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Abstract—In the last few years, the mobile data traffic has
grown exponentially making evident the importance of wireless
networks. To ensure an acceptable level of quality of service
for users in a wireless data network, network designers rely
on signal propagation path loss models. To provide adaptability,
the use of machine learning techniques has been considered to
predict characteristics of the wireless channel. In this work,
we propose a method for predicting path loss in an urban
outdoor environment using support vector regression. Simulation
results indicate that, depending on the employed kernel and
its parameters, the performance obtained using support vector
regression is similar and with lower computational complexity to
that obtained by a multilayer perceptron neural network.

Keywords—wireless networks, propagation models, machine
learning, nonlinear regression.

I. INTRODUCTION

Today, being connected is crucially important. High-speed
internet access via mobile handsets is the most likely way of
achieving digital inclusion [1]. In this context, the importance
of wireless and mobile networks grows every day and their
demand is also becoming larger even faster.

To ensure an acceptable level of quality of service for users
in a wireless data network, network designers rely on signal
propagation path loss models. Radio wave propagation models
are a series of mathematical calculation developed to predict
path characteristics and losses in a given environment [2].
For example, propagation models have traditionally focused
on predicting the average received signal strength at a given
distance from the transmitter, plus the variability in the signal
intensity near a particular location area. Thus, propagation
models are mathematical tools used by engineers and scientists
to plan and optimize wireless network systems.

Given the problem context, many researchers have turned
their attention to the domain of machine learning (ML) [3].
The goal of this class of algorithms is to automatically
learn the properties of the environment and to adapt their
behavior quickly and easily to them. Artificial neural networks
(ANN) are a typical example of a ML algorithm, inspired
by the biological neural networks of the brain [4]. In recent
time, multilayer perceptron (MLP)-ANN have been shown to
successfully perform path loss in rural, urban, suburban and
indoor environments [5], [6], [7]. However, a drawback in
using MLP-ANN is the required training time to process data,

considering the numerous neurons in each layer of the neural
network. To handle it, other ML techniques can be used, such
as support vector machine (SVM). The main advantages of
using SVM are the absence of local minima, the sparseness of
the solution and the capacity control obtained by optimising
the margin [8]. Aside from that, to the best of our knowledge,
there is no similar approach in the literature that considers
the use of SVM to perform path loss prediction. Thus, in
this work we propose a method for predicting path loss in
an urban outdoor environment using support vector regression
(SVR). Simulation results indicate that, depending on the
employed kernel and its parameters, the performance obtained
using support vector regression is similar and with lower
computational complexity to that obtained by a MLP neural
network.

The remainder of this article is structured as follows. In
Section II, two empirical propagation models are presented:
Okumura-Hata model and Ericsson 9999 model. Concepts
about support vector regression and the measurement setup
are described in Section III. Section IV presents the model
tuning of the SVR techniques and numerical results. At last,
conclusions are drawn in Section V.

II. EMPIRICAL PROPAGATION MODELS

Reliable and accurate propagation models are crucial to
the prediction of radio channel characteristics for where
the wireless network system is to be deployed. In general,
propagation models can be categorised into two types:
deterministic and empirical.

Deterministic propagation models consider the physical
paths along which the transmitted waves propagate are
usually based on ray optical techniques [9]. These models
describe wave propagation by different rays that travel
from the transmitting to the receiving antenna and are
subjected to reflection, scattering and diffraction at walls and
edges of buildings and similar objects. Deterministic models
offer excellent accuracy and are able to provide additional
parameters such as small-scale fading, delay spread, etc. The
main disadvantage of the deterministic models is their large
computation time.

On the other hand, empirical propagation models are those
based only on observations and measurements. In spite of these
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models be able to predict rain-fade and multipath [10], they
are mainly used to estimate path loss, an important task during
the initial deployment of wireless networks and cell planning.
Empirical models can be split into two subcategories namely
time dispersive and non-time dispersive. Time dispersive
models are designed to provide information relating to the
time dispersive characteristics of the channel. An example of
this type are the Stanford University Interim (SUI) channels
models developed under the IEEE 802.16 working group [11].
On the other hand, a non-time dispersive model predicts mean
path loss as a function of various parameters as distance,
antenna heights, latitude, longitude, etc. Examples of non-time
dispersive empirical models are Hata [12] and Ericsson 9999
[13] models. In this work, we consider the Okumura-Hata and
Ericsson 9999 models for path loss prediction.

A. Okumura-Hata Model

The Okumura model is one of the most used models for
signal prediction in the urban areas. It applies to frequencies
in the range of 150 MHz to 1920 MHz and distances
from 1 to 100 km [14]. The Okumura model is entirely
based on measured data without any analytical explanation.
Nevertheless, it is very practical and has become a standard
for planning land mobile radio systems in Japan. The Okumura
model is a very good model in urban and suburban areas, but
not so good in rural areas due to its slow response to rapid
changes in the terrain.

The Hata model is an empirical formulation of the path
loss data provided by Okumura’s model and it is valid from
150 MHz to 1500 MHz. Hata presented the propagation
loss in urban area as a standard expression and provided
correction factors for applications in other environments.
The Okumura-Hata model is the combination of both above
models.

The expression for the average path loss in urban areas is
given by [12]

L(dB) = 69.55 + 26.26 log f − 13.82 log ht

− a(hr) + (44.9− 6.55 log ht) log d (1)

where f is the frequency (in MHz) from 150 MHz to
1500 MHz, ht is the effective height of the base station antenna
(transmitter) in meters, varying from 30 m to 200 m, hr is
the effective height of the mobile station antenna (receiver) in
meters, varying from 1 m to 10 m, d is the distance between
transmitter and receiver (in km), and a(hr) is the correction
factor to the effective height of the receiver antenna, which is
function of the size of the coverage area. For large cities and
f ≥ 300 MHz, the factor a(hr) is given by

a(hr) = 3.2(log 11.75hr)
2 − 4.95 dB . (2)

For suburban and rural areas, the path loss is obtained by other
expressions that can be found in [15].

Predictions of the Hata model are quite similar to the
Okumura model, whereas d does not exceed 1 km. The
Hata model applies to macrocells mobile systems, but not

to personal communications service (PCS) systems that have
cells in order of 1 km radius.

B. Ericsson 9999 Model

The Ericsson 9999 model is an extension of Hata model,
where we can adjust the parameters according to the given
scenario [13]. In this model, the path loss is described as

L(dB) = a0 + a1 log d+ a2 log ht + a3 log ht log d

− 3.2(log 11.75hr)
2 + g(f) (3)

where g(f) is given by [13]

g(f) = 44.49 log f − 4.78(log f)2 . (4)

For urban environments, the default values of the parameters
a0, a1, a2 and a3 are, respectively, 36.2, 30.2, 12.0 and 0.1.
For suburban and rural environments, the parameters a0, a1,
a2 and a3 assume another values that can be found in [13].

III. PROPOSED METHOD

SVM is a popular ML technique that make use of the
optimization of a function in its training stage. Lately, SVM
have received increasing attention from ML community, since
it presents some advantages when compared with other ML
techniques, such as the absence of local minima, the sparseness
of the solution and the capacity control obtained by optimising
the margin [8]. Initially developed for solving classification
problems, SVM techniques can be successfully applied in
regression, i.e., for function approximation problems.

A. Support Vector Regression

In the regression problems, we estimate the functional
dependence of the output variable on an n-dimensional input
variable. In other words, we deal with real valued functions
and we model an Rn to R mapping.

The general regression learning problem is set as follows.
The ML algorithm is given a set of training data from which
it tries to learn the input-output relationship. So, consider a
training data set D = {(xi, yi) ∈ Rn × R, i = 1, 2, . . . , `}
with ` pairs (x1, y1), (x2, y2), . . . , (x`, y`), where the inputs
are n-dimensional vectors xi ∈ Rn, the outputs yi ∈ R
are continuous values and ` is the number of samples in the
training data set.

Starting from the linear regression problem, assume that
h(xi,w) is a linear regression hyperplane given by

h(xi,w) =
〈
wT ,xi

〉
+ b , (5)

where w ∈ Rn is the normal vector to this hyperplane, the
scalar b ∈ R is called a bias, 〈·, ·〉 is the inner product operator
and (·)T is the transpose operator. In the case of SVR, we
measure the error of approximation instead of the margin used
in classification. With this in mind, we use a function named
Vapnik’s linear loss function with ε-insensitivity zone defined
as [16]

E(ei) = |ei|ε =

{
0 , if |ei| ≤ ε

|ei| − ε, otherwise
, (6)
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where ei = yi − h(xi,w). The Vapnik’s linear loss function
E(ei) is illustrated in Fig. 1(a), where the ε-insensitivity zone
is highlighted. Thus, the loss is equal to zero if the difference
between the predicted h(xi,w) and the measured value yi is
less than ε.

The solution of the linear regression learning problem
concerns to find the linear function that approximates the
training pairs (xi, yi) with an accuracy ε. In other words, we
need to find a vector w that minimizes the error, which implies
to solve the optimization problem given by [17]

min
w,b

1

2
‖w‖2 (7)

restricted to |ei| ≤ ε.
To obtain sparse solutions and penalize the large residuals,

a penalty term is included in (7), so that

min
w,b

[
1

2
‖w‖2 + C

(∑̀
i=1

E(ei)

)]
(8)

where C is a cost parameter. The function E(ei) defines an
ε-tube as exhibited in Fig. 1(b), where ε is the radius of the
tube. The restriction |ei| ≤ ε, i.e., yi + ε ≥ h(xi,w) ≥ yi− ε
is the condition for a predict point to be within in the ε-tube.

The optimization problem represented by (8) can be relaxed
by introducing slack variables, denoted by ξ and ξ̂, which
allows to deal with points outside the ε-tube. The points above
the ε-tube have ξ > 0 and ξ̂ = 0, while the points below the
ε-tube have ξ = 0 and ξ̂ > 0. At last, the points inside of
ε-tube have ξ = ξ̂ = 0.

y ε+

y ε−

ε -tube

e x

( ),h x w

( ),
i i
yx

ε+ε− 0

-insensitivity zoneε

( )E e

0ξ >

ˆ 0ξ >

(a) (b)

Fig. 1. (a) Vapnik’s linear loss function with ε-insensitivity zone versus e.
(b) ε-tube defined from the function E(e).

Given the slack variables ξ and ξ̂, we can rewrite the
optimization problem as

min
w,b

[
1

2
‖w‖2 + C

(∑̀
i=1

(ξi + ξ̂i)

)]
(9)

under the restrictions
|ei| = ε+ ξ

|ei| = ε+ ξ̂

ξ, ξ̂ ≥ 0

,

which can be solved using Lagrange multipliers, as can be
seen in [17]. After calculating the Lagrange multiplier vectors

α and α∗, the best regression hyperplane obtained is given
by

h(xi,w) =
∑̀
i=1

(α−α∗)
〈
xTi ,xi

〉
+ b . (10)

In the case of nonlinear regression, the basic idea is to
map the input vectors xi ∈ Rn into vectors Φ(xi) of a
higher dimensional feature space I, where Φ represents the
mapping. After this transformation, a nonlinear problem in
Rn becomes a linear problem in the feature space I. So, the
optimization problem is reformulated as the maximization of
dual Lagrangian with Hessian matrix [8] and the solution is
given by

h(xi,w) =
∑̀
i=1

(α−α∗)
〈
ΦT (xi),Φ(xi)

〉
+ b . (11)

in which the summation is not performed over all training data,
but rather over those that have non-zero Lagrange multipliers,
which are called support vectors.

Note that the optimization problem for nonlinear regression,
represented by (11), involves the calculation of inner products
between vectors of the feature space I. Since I can be
very higher dimensional, the calculation of Φ can become
infeasible. Therefore, the solution is to resort to the kernel
trick, i.e., the use of kernels to perform nonlinear regressions
without mapping all input vectors xi to the feature space I
[18].

A kernel is a function that applies to two vectors xi and xj
in the input space X and returns the inner product of these
vectors in the feature space I [19], i.e.,

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 . (12)

To ensure the convexity of the optimization problem
given by (11) and that the kernel represents mappings in
which it is possible the calculation of the inner products
〈Φ(xi),Φ(xj)〉, kernel functions satisfying the conditions of
Mercer are exploited [16]. The more common practice kernels
for regression problems are the polynomial kernel and the
radial basis functions (RBF) ones. In this paper, we consider
the use of the polynomial kernel and two types of RBF kernels:
Laplacian and Gaussian. The expressions related to each kernel
are given in Table I.

TABLE I
TYPES OF KERNELS CONSIDERED FOR THE PROPOSED METHOD.

Kernel Expression Parameters

Polynomial K(xi,xj) =
(
β
〈
xTi ,xj

〉
+ c

)z
β, c, z

Gaussian K(xi,xj) = exp

(
−‖xi−xj‖2

2σ2

)
σ

Laplacian K(xi,xj) = exp

(
−‖xi−xj‖

σ

)
σ

The polynomial kernel is a function that represents the
similarity of training samples in the feature space over
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polynomials of the original variables and combinations of
these. The adjustable parameters are the scale term β,
the constant term (off-set) c and the polynomial degree
z. Laplacian and Gaussian kernels are examples of RBF
kernels. The adjustable parameter σ is very important to the
performance of these kernels and should be fit to the problem
at hand.

B. Measurement Setup

The work presented in this paper considers mobile radio
wave propagation measurements at a carrier frequency of
853.71 MHz. The measurements of the downlink signal
strength level were made in an urban environment in the
city of Fortaleza-CE, Brazil. Fig. 2 illustrates the urban area
of the city where the measurements were taken. The colors
used along the indicated streets represent each received signal
strength indicator (RSSI) in dBm. In total, 1933 measurements
were performed using Agilent E6474A tool as a pilot scanner.
The location of the base station (BTS) is also indicated in
Fig. 2.

During the drive test, various field data of each measured
point were collected to compose the feature vector of the SVR
process. Such field data were antenna-separation distance,
terrain elevation, horizontal angle, vertical angle, latitude,
longitude, horizontal and vertical attenuation of the antenna.
At last, the theoretical path loss of the Okumura-Hata model
was also used as an input of the SVR training algorithm. The
terrain elevation was collected using Google Elevation API
by a Java client made exclusively for it. The base station was
located in a rooftop 90 meters high with a sectored antenna,
which had a half-power beam width of 63 ◦. Also, the effective
radiated power (ERP) of the base station was set to 48 dBm.

IV. TRAINING AND EVALUATION

Many ML algorithms, such SVR and ANN, have important
parameters that cannot be set directly from the data. The
process of choosing these parameters to obtain the best

performance of the model is known as tuning and is described
below.

A. Model Tuning

Cross-validation is a model validation technique for
evaluating how the results of a statistical analysis will
generalize to an independent data set. A common type of
cross-validation is the k-fold cross-validation, generally used
to evaluate the model accuracy [20]. It is a re-sampling
technique where the samples are randomly split into k sets
of approximately equal size. These subsets are named folds
and they are divided in two groups: the test set with only one
fold and the training set with (k − 1) folds. Initially, the first
fold is established as test set and the model is fit using the
others (k − 1) folds. The held out sample in the first fold
is predicted by the ML algorithm and is utilized to estimate
the performance. After that, the first fold is given back to the
training set. This procedure is repeated with the second fold
held out, and so on. In this paper, we consider k = 10 and
use the average root mean square error (RMSE) µ̄ defined as

µ̄ =

√√√√1

k

k∑
i=1

µj (13)

to evaluate the model precision. In (13), µj is the RMSE
calculated for j-th test set (j = 1, 2, . . . , k), given by

µj =

√√√√ 1

`j

`j∑
i=1

(yi − h (xi,w))
2 (14)

where `j is the number of samples in the j-th test set.
The definition of σ, common to RBF kernels, was made

using the analytical approach presented in [21], where it is
shown that the optimal values of σ are in the range of the
10th and the 90th percentile of ‖xi − xj‖2. In addition to
that, it is suggested in [18] that the midpoint of these two

BTS 0.4 Km

RSSI (dBm)

>=−65

(−75,−65] 

(−85,−75] 

(−95,−85] 

<−95

Fig. 2. Drive test with measurements in an urban area in the city of Fortaleza. The colors indicate the radio signal strength indicator (RSSI) in dBm and the
yellow square represents the location of the base station (BTS).
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percentiles should be used. Thus, this kernel parameter was
estimated to be σ = 0.244.

The cost C, common parameter to all kernels, is
fundamental for adjusting the complexity of the model. When
the cost is large, the model is more flexible, but it becomes
more likely to over-fit. With a small cost, the flexibility of
the model decreases, but the over-fit is less likely. However, a
small cost can lead to poor predictions due to under-fit [20].
In the tuning process, 18 values were tested for C, from 2−2

to 215, being each value a power of 2.
In the tuning process considered in this work, it was tested

ε = 0.1 and ε = 0.05 in combination with the range of C
specified previously. The best fit was found for ε = 0.05 to
the Laplace kernel, and ε = 0.1 to the Polynomial and the
Gaussian ones.

B. Numerical Results

All models considered in this paper are implemented using
the R language. The performance of the SVR algorithms
is evaluated via computer simulations for the three kernels
mentioned in Subsection III-A. For their implementation, the
kernlab package is employed [18].

According to what has been explained about SVR for
nonlinear learning problems in Subsection III-A, Fig. 3 shows
the support vectors and the respective regression line when
the Laplace kernel is adopted. Note that, for the sample set
in evidence, the number of support vectors is inferior to the
number of measurements, but it is sufficient to obtain the
regression line.

96
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50 60 70 80 90

samples

L
 (

d
B

)

Laplace SVR    

Measurements  

Support Vectors

Fig. 3. Support vectors used to obtain the regression line for path loss in dB
when Laplacian kernel is adopted.

Fig. 4 shows a comparison of measurements corresponding
to 10% of the sample set obtained from the drive test and the
predictions using SVR algorithms for polynomial, Gaussian
and Laplacian kernels. One can see that the Laplacian kernel
is the best option among the three kernels.

For comparison of the SVR algorithms with other ML
techniques, it is implemented a MLP-ANN with a weight
decay wd, having a input layer with nine neurons, a hidden
layer with M neurons and a output layer with one neuron. The
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Laplace SVR

Polynomial SVR

Fig. 4. Comparison of path loss predictions using SVR algorithms and
measurements obtained from drive test for 10% of the sample set.

backpropagation algorithm is used to train the MLP-ANN.
In the tuning process, some MLP-ANN configurations were
investigated for M = 9, 12, 15, 18, 21, 24, 27 and wd =
0.01, 0.05, 0.1. The best fit found for the MLP-ANN was
M = 27 and wd = 0.01.

Table II provides a statistical analysis of the SVR
algorithms, the MLP-ANN and the two empirical propagation
models mentioned in Section II, where the average RMSE
µ̄ and the standard deviation of the RMSE, denoted by σµ
are presented. The best configuration parameters of the SVR
algorithms (C and ε) and the parameters of each kernel are
also shown in Table II. We can see that the Laplacian SVR
presents an average RMSE µ̄ = 1.76 dB, while the polynomial
and the Gaussian SVRs presents an average RMSE of 3.47 dB
and 4.55 dB, respectively. Both empirical propagation models
have inferior performance when compared to all considered
ML techniques.

The MLP-ANN performance, with µ̄ = 1.89 dB, can be
considered similar to the Laplacian SVR performance. In spite
of analogous performance, MLP-ANN and Laplacian SVR
have significant differences in their implementation, which are
discussed below.

At first, as the MLP-ANN has local minimal, it is necessary
to initialize the weight matrix with different values in the
attempt to test more points (in this work, we initialize the
MLP-ANN three times), whereas such problem do not exist
in SVR algorithms. In case of SVR, a convex optimization
problem is solved resulting in a global minimum. Therefore,
when using SVR there is no problem with initializations and
checking for convergence [8].

Secondly, as there is no feature extraction in the MLP-ANN,
sometimes it is necessary to use another ML algorithm
to do this task [18]. In the SVR algorithm, the data can
be applied directly without the need for feature extraction,
because the SVR algorithm already do this function [22].
Furthermore, when the number of features increases, the
MLP-ANN complexity demands more computational cost,
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TABLE II
STATISTICAL ANALYSIS OF THE SVR ALGORITHMS WITH THEIR BEST PARAMETERS C AND ε, MLP-ANN AND THE EMPIRICAL MODELS CONSIDERED

IN THIS WORK.

ML Algorithm/Model µ̄ (dB) σµ (dB) C ε Kernel parameters

Polynomial SVR 3.47 0.54 1024 0.1 β = 0.1, c = 1, z = 3

Gaussian SVR 4.55 0.15 8192 0.1 σ = 0.244

Laplacian SVR 1.76 0.12 1024 0.05 σ = 0.244

MLP-ANN 1.89 0.17 - - -

Okumura-Hata 7.13 5.08 - - -

Ericsson 9999 21.59 6.22 - - -

whereas in the SVR algorithm, once that a valid kernel has
been selected, one can practically work in spaces of any
dimension without any significant additional computational
cost [22].

Finally, the MLP-ANN training time is normally longer
than SVR one. We can mention two reasons for that: first,
the MLP-ANN usually needs to be initialized more than one
time; second, in the SVR algorithm, the training is executed
considering only the support vectors, while in the MLP-ANN
the training is performed on the entire data set.

V. CONCLUSIONS

In this study, a method to predict path loss in an urban
outdoor environment using SVR was proposed. To do that,
mobile radio wave propagation measurements at a carrier
frequency of 853.71 MHz obtained in an urban environment
in the city of Fortaleza-CE, Brazil were considered. Various
field data of each measured point like antenna-separation
distance, terrain elevation, the theoretical path loss of the
Okumura-Hata model among others were collected as input
of the SVR process. Polynomial, Gaussian and Laplacian
kernels were adopted for SVR algorithms. For comparison, we
considered two empirical propagation models (Okumura-Hata
and Ericsson 9999) and a MLP-ANN optimized for our
prediction problem. In case of SVR, it was verified that the
Laplacian kernel was the best option among the investigated
kernels. In addition, the SVR algorithm using Laplacian kernel
and the MLP-ANN had similar performance, being the former
an alternative of lower computational complexity. The authors
conjecture that the lower computational complexity of the SVR
technique is due to the use of support vectors and the kernel
trick which reduce the training time, naturally perform the
feature extraction and increase the capacity of working with
higher dimensional spaces.
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