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Abstract—We present an approximate analytical method to
evaluate the blocking probabilities in multicast Wavelength Divi-
sion Multiplexing (WDM) networks without wavelength convert-
ers. Our approach is based on iteratively solving the multicast call
blocking probabilities for fixed routing with First-Fit wavelength
assignment algorithm. We divide the WDM network into layers
(colors) and we use the moment matching method to characterize
the overflow traffic from one layer to another. Analyzing blocking
probabilities in each layer of the network is derived from an exact
approach. Results are presented which indicate the accuracy of
our method.

Index Terms—Blocking probability, Mutlicast Routing, WDM.

I. INTRODUCTION

Wavelength-division multiplexing (WDM) has the potential
of delivering huge bandwidth by providing many lightpaths
simultaneously on one fiber. Each lightpath is independent
and located at a different wavelength. A lightpath may span
multiple fiber links to provide a circuit-switched intercon-
nection between two nodes. When the network does not
have conversion capabilities, the same wavelength must be
available on all links. Many applications such as distribution of
video require a multicast connection. A multicast connection
contains a source node and a group of destination nodes.
The subnetwork spanning the source node and the group of
destination nodes is called a multicast tree. Using such trees,
signals are transmitted to the leaf (destination) nodes in the
multicast tree. Signals pass through a non-leaf destination
node are dropped locally, but a copy of it is also transmitted
downstream to the next node. However, finding an optimal
multicast tree is not easy, and many algorithms are introduced
to solve the multicast tree problem.

A challenging issue is the multicast call blocking probability
in which, given a multicast call (request) traffic rate that
need to be established on the network, and given a constraint
on the number of wavelengths, calculate the probability that
no common wavelength is available on the predetermined
multicast tree. The problem of evaluating the multicast call
blocking probabilities has been studied in several studies [1]
[2]. They differ in their underlying assumptions and have
varying computational complexities and level of accuracy.
The purpose of this paper is to derive an iterative model to
calculate the call blocking probabilities for fixed routing in
Multicast WDM networks. Our approach uses the wavelength

independence assumption. We analyze a given wavelength-
routing network by dividing it into layers (colors). The analysis
of each layer is derived from an exact approach. The overflow
traffic from one layer to another is characterized by the
moment matching method (Section III). An equivalent path
method is used to calculate the overflow moments. These
moments are used to calculate the equivalent Poisson overflow
load used in the calculation of the path blocking probabilities.
The analytical model presented in this paper is based on the
work in [3] for the unicast WDM. The model is applicable to
arbitrary network topologies with static routing and First-Fit
wavelength assignment.

The rest of the paper is organized as follows: next section
presents the network model. In section III, we introduce our
proposed solution. Section IV presents some numerical results.
Lastly, we present our conclusion.

II. NETWORK MODEL

A call is considered the basic unit of WDM traffic. A
multicast call originating from a source node s to the set
of destination nodes Dt = {d1, d2, . . . , di} is denoted as
(s,Dt). A unicast call has a single destination |Dt| = 1.
A predetermined light-tree (i.e. an all-optical multicast tree)
T (s,Dt) exists for each multicast request (s,Dt) at the design
stage [4]. The call arrival process entering the network is
assumed to be Poisson with rate λs,Dt

calls/unit time. The
call termination process is exponentially distributed with a
mean µ = 1. The arrival and termination rates are assumed
to be equal. The call requires one wavelength (channel) to be
available from each link along the predetermined fixed tree
T (s,Dt) from the source s to each destination d ∈ Dt . Since
no conversion capability is assumed the same wavelength
must be used in all links belonging to the tree; otherwise
the call request is blocked. The nodes in the network are
classified into two categories: split incapable or split capable.
Multicast split incapable nodes are nodes which cannot split
the incoming lightpath to more than one output link. However,
the implementation of a split capable node may be expensive
due to the large amount of amplification and fabrication [5].
All nodes of the network have Drop-and-Continue capability
[6].

Let the order of wavelengths be numbered w =
1, 2, 3, . . . ,W . Upon the arrival of a call, the source s will
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offer the call to the first wavelength (layer) w = 1 on the
predetermined fixed tree. The call is accepted if the wavelength
w is available on all links belonging to the predetermined fixed
path. Otherwise, the call is offered to the next wavelength.
Thus, the traffic which cannot be carried by a wavelength w
is offered to the next wavelength w+1 and so on until the call
is either accepted or blocked. Multicast call (s,Dt) blocking
probability for a given wavelength w is denoted by Pw

s,Dt
.

The link i, j capacity is denoted as Ci,j and the path r(s, d)
capacity is denoted as Cs,d, where Cs,d = min(i,j)∈r(s,d) Ci,j .
Similarly, Cs,Dt

denotes the capacity of tree T (s,Dt).
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Fig. 1. The 14-Nodes NSFNET network topology
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Fig. 2. A multicast tree T (1, D1), D1 = {2, 3, 4, 6, 7}. Transient nodes
are Drop-and-Continue capable but not splitting capable. The tree T (1, D1)
contains the route r(1, 3), r(1, 4), r(1, 6).
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Fig. 3. A multicast tree T (1, D), D = {2, 3, 4, 6, 7}. The tree T (1, D)
contains the route r(1, 7), r(1, 12) and subtree T (12, {3, 4, 6}). Node 12 is
a transient and split capable node.

Fig. 1 shows the NSFNET network topology. Fig. 2 and
Fig. 3 show a multicast call T (s,D), D = {2, 3, 4, 6, 7}
with two trees. All nodes in Fig. 2 are split incapable nodes,
whereas node 12 is a split capable node in Fig. 3. The first

tree can be descried by the set of paths T (s,D) = r(s, di)
and r(s, di) * r(s, dj). The second tree is described by the
set of paths r(s, di) and r(ds, dj), where node ds is a split
capable node.

III. PROPOSED SOLUTION

In this section, we present a basic description of the wave-
length decomposition method for unicast calls introduced in
[3]. Wavelength decomposition method analyzes the network
by splitting it into layers and uses a moment matching method
to calculate an equivalent Poisson overflow traffic to each
layer. The analysis of blocking probabilities in each layer is
derived from an exact approach. In this work, we extend the
single layer unicast blocking probability calculations to solve
the multicast call blocking probability.

A. The Single Layer Blocking Probability

First, we review the basic concept of calculating the single
layer blocking probability for unicast calls in [3]. Consider the
k −1 hop route shown in Fig. 4, denoted as r(1, k). Let the
state of path r(1, k) in a single wavelength (layer) w at time
t be described by the k(k − 1)/2 dimensional process

Xw
r(1,k)(t) = (nw1,2(t), nw1,3(t), . . . , nw

k−1,k(t)) (1)

The state of the k −1 hop path r(1, k) for wavelength w is
thus denoted by the number of calls nwi,j ∈ {0, 1} in progress
for each segment r(i, j), 1 ≤ i <k, 1 < j ≤ k, i < j, where

nwi,j + nwl,m ≤ 1 ∀ r(i, j) ∩ r(l,m) 6= ∅ and
1 ≤ l < k, 1 < m ≤ k, l < m

(2)

Process Xw
r(1,k)(t) is a time-reversible Markov process and the

stationary vector π is given by [7]

π(nw1,2, n
w
1,3, . . . , n

w
k−1,k) =

1

Gw
r(1,k)

[
(aw1,2)n

w
1,2

nw1,2!
·

(aw1,3)n
w
1,3

nw1,3!
· · ·

(awk−1,k)n
w
k−1,k

nwk−1,k!

] (3)

where awi,j is the background traffic in each segment i, j for a
given wavelength w. Gw

r(1,k) is the normalization constant for
wavelength w on the path r(1, k) and is given by

Gw
r(1,k) =

∑
nw
i,j+nw

l,m≤1

∀ r(i,j)∩ r(l,m)6=∅
r(i,j)⊆r(s,d), r(l,m)⊆r(1,k)

∏
r(i,j)⊆r(1,k)

(awi,j)
nw
i,j

nwi,j !

(4)
by using the reduced blocking path model [8], the background
traffic awi,j for segment r(i, j) ⊆ T (s,Dt) is calculated as [3],

awi,j =
∑

r(i,j)⊆T (s,Dt)

r(i,j)←Aw
s,D then r(m,l)8Aw

s,Dt

∀ r(l,m)⊆r(1,k)

Aw
s,Dt
· (1− Pw

s,Dt
)

1− Pw
i,j

(5)
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where Aw
s,Dt

is the source s to group Dt offered load at
wavelength w, A1

s,Dt
= λs,Dt . The normalization constant

Gw
r(1,k) can be calculated recursively [3] as

Gw
r(1,k) = Gw

r(1,k−1) +

k−1∑
i=1

Gw
r(1,k−i)a

w
k−i,k (6)

where Gw
r(1,1) = 1. Thus, path r(1, k) blocking probability

Pw
r(1,k) (or Pw

1,k for short) in a single layer w ≤ C1,k is
calculated as

Pw
r(1,k) = 1− π(0, 0, . . . , 0) = 1− 1

Gw
r(1,k)

(7)

i kk-1j1 32

hop 1 hop 2 hop k-1

w
ja ,1

w
a 2,1

w
kia 1, −

w
jia ,

w
kja ,

w
a 3,1

w
a 3,2

Fig. 4. A k −1 hop path r(1, k). The state of the path in wavelength
(layer) w at time t is described by the k(k − 1)/2 dimensional process
Xw

r(1,k)
(t) = (nw

1,2(t), n
w
1,3(t), . . . , n

w
k−1,k(t)). Where nw

i,j(t) is the
number of calls using the segment r(i, j), that are currently active in
wavelength w at time t i.e., nw

i,j(t) ∈ {0, 1}. The background offered traffic
in each segment i, j for a given wavelength w is denoted as awi,j .

Now, to extend the unicast wavelength decomposition
method to multicast WDM network let us consider two disjoint
routes (paths) r(s1, d1) and r(s2, d2) as shown in figure 5.
Common traffic passing through both routes are denoted as
aw(i,j),(x,y) where i, j ∈ r(s1, d1) and x, y ∈ r(s2, d2). We can
calculate the single layer joint normalization constant for the
two routes Gw

r(s1,d1) ∩G
w
r(s2,d2) as follow.

Gw
r(s1,d1) ∩G

w
r(s2,d2) = gwr(s1,d1) · g

w
r(s2,d2)

+
∑

∀ i,j∈r(s1,d1)

∀ x,y∈r(s2,d2)

gwr(s1,i)
· gwr(j,d1) · a

w
(i,j),(x,y) · g

w
r(s2,x) · g

w
r(y,d2)

(8)
where, gwr(i,j) represents the normalization constant for seg-
ment r(i, j) excluding all common traffic between route
r(s1, d1) and route r(s2, d2).

i j

x y

w
yxjia ),(),,(

),( 11 dsr

),( 22 dsr

Common Traffic

1s

2s 2d

1d

Fig. 5. Two disjoint routes (paths) r(s1, d1) and r(s2, d2)

Consider a tree T (s,D) (e.g., Fig. 2) for a given wavelength
w. The event that a wavelength w is available to the multicast

call T (s,D) is conditioned on the availability of wavelength
w on all links belonging to the tree. Therefore, a multicast
call (s,Dt) blocking probability for a given wavelength w is
given by

Pw
s,Dt

= 1− 1

Gw
s,Dt

(9)

where, Gw
s,Dt

is the multicast call T (s,Dt) normalization
constant. If all nodes are split incapable, then the tree is a
group of disjoint paths r(s, di). Hence,

Gw
s,Dt

=
⋂
∀i

Gw
r(s,di)

+Aw
s,Dt

(10)

For example, the normalization constant Gw
1,D1

for the tree
in Fig. 2 is

Gw
1,{2,3,4,6,7} = Gw

r(1,3) ∩G
w
r(1,4) ∩G

w
r(1,6) +Aw

1,{2,3,4,6,7}

Since r(1, 2) ⊆ r(1, 4) and r(1, 7) ⊆ r(1, 6).
For networks with split capable nodes, trees will be a mix

of disjoint paths with no split capable node and subtrees.
The split capable nodes ds will be the root of these subtrees
and the leaves will be a subset Dt′ ⊆ Dt. Therefore, the
normalization constant will be the product of disjoint paths
Gw

r(s,ds) and subtrees Gw
ds,Dt′

calculated from Eq. 12. Now,
consider a branch with a split capable node ds to a subset Dt′

as shown in Fig. 6. The normalization constant, Gw
ds−1,Dt′

can
be calculated form Gw

ds,Dt′
as

Gw
ds−1,Dt′

= Gw
r(ds−1,ds) · Gw

ds,Dt′
+

∑
∀k∈Dt′∑

∀j∈r(ds+1,k)

awds−1,j Gw
ds,Dt′−{k} +Aw

ds−1,Dt′

Generally, the normalization constant, Gw
s,Dt′

is

Gw
s,Dt′

= Gw
r(di,di+1) · Gw

di+1,Dt′

+
∑

∀ i∈r(s,ds−1)

∑
∀k∈Dt′

∑
∀j∈r(ds+1,k)

Gw
r(s,i)

· awi,j Gw
ds,Dt′−{k} +Aw

s,Dt′

(11)
Finally, Gw

s,Dt

Gw
s,Dt

=
∏
∀Dt′

Gw
s,Dt′

·
∏

∀di∈Dt,di /∈Dt′

r(s,di)*r(s,dj) ∀ dj∈Dt

Gw
r(s,di)

+Aw
s,Dt

(12)
For example, the normalization constant Gw

1,D for the tree
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Fig. 6. Calculating the normalization constant recursively, for a multicast
tree with a split capable node ds.

in Fig. 3 is

Gw
1,{2,3,4,6,7} = Gw

r(1,7) ∩Gw
1,{3,4,6} +Aw

1,D

Gw
1,{3,4,6} = Gw

r(1,12) ·G
w
12,{3,4,6}

+ Gw
r(1,1) · a

w
1,3 ·G

w
12,{4,6} + Gw

r(1,1) · a
w
1,4 ·G

w
12,{3,6}

+ Gw
r(1,1) · a

w
1,6 ·G

w
12,{3,4} + Gw

r(1,2) · a
w
2,3 ·G

w
12,{4,6}

+ Gw
r(1,2) · a

w
2,4 ·G

w
12,{3,6} + Gw

r(1,2) · a
w
2,6 ·G

w
12,{3,4}

To simplify notations we will drop the subscript t from Dt.

B. Calculating the Moments of the Overflow Traffic

Since the overflow load from wavelength w + 1 is non
Poisson, we need to calculate both the first and the second
overflow traffic moments (mean Āw+1 and variance V̄ w+1) to
the next layer w+1. For this, we construct an equivalent single-
link system such that the blocking of the Poisson traffic in this
system will approximate the blocking on the tree T (s,D). We
know that the total offered load to the tree is λs,D and the
overflow mean, up to the current wavelength w is Aw

s,DP
w
s,D.

Hence,
λs,D · Er(λs,D, N

w
s,D) = Aw

s,D · Pw
s,D (13)

where, Er is the generalized (not integral) Erlang-B formula
[9]. The overflow mean to wavelength w + 1 is

Āw+1
s,D = λs,D · Er(λs,D, N

w
s,D) (14)

The variance V̄ w+1
s,D is calculated using Riordan’s formula [8],

V̄ w+1
s,D = Āw+1

s,D

(
1−Āw+1

s,D +
λs,D

Nw
s,D + 1 + Āw+1

s,D − λs,D

)
(15)

The peakedness is defined as, Z̄w+1
s,D =

V̄ w+1
s,D

Āw+1
s,D

.

C. Calculating the Equivalent Poisson Traffic

The path blocking probabilities calculated in Eq. 5 through
Eq. 12 assume Poisson traffic with Z̄w

s,D = 1. However, the
overflow traffic to layer w + 1 calculated from equations 14
and 15 is in general non Poisson Z̄w+1

s,D 6= 1. We again use an
equivalent single-link system with N̄w+1

s,D ≤ 1 wavelengths
to find an equivalent Poisson traffic with mean Aw+1

s,D and

Zw+1
s,D = 1 that matches the overflow traffic with mean Āw+1

s,D

and variance V̄ w+1
s,D .

Fredricks and Hayward’s equivalence method was used with
the original wavelength decomposition method described in
[3]. It attempts to describe a non-Poisson traffic Z 6= 1 by
an equivalent Poisson traffic Z = 1 [9]. Mainly, the blocking
probability of the actual system with N̄w

s,d channels offered
non-Poisson traffic with rate Āw

s,d and peakedness Z̄w
s,d 6= 1

has the same blocking probability with N̄w
s,d/Z̄

w
s,d channels,

offered Āw
s,d/Z̄

w
s,d traffic, and peakedness Zw

s,d = 1 (Poisson).
In this work, we combine Fredricks and Hayward’s equiv-

alence method with Berkeley’s Equivalent Random Traffic
(ERT) approximation. Combining moment matching functions
seems to be more suitable to calculate the equivalent Poisson
traffic [10]. The idea of the Equivalent Random Traffic (ERT)
method is to think that the traffic with mean Āw

s,d and variance
V̄ w
s,d 6= Āw

s,d is obtained as overflow traffic from a fictitious
system with N̂

w

s,d channels offered a Poisson traffic with
mean Â

w

s,d. Hence, the blocking probability of the non-Poison
secondary system is the same as the blocking probability
of the equivalent system with N̂

w

s,d channels, mean Â
w

s,d

and peakedness Zw
s,d = 1. Berkeley’s ERT approximation is

considered as a single parameter ERT method where, we fix
Â

w

s,d = λs,d [8] [11]. Hence, N̂
w

s,d is as follows

N̂
w

s,d =
λs,d(Āw

s,d + Z̄w
s,d)

Āw
s,d + Z̄w

s,d − 1
− Āw

s,d − 1 (16)

D. Calculating the Overall Path Blocking Probability
The overall path blocking probability is calculated as

Ps,D =
A

Cs,D

s,D · PCs,D

s,D

λs,D
(17)

IV. NUMERICAL RESULTS
First, we present a five node network shown in Fig. 7 as an

illustrative example for First-Fit WA. There are two multicast
calls, T (1, D1), D1 = {3, 5} and T (2, D2), D2 = {3, 4} with
arrival rate of λ1,D1

= λ1,D2
= 0.5 (calls/unit time). The

unicast call arrival rates are λ1,2 = λ1,3 = λ1,4 = λ1,5 =
λ2,3 = λ2,4 = 0.5 ( calls/unit time). Link capacities are 4
channels.

The normalization constant for the multicast tree T (1, D1)
is

Gw
1,D1

= Gw
r(1,3) ∗G

w
r(1,5) +Aw

1,D1

= (1 + aw1,2 + aw2,3 + aw1,2a
w
2,3 +Aw

1,3)∗

(1 +Aw
1,5) +Aw

1,D1

where

aw1,2 =
Aw

1,2(1−Pw
1,2)+Aw

1,4(1−Pw
1,4)

1−Pw
1,4

aw2,3 =
Aw

2,3(1−Pw
2,3)+Aw

2,D2
(1−Pw

2,D2
)

1−Pw
2,3
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The normalization constant for the multicast tree T (2, D2)
is

Gw
2,D2

= 1 + aw2,3 + aw2,4 + aw2,3a
w
2,4 +Aw

2,D2

where

aw2,3 =
Aw

2,3(1−Pw
2,3)+Aw

1,3(1−Pw
1,3)+Aw

1,D1
(1−Pw

1,D1
)

1−Pw
2,3

aw2,4 =
Aw

2,4(1−Pw
2,4)+Aw

1,4(1−Pw
1,4)

1−Pw
2,4

1
4

3

2

5

Fig. 7. A network example with five nodes

The path blocking probabilities in the first layer and the
overall blocking probabilities are shown in table I.

TABLE I
THE PATH BLOCKING PROBABILITIES IN THE FIRST LAYER AND THE

OVERALL BLOCKING PROBABILITIES FOR AN EXAMPLE OF A TREE WITH
SPLIT INCAPABLE NODES.

layer First Overall

Path Simulation Calculation Simulation Calculation

P 1
1,2 0.5519 0.5559 0.0664 0.0633

P 1
1,3 0.7557 0.7512 0.1744 0.1672

P 1
1,4 0.7557 0.7469 0.1613 0.1531

P 1
1,5 0.3887 0.3886 0.00814 0.0060

P 1
2,3 0.5517 0.5559 0.0663 0.0633

P 1
2,4 0.4977 0.5021 0.0302 0.0306

P 1
1,D1

0.8376 0.8342 0.2032 0.2159

P 1
2,D2

0.7557 0.7469 0.1615 0.1531

Now, let us assume node 2 is split capable node and D1 =
{3, 4, 5} for the multicast call T (1, D1). The normalization
constant for the multicast tree T (1, {3, 4, 5}) is

Gw
1,{3,4,5} = Gw

r(1,5) · Gw
1,{3,4} +Aw

1,D1

Gw
1,{3,4} = Gw

r(1,2) · Gw
2,{3,4}

+ Gw
r(1,1) · a

w
1,3 ·G

w
2,{4}

+ Gw
r(1,1) · a

w
1,4 ·G

w
2,{3}

The normalization constant for the multicast tree T (2, D2) is

Gw
2,D2

= 1 + aw2,3 + aw2,4 + aw2,3a
w
2,4

+Aw
1,D1
∗ (1− Pw

1,D1
)/(1− Pw

2,D2
) +Aw

2,D2

where aw2,3 is

aw2,3 =
Aw

2,3(1−Pw
2,3)+Aw

1,3(1−Pw
1,3)

1−Pw
2,3

TABLE II
THE PATH BLOCKING PROBABILITIES IN THE FIRST LAYER AND THE

OVERALL BLOCKING PROBABILITIES FOR AN EXAMPLE OF A TREE WITH
SPLIT CAPABLE NODES.

layer First Overall

Path Simulation Calculation Simulation Calculation

P 1
1,2 0.5362 0.5421 0.0639 0.0581

P 1
1,3 0.7469 0.7428 0.1686 0.1583

P 1
1,4 0.7459 0.7428 0.1685 0.1583

P 1
1,5 0.3684 0.3706 0.0083 0.0046

P 1
2,3 0.5361 0.5421 0.0638 0.0581

P 1
2,4 0.5370 0.5421 0.0641 0.0581

P 1
1,D1

0.8862 0.8881 0.2478 0.2660

P 1
2,D2

0.7467 0.7428 0.1688 0.1583

The path blocking probabilities in the first layer and the
overall blocking probabilities are shown in table II.

Our next test vehicle is the 14 nodes NSFNET as shown
in Fig. 1. The network traffic for unicast calls is similar
to a realistic network with realistic traffic, and the network
has been dimensioned using shortest path [12]. The multicast
traffic for split incapable nodes is given in Table III. For
split capable network, we arbitrary chose nodes 12 as split
capable node. Fig. 3 shows the new tree for the multicast call
D1 = {2, 3, 4, 6, 7}.

Simulation results are run 10 times and each run starts
with a different random seed where, each seed simulation
runs for 10,000 holding times. The overall average result is
obtained with 95% confidence. For the analytical techniques,
the iterative algorithm terminates when all blocking probability
values have converged within 10−5.

TABLE III
MULTICAST TRAFFIC WITH LOAD FACTOR=12 FOR SPLIT INCAPABLE

NODES.

Source D λs,D Routes Links

1 2,3,4,6,7 0.1 r(1, 3), r(1, 4), r(1, 6) 8
1 7,10,12 4.0 r(1, 10), r(1, 12) 4
2 3,5,14 2.5 r(2, 3), r(2, 5) 4
4 1,9,11 5.0 r(4, 1), r(4, 9) 5
5 2,6,9,10 1.5 r(5, 2), r(5, 10) 6
6 2,5,10,11 7.0 r(6, 12), r(6, 5), r(6, 10) 6
7 1,4,9,14 0.5 r(7, 4), r(7, 14) 5
8 1,5,13,14 2.0 r(8, 13), r(8, 14) 4
9 8,6 2.0 r(9, 6), r(9, 8) 4
10 1,4,12 4.0 r(10, 1), r(10, 4) 5
12 1,2,11 5.0 r(12, 1), r(12, 11) 4
12 3,8,10 4.0 r(12, 8), r(12, 10) 4
13 3,4,7,10,11 0.1 r(13, 10), r(13, 11) 7
14 2,3,5,8,12 0.25 r(14, 3), r(14, 12) 5
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Fig. 8. Overall network end-to-end blocking probability for the NSFNET
mesh network with no split capability.
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Fig. 9. Overall network end-to-end blocking probability for the NSFNET
mesh network with a split capable node 12.

In Figs. 8 and 9, we plot the overall network blocking prob-
ability against the total network load for the split incapable
and the split capable network respectively. In both figures,
the first curve is obtained from simulation, and the second
curve is plotted from our new approach. Figs. 10 and 11 show
the end-to-end blocking probabilities for various unicast calls
for both cases. The source/destination pairs are numbered in
ascending order of their blocking probability values obtained
from simulations. There are 170 source/destination pairs that
have none zero load. Source/destination pair that yields an end-
to-end blocking probability of at least 10−4 in the simulation
is shown in the figure. Similarly, Fig. 12 and Fig. 13 show the
end-to-end blocking probabilities for various multicast calls in
the network. Again, trees are numbered in ascending order of
their blocking probability values obtained from simulations.
We can notice that the outputs of our calculations are very
close to simulation results.

V. THE CONCLUSION

We have presented a new analytical approach to evaluate
more accurately the call blocking probabilities of a multicast
Wavelength Division Multiplexing (WDM) network. Our ap-
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Fig. 10. The end-to-end blocking probabilities for various unicast calls in
the NSFNET mesh network with no split capability.
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Fig. 11. The end-to-end blocking probabilities for various unicast calls in
the NSFNET mesh network with a split capable node 12.

proach assumes fixed routing, First-Fit wavelength assignment
with split incapable or capable nodes. The new approach
views the WDM network as a set of different layers (colors)
where, blocked traffic in one layer is overflowed to another
layer. Simulation results show the accuracy of our approach.
Applying our new method to random wavelength assignment
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Fig. 12. The end-to-end blocking probabilities for various multicast calls in
the NSFNET mesh network.
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Fig. 13. The end-to-end blocking probabilities for various multicast calls in
the NSFNET mesh network with a split capable node 12.

in multicast networks will be considered in future research.
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