Rate Nin/N optimum GF(2N) RC LCIRC encoder for 

Nin b/s/Hz. 

III. OPTIMUM QAM-TCM SCHEMES WITH GF(2N) RC 

ENCODERS USING LCIRC 

A. Rate 1/2 Optimum GF(4) RC LCIRC Encoder for a 

QPSK-TCM transmission 

In this section, the potential of the nonlinear LCIRC 
function is showed, for designing efficient encoders.  

Therefore, following the trellis optimization presented in 
[6] and [7], a simple nonlinear encoder operating over GF(4) 
was developed, which has a binary input. It is demonstrated 
that this encoder performs identically to an optimum rate 1/2 
binary field RC convolutional encoder. Both encoders offer 
maximum coding gain for 1 b/s/Hz [8]. The scheme of the 
rate 1/2 optimum GF(4) encoder is presented in Fig. 4. Here, 
the time variable is neglected and all the values are 
represented in the unsigned form.  

The trellis for the encoder in Fig. 4 is presented in Fig. 5 
and follows all the Ungerboeck rules.  

Considering the SP mapping, the QPSK-TCM signal 
trellis in Fig. 5 presents a minimum Euclidian distance of 
d2

E,R=1/2,opt.,u
U

∈{0,2},QPSK = 2· ∆1
2 + ∆0

2 = ∆1
2 = 10 for a spectral 

efficiency of 1b/s/Hz. Hence, this rate 1/2 code for 1b/s/Hz 
QPSK-TCM transmission is offering a coding gain of 
10log10(2.5) 

≈ 4 dB over the rate 1 QPSK-TCM in Section 
II.A. 

B. Generalized Optimum RC LCIRC Encoder for a QAM-

TCM transmission 

Following the same design procedures as in Section 
III.A, we can design optimum RC encoders using LCIRC 
function, for any output wordlength N. In fact, for a fixed 
output wordlength N, an optimum RC encoder will be 
determined for each input wordlength Nin ∈{1, 2, …, N-1}, 
for which the encoding rate is R = {1/N, 2/N, …, (N – 1)/N}.  

 

 
 
The general block scheme for a rate Nin/N optimum 

QAM-TCM encoder, Nin ∈{1, 2, …, N-1} using one delay 
element and the LCIRC function is presented in Fig. 6. 
LCIRCNin represents the LCIRC function application for Nin 
times consecutively, as it was defined in (3). Both adders and 
the multiplier are modulo-2N operators.  

The trellis complexity of the codes generated with the 
scheme in Fig. 6 increases with the wordlength, because the 
number of trellis states grows exponentially with the output 
wordlength, i.e., 2N, while the number of transitions 
originating from and ending in the same state grows 

exponentially with the input wordlength, i.e., inN2 .  
It can be easily demonstrated that the minimum Euclidian 

distance for the QAM-TCM encoder in Fig. 6 has the 
following expression: 
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For example, let us consider the optimum encoders for 

the output wordlength equal to 4, i.e., N=4. The input 
wordlength may take three values Nin ∈{1, 2, 3}, and the 
corresponding encoding rates are R ∈ {1/4, 1/2, 3/4}. For the 
rate 1/4 encoder the scheme in Fig. 6 is set with all the values 
corresponding to Nin=1. From (4) results that the minimum 
distance of this code is d

2
E, R=1/4, opt., 16-QAM, u

U
∈{0, 8} = 9.2, 

having a coding gain of 10·log10(d2
E, R=1/4, opt., 16-QAM, 

TABLE 1 
MINIMUM QAM-TCM DISTANCES AS FUNCTION OF N AND NIN 

FOR OPTIMUM GF(2N) RC-LCIRC ENCODERS 
 

N Nin R 2
Ed  

1 1 1 8 
2 1 1/2 10 
2 2 1 4 
4 1 1/4 9.2 
4 2 1/2 3.6 
4 3 3/4 2 
4 4 1 0.8 
6 1 1/6 ≈ 9 
6 2 1/3 ≈ 4.47 
6 5 5/6 ≈ 0.48 
6 6 1 ≈ 0.19 
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Figure 7 – SER performance for QAM-TCM schemes using optimum 
GF(2N) nonlinear RC encoders. 

u
U

∈{0,4,8,12} / d2
E,R=1,N=4, opt., 16-QAM) = 10·log10(9.2/0.8) ≈ 10.6 

dB over the optimum 16QAM (N=4) using a rate 1 encoder. 
For the rate 2/4 encoder (Nin=2) the minimum distance of 
this code is d2

E, R=1/2, opt., 16-QAM, u
U

∈{0,4,8,12} = 3.6, having a 
coding gain of  approximately 6.53 dB over the optimum 
16QAM (N=4) using a rate 1 encoder. For the rate 3/4 
encoder (Nin=3) the minimum distance of this code is d

2
E, 

R=3/4, opt., 16-QAM, u
U

∈{0,2,4,6,8,10,12,14} = 2, having a coding gain of  
approximately 3.97 dB over the optimum 16QAM (N=4) 
using a rate 1 encoder. The rate 1 optimum encoder is 
obtained for Nin = N, for any value of N, considering that 

UUNU
xxLCIRCxLCIRC == )()(0  assumes no bit 

circulation. This rate 1 optimum encoder offers a minimum 
distance of d2

E, R=1, opt. N=4, opt., 16-QAM = 0.8. 
Table 1 presents a few values of the minimum distances 

of the encoder shown in Fig. 6 for different values of Nin and 
N. The resulted coding rates are presented in the third 
column. Analyzing the values in Table 1 it can be noted that 
the minimum distance of a code decreases when its coding 
rate increases, for any value of N. This fact is well known, 
i.e., the code performances decrease with the rate increases. 
Unfortunately, these performances are related to the spectral 
efficiency of these PSK transmissions. For the codes 
presented in Table 1, having the encoder structure in Fig. 6, 
the spectral efficiency for the QAM transmission is equal to 
the input wordlength Nin. Hence, the code performances 
increase is paid by a spectral efficiency decrease.  

It can be easily noticed that all the rate (N – 1)/N, for any 
N value, the optimum RC-LCIRC encoders are offering the 
same minimum distance as the corresponding binary 
optimum encoders determined by Ungerboeck in [8]. 
However, the GF(2N) optimum RC-LCIRC encoders are less 
complex than the corresponding binary encoders. The 
memory size of the binary encoders increases logarithmically 
with the number of states in the trellis, while the GF(2N) 
optimum RC-LCIRC encoders include only one delay 
element, no matter what is the trellis complexity. 

One can notice that optimum RC-LCIRC QAM-TCM 
encoders can be designed for any spectral efficiency value, 
and for any encoding rate, using the scheme in Fig. 6 with 
minimum distances given by (4). 

IV. SIMULATION RESULTS 

The QAM-TCM schemes presented in Section II and 
Section III using all optimum encoders in Table 1 were 
considered for simulations. The SER performances for these 
encoding schemes using multilevel QAM signals and Viterbi 
decoding were analyzed in the presence of AWGN. The SER 
is plotted in Fig. 7 as a function of the SNR.  

The QAM-TCM schemes using rate 1 optimum nonlinear 
RC encoders for the same spectral efficiencies as the three 
optimum encoder QAM-TCM schemes for N=4, were 
considered for comparison. For example, the rate 1/4 
encoder for N=4 is having the same spectral efficiency as the 
rate 1 encoder for N=1, i.e., 1b/s/Hz, and the rate 2/4 encoder 
for N=4 and the rate 1 encoder for N=2 have an efficiency of 
2b/s/Hz. These cases are considered in Fig. 7.  

Analyzing the SER curves it can be noticed that the rate 
1/4 encoder for N=4 performs better than the rate 1 encoder 
for N=1 by more than 1 dB, and the rate 2/4 encoder for N=4 
performs almost the same as the rate 1 encoder for N=2. The 
simulation results are in concordance with the theoretical 
results from Table 1. However, the average multiplicity of 
error events with the minimum distance in (4), for optimum 
GF(2N) RC encoders, is smaller than multiplicity of 
minimum distance error events for the rate 1 encoders, for all 
encoders with Nin < N. This is the reason why the simulation 
results in Fig. 7 show slightly larger coding gains between 
these two encoders for a given spectral efficiency. 

V. CONCLUSIONS AND FUTURE WORKS 

It was demonstrated that optimum RC encoders over 
GF(2N) can be designed using the LCIRC function. A 
generalized 1-delay GF(2N) RC encoder scheme using 
LCIRC was defined, for any possible encoding rate. A 
general expression is found for the minimum Euclidian 
distance of QAM-TCM schemes using these optimum 
encoders. As advantage of this generalized encoder, we can 
mention its reduced complexity. Hence, using only one delay 
element and multiple bit circulations we designed encoders 
having complex trellises and large Euclidian distances. In 
addition, it was shown that the nonlinear encoders offer the 
same performances as conventional binary encoders.  

In perspective, we intend to apply the presented method 
to other nonlinear structures and develop efficient trellis-
coded modulation systems using these encoders. In addition, 
we will address the performances evaluation for the 
proposed TCM schemes over fading channels. Considering 
the properties of the QAM-TCM encoders presented in this 
paper, we also aim to analyze the turbo TCM scheme with 
optimum RC encoders over GF(2N).  
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