
FBT_ARM: A Software Dynamic Translator for the ARM Architecture

Edward David Moreno

DCOMP/PROCC
UFS – Federal University of Sergipe

Aracaju, Brazil
edwdavid@gmail.com

Felipe Oliveira Carvalho, Admilson R.L. Ribeiro

DCOMP/PROCC
UFS - Federal University of Sergipe

Aracaju, Brazil
felipekde@gmail.com, admilson@ufs.br

Abstract—Software dynamic translation is a technique that

allows code modification and monitoring of program

execution. This paper addresses some applications of software

dynamic translation (SDT) and the porting of fastBT—a

dynamic translator for the IA32 architecture—to the ARM

architecture. The result is a dynamic translator called
FBT_ARM that works for the ARM and IA32 architectures.

Keywords-software dynamic translator; ARM architecture;

IA32 architecture; fastBT; FBT_ARM

I. INTRODUCTION

Software Dynamic Translation (SDT) is a technique that
allows code modification and monitoring of the execution of
program instructions at runtime. In the last few years,
products using dynamic binary translation have become
popular in the areas of virtualization, instrumentation and
emulation [8]. SDT can be applied in several forms:
dynamic code optimization, hardware architecture
simulation, system virtualization, instruction set translation,
profilers, debuggers, security constraint checking at runtime,
co-designed virtual machines etc.

In the implementation of a SDT system, a software layer
acts as virtual machine that manages the execution
examining and dynamically translating all or part of the
instructions of a program before they get executed by the
host CPU.

Software dynamic translators are often written for a
single application and/or platform. Besides the lack of
portability due to the single application and single
architecture approaches, few of the translation or
instrumentation systems are open which prevents research in
the area making them hard to study requiring the
reimplementation of complex and delicate systems. Most of
the code of a SDT system depends on the target hardware
architecture. Both the data structures and the translated code
emission must be designed according to the instruction set
architecture.

Unfortunately, robust, general-purpose instrumentation
tools are not nearly as common in the embedded arena
compared to IA32, for example [3].

The Pin dynamic software translation system [4]
provided support for the ARM architecture [3], but the ARM
support has been discontinued in early 2007 (a search on
http://archive.org indicates that the last version of Pin for
ARM was released in January 2007). With the growing
relevance of the ARM architecture driven by its adoption on
most of the Smartphones, tablets, several embedded systems,

and even some network servers (where x86 is commonly
used), it makes sense to develop tools that improves the
understanding of the ARM architecture, software
development and execution in this platform.

As a result of this work, we present a software dynamic
translator for the ARM architecture called “FBT_ARM”.
The translator can be used for program instrumentation in
embedded systems based on ARM processors. The designer
of a software instrumentation product can provide his own
translation table. Such table should contain the routines that
must be executed while translating the instructions of the
executable code from the original program being
instrumented. Such tool can be used to analyze the behavior
of a software during its development (searching bugs,
performance analysis, exploring ARM extension ideas) or
even to run the program in production environment over the
dynamic translator (e.g., implementation of a security layer
that prevents a program from executing certain functions on
a server, execution of a binary that contains non-standard
ARM instructions implemented in software, implementation
of a software-based transactional memory system).

The rest of the paper is structured as follows. Section II
presents main concepts about SDT systems, section III is
dedicated to fastBT translator, which is the baseline of our
SDT for ARM. Section IV presents the steps for porting
fastBT to our FBT_ARM. Finally, section V presents the
conclusions and some ideas for future works.

II. THEORY AND IMPLEMENTATION OF SOFTWARE

DYNAMIC TRANSLATION SYSTEMS

SDT systems can be divided in two classes according to
its implementation approach: based on intermediate
representation and table-based. Many SDT systems translate
machine code to be executed into an Intermediate
Representation (IR) that can be executed by an interpreter or
just-in-time compiler. This additional level of indirection
simplifies the implementation of the translator that can then
represent the state of the translated program (execution
stack, registers) in software. Valgrind [5], Strata [7], Pin [4]
and QEMU [2] are examples of SDT systems that use an IR
(Intermediate Representation) for their translators. An
advantage of an IR is that it allows software reuse.

Other approach used in several projects is the Dynamic
Binary Recompilation (DBR) [5]. It is similar to the use of
IR in compiler projects where the front-ends of several high
level programming languages deal with IR code generation
that can be compiled by the backend of every supported
hardware architecture. Reusing the backend allows

94Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

compilers of many languages to use most of the compilation
optimizations from IR and apply them to all architectures
supported by the backend, thus greatly reducing the effort of
compiler creation.

A table-based software dynamic translator translates
each instruction by executing specified functions from a
table for each instruction. In general, this approach
generates translators with better performance than IR-based
translators. With the gain in performance comes a loss of
flexibility, so many restrictions are imposed to the
translation of instructions. Branch instructions, for example,
should be treated especially so that translated code
execution does not escape from translator control.

Finally, SDT can be used in different applications,
especially as virtualization, instrumentation and emulation.

Virtualization: SDT is one of the approaches of
virtualization of 32-bit x86 systems implemented by
VMware [1] in all versions of VMware ESX until version
4.0. VMware ESX is an enterprise level product that
provides computer virtualization at the kernel level. The
translator used by VMWARE does not map instructions
coming from target architecture to another. Instead, it
translates the unrestricted x86 code to a subset of itself that
can be safely executed. The translator particularly replaces
privileged instructions with instruction sequences that
perform the same privileged operations in the virtual
machine instead of performing them in the physical
machine.

Instrumentation: it is a technique that consists in the
insertion of code in a program for the data collection and
analysis of the instrumented program. One of the
instrumentation techniques, Dynamic Binary
Instrumentation (DBI), uses SDT to execute the
instrumentation code at runtime. One example of the use of
this technique is the Valgrind tool set [5].

Emulation: SDT systems are used to implement
instruction set emulators. QEMU is an example of
architecture emulator that allows, for example, the execution
of ARM programs on x86 processors [2].

III. THE FASTBT DYNAMIC TRANSLATOR

The fastBT is a low overhead dynamic translator, it has a
low memory footprint, is table-based and provides
optimizations for all forms of dynamic control transfer
instructions. fastBT presents a novel technique of translated
target address prediction for dynamic control instructions
combined with adaptive schemes to select the best
configuration for each indirect control transfer. These
optimizations lead to optimal translation depending on the
instruction location in the program and not only in the class
of the instruction [6].

The project and implementation of fastBT is neutral in
relation to the processor architecture, but the available open
source implementation is compatible only with IA-32 and
Linux systems. The current implementation provides a table
for the IA-32 architecture instructions and uses a thread-
local cache for translated code [6]. Although it may increase
memory usage, it avoids a complicated and error-prone lock
scheme for the translation of multithreaded programs.

Besides that, fastBT authors say that in practice little
code is shared between threads during the execution of
programs, rendering the translated code cache redundancy
even less of a problem.

The translation tables are generated from a high level
description and are statically linked to the translator
program during compilation. This is a flexibility that is not
offered by many translators, see examples on Fig. 1 and
Table I.

Finally, we made some experiments with fastBT and
studied the performance. We used the programs from the
Computer Language Benchmarks Game available in [10].
For most programs the overhead was small except for some
cases where the overhead reached 400 % (revcomp) or
even more than 23000 % (knucleotide-4).

IV. FBT_ARM: PORTING FASTBT TO ARM SYSTEMS

In this section we show the steps for porting fastBT to
our FBT_ARM software, specific to ARM architectures. We
show it using four subsections: How the translator works,
the instructions table, the ARM instructions disassembler,
implementations of simple calls, and finally, an example
how the FBT_ARM works in a real program.

A. How the Translator Works

A program can be translated dynamically by preloading
the libfastbt.so library before program execution.
This libfastbt.so defines two symbols that will
overwrite the symbols of the same name in the executable:
_init and _fini. These two symbols are routines
responsible for initialization and finalization of the program
execution. Thus, this libfastbt.so defines _init with
code that starts the dynamic translator hijacking control and
starting the translation of the program.

The code in _fini finishes the translator with an error
message. This error message is a warning about the loss of
control of execution by the translator. If the translator works
correctly _fini should not be executed, for the translator,
as the first step, creates a mapping from the code in _fini
to a routine the finishes the translator with no error message.
Thus, if the translator is translating the program code, the
eventual branch to _fini will be redirected to the routine
that finishes the translator without any error.

The sequence diagram in Figure 2 shows how program
control is hijacked by the translator.

At first fbt init initializes the thread-local storage
space and initializes the trampolines. Trampolines are small
dynamically generated code blocks that are used when a
branch to some specific address in the program is requested
and some code must be executed before the branch.
For example, when translating an indirect branch instruction
the translator should not simply copy the instruction with
the same target in program code as the control of the
program would be lost by the translator after the branch to
an address in the untranslated original program. This is what
happens instead: the branch instruction is translated as a
branch to a tld->unmanaged_code_trampoline.

95Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

Figure 1. Example of the ARM Instructions Table

The code in this trampoline saves the execution context,

calls a function that translates the code in the target of the
indirect branch (or finds this code in the translated code
cache), modifies tld->ind_target to point to the
translated code, restores the execution context and finally
executes a branch to tld->ind_target.

These small code blocks are called trampolines because
they are the target of branches and quickly branch to another
code region. After initialization,
fbt_start_transaction gets executed. This function
finds out the return address using
_builtin_return_address. This return address is
the address of the first instruction after the branch to
FBT_start_transaction which is located in the
beginning of the program since the call to
fbt_start_transaction is one of the first things
done by the program. It is from this address—
orig_begin— that code translation starts with the call to
fbt_translate_noexecute.

Eventually, when fbt_translate_noexecute
returns a pointer to the translated code block, the return
address of the call to fbt_start_transaction at the
top of the stack is replaced by the pointer to the translated
code. Thus, fbt_start_transaction does not return
execution to the untranslated program code but to the
translated code.

The fbt_translate_noexecute has a loop that
iterates over the program instructions from orig_begin,
calls fbt_disasm_instr for each instruction and
executes an action found in the instructions table (see Fig.1
and Table I to generate the translated code equivalent to that
instruction. Besides that, action_copy,
action_branch, and action_branch_and_link,
and others return a value that indicated whether the block
translation should be interrupted. Branch instructions (B,

BL. …) for example, interrupt block translation.
Once it happens, a trampoline is added at the end of the

translated code block. This trampoline is responsible for
starting the translation or execution of the next translation
block. When execution reaches the end of the translated
code block, control returns to the translator or to the next
translated instruction.

B. The Instructions Table

To understand the instructions (which operation,
arguments …) and decide how to translate each instruction,
the translator queries a table with information about each
instruction.

This table is generated from many other tables with a
higher level description of the instructions. FBT_ARM
supports only the 32-bit ARM instruction set which makes
the table-based instruction decoding simpler.

The high level tables in
arm_table_generator/arm_opcode.map.h are
built from the observation that it is possible to define what
each instruction is about from the [27:20] and [7:4] bits.

For example, when the 32 bits of an ARM instruction
follow the 0x 08 1 format it is already possible to assume
that it is an ADD and that the second operand is left-shifted
by a length specified in a register. 0x 08 1 is the bi-nary
enconding of addf<c>g <Rd>, <Rn>, <Rm>, lsl <Rs> in
ARM assembly language.

There is a high level table with 16 entries for each
configuration of the [27:20] bits. The index of each entry is
the configuration of the [7:4] bits. Fig. 2 shows the table with
information about the instructions where the [27:20] bits are
0x80.

These tables are analyzed by the ARM table generator to
automate the generation of a table with 4096 (212) entries.
The index used to query this table is the concatenation of the
8 [27:20] bits with the 4 [7:4] bits.

instr_description table_opcode_08[] = {

/*0x0*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},
/*0x1*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"},
/*0x2*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},

/*0x3*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"},
/*0x4*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},
/*0x5*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"},

/*0x6*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},
/*0x7*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"},
/*0x8*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},

/*0x9*/ {0, "UMULL", UMULL, None "action_copy", Unsigned_long_multiply _(32x32_to_64);
/*0xa*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},
/*0xb*/ {0, "STRH", STRH, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Store"},

/*0xc*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},
/*0xd*/ {0, "LDRD", LDRD, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Load"},
/*0xe*/ {0, "ADD", ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"},

/*0xf*/ {0, "STRD", STRD, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Store"},
};

96Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

SO

libfbt.c

 _init()

 Fbt_init(NULL)

 Fbt_init_tls()

 tld

 fbt_initialize_trampolines(tld)

 tld

 fbt start transaction(tld, fbt commit transaction)

 fbt_transaction_init(...)

 _builtin_return_address(0)

 Orig_begin

 fbt translate noexecute(tld, orig_begin)

transl begin

 PATCH_STACK_RIP(transl_begin)

Figure 2. fastBT sequence diagram

TABLE I. COMPARISON OF THE FBT ARM DISASSEMBLER AND OBJDUMP DISASSEMBLER

0x FBT_ARM FBT_ARM (--sugar) objdump -d

e52de004 str lr, [sp, #-4]! push flrg push flrg ; (str lr, [sp, #-4]!)

e92d4008 stmdb sp!, fr3, lrg push fr3, lrg push fr3, lrg

e59fe004 ldr lr, [pc, #4] ldr lr, [pc, #4] ldr lr, [pc, #4] ; 83d4

e8bd8008 ldmia sp!, fr3, pcg pop fr3, pcg pop fr3, pcg

eb00002c bl 8474 bl 8474 bl 8474

012fff1e bxeq lr bxeq lr bxeq lr

e12fff33 blx r3 blx r3 blx r3

e1b010a1 movs r1, r1, lsr #1 lsrs r1, r1, lsr #1 lsrs r1, r1, #1

e1a0c06c mov ip, ip, rrx rrx ip, ip rrx ip, ip

01b0c0a0 movseq ip, r0, r0, lsr #1 lsrseq ip, r0, #1 lsrseq ip, r0, #1

e2844001 add r4, r4, #1 ; 0x1 add r4, r4, #1 add r4, r4, #1

e0a11a04 adc r1, r1, r4, lsl #20 adc r1, r1, r4, lsl #20 adc r1, r1, r4, lsl #20

97Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

The tables with the high level description of the ARM
instructions for FBT_ARM were created after reading the
ARM architecture reference manual.

C. The ARM Instructions Disassembler

To test the instruction table and understand what
information is necessary in the tables to decode the
instructions, we developed an ARM disassembler
(src/arm/fbt_disassemble.c).

Table 1 shows the output produced by the FBT-ARM
disassembler and the output of the objdump -d command
that comes from the GNU binutils software package.
When the --sugar flag is passed, FBT_ARM translates some
instructions to pseudo-instructions if appropriate. Load
instructions like LDR, and LDMIA are translated to the
POP pseudo-instruction when the memory address is the
register storing the pointer to the base of the stack—SP—
and the operands configuration makes the instruction
semantically equivalent to the popping from the stack.
Similarly, store instructions can be translated to PUSH; and
MOVs with shifted-operands can be translated as pseudo
shift instructions.

D. Implementation of System Calls

To avoid libc as a dependency and allow the
interception of system calls we had to implement Linux
syscalls in Fbt. The ARM ABI standard defines how system
calls should be implemented.

The source file src/arm/fbt_syscalls_impl.h
has C preprocessor macros and the im-plementation of
many syscalls using inline assembly. Besides being used in
the translator, this syscalls implementation is also used to
implement I/O functions (e.g. fllwrite, fllprintf ...)
and a low-level memory allocator (fbt lalloc,
fbt_mem_free …) which are used by our FBT_ARM.

E. Translating a Simple Program

Fig. 3 shows the ARM code of the program that will be
translated using FBT_ARM. This program sums two 1-digit
numbers passed as arguments from the command line
(./prog 3 7) and terminates with an exit code equals to
the sum of the two numbers. It is a simple example without
branches consisting of a single translation block. Fig. 4
shows the output of the program of Fig. 3. It is important to
observe that the exit code (the $? shell variable) is indeed
the sum of the two arguments (see Fig. 4).

Fig. 5 shows fragments of the debug output
(debug.txt) produced by FBT_ARM during the dynamic
execution of the program. The debug output fragment
produced by FBT_ARM shows the translation of each
instruction until SWI, that when found by the translator,
concludes the translation of the block (closing TU
upon request, invoking translation

function on 0x000088a4).
It is after the translation of the block that execution con-

trol is passed to the translated code (starting

transaction at 0xb5cd6000 (orig. addr:

0x0000885c)).
The original program code starts at 0x0000885c and

the translated code which is the one executed by the
processor can be found at the 0xb5cd6000 address.

Figure 3. Program code to be dynamically translated

Figure 4. Dynamic execution of a simple program

V. CONCLUSIONS

To make this work possible it was necessary to analyze
software dynamic translation solutions and the
implementation techniques they use. The main target of the
analysis was fastBT whose code was extended to support
the ARM architecture. FBT_ARM has tables describing 32-
bit instructions of the ARMv6 architecture and necessary
routines for instruction decoding. To demonstrate how the
tables can be used, we have implemented a disassembler
that produces the output similar to the output of production
disassemblers (objdump -d). Although FBT-ARM is not
capable of translating full programs, all the infrastructure of
fastBT was ported and works on ARM processors.

bl fbt_start_transaction

 // int a = argv[1][0] - ’0’;

ldr r3, [fp, #-20] // r3 = argv (argv stored in the stack)

add r3, r3, #4 // r3 = argv + 1

ldr r3, [r3] // r3 = *(argv + 1) or r3 = argv[1]
ldrb r3, [r3] // r3 = *(argv[1]) or r3 = argv[1][0]

sub r3, r3, #48 // r3 = argv[1][0] - ’0’
str r3, [fp, #-8] // stores a in the stack

 // int b = argv[2][0] - ’0’;
ldr r3, [fp, #-20] // r3 = argv (argv stored in the stack)
add r3, r3, #8 // r3 = argv + 2

ldr r3, [r3] // r3 *(argv + 2) or r3 = argv[2]
ldrb r3, [r3] // r3 * (argv[2]) or r3 = argv[2][0]
sub r3, r3, #48 // r3 argv[2][0] - ’0’

str r3, [fp, #-12] // stores b in the stack

 // a + b

ldr r2, [fp, #-8] // r2= a

ldr r3, [fp, #-12] // r3= b

add r3, r2, r3 // r3 = a + b

 // exit(a + b)
mov r0, r3 // first argument (a + b)

mov r7, #1 // SYS_exit (syscall code)
swi 0 // request syscall handling by the kernel

bl fbt_commit_transaction

$./prog 2 3

Starting BT
Stopping BT $
echo $?

5
$./prog 8 7
Starting BT

Stopping BT $
echo $?
15

98Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

Figure 5. Debug output produced by FBT_ARM

FBT_ARM is open source and available in [9]. Since it

is a table-based translator which often means better
performance than those based on intermediate
representation, there are many possibilities of use for
FBT_ARM. Its implementation can be extended in the
development of several tools that benefit from software
dynamic translation like memory profilers, general program
analysis tools, secure execution environments, etc.

For future works, we would like to suggest: (i) finish the
implementation of our FBT_ARM, adding the translation to
ARM´s control instructions, and (ii) execute a final version
in real programs and benchmarks, and (iii) compare the
performance of FBT_ARM to other systems.

ACKNOWLEDGMENT

This research work received financial support from
CNPq, CAPES, FAPITEC (Brazilian Government
Institutions for Science and Technology).

REFERENCES

[1] Agesen, O. Software and hardware techniques for x86 virtual-
ization. 2009. Electronic Publication,
www.vmware.com/files/pdf/software_hardware_
tech_x86_virt.pdf. Visited in April 20, 2016.

[2] Bellard, F. Qemu, a fast and portable dynamic translator. In
Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, pages 41–41, Berkeley,
CA, USA, 2005.

[3] Hazelwood, K. and Klauser, A. A dynamic binary
instrumentation engine for the arm architecture. In ACM
Proc. of the 2006 Intl. Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), p. 261–270,
USA, 2006.

[4] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney,
G., Wallace, S., Reddi, V. J., and Hazelwood, K. Pin: building
customized program analysis tools with dynamic
instrumentation. SIGPLAN Not., 40(6):190–200, 2005.

[5] Nethercote, N. and Seward, J. Valgrind: A framework for
heavyweight dynamic binary instrumentation. SIGPLAN
Notes, 42(6):89–100, 2007.

[6] Payer, M. and Gross, T. R. Generating low-overhead dynamic
binary translators. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, SYSTOR ’10, pages
22:1–22:14, New York, NY, USA. ACM, 2010.

[7] Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J.
W., and Soffa, M. L. Retargetable and reconfigurable
software dynamic translation. In IEEE Proc. of the Intl.
Symposium on Code Generation and Optimization (CGO), p.
36–47, USA, 2003.

[8] Wirth, M. Simple pluggable binary translator library in user
space. Laboratory for Software Technology, ETH Zurich,
2008. http://www.nebelwelt.net/publications/students/07hs-
wirth-fastBT.pdf. Semester thesis. Visited in April 12, 2016.

[9] Moreno, E.D. and Carvalho, F. Electronic Publication: Code of
FBT_ARM, available at https://github.com/philix/Fbt, 2015.
Accessed in April 30, 2016.

[10] Computer Language Benchmarks Game, Available at
https://github.com/philix/c_bench, 2015. Accessed in April
25, 2016.

fbt_start_transaction(commit_function = 0x0000dcb8) {

 translate_noexecute(*tld=0xb6f2e000, *orig_address=0x0000885c) {

fbt_ccache_find(*tld=0xb6f2e000, *orig_address=0x0000885c) {

}-> 0x00000000

tld->ts.transl_instr: 0xb5cd6000 fbt_ccache_add_entry(*tld=0xb6f2e000, *orig_address=0x0000885c, *transl_address=0xb5cd6000)

{}

fbt_disasm_instr(*ts=0xb6f2e458) { Disassembling 0xe51b3014 } translating a ’ldr’

action_copy(*addr=0x0000885c, *transl_addr=0xb5cd6000) {}-> NEUTRAL

fbt_disasm_instr(*ts=0xb6f2e458) { Disassembling 0xef000000 } translating a ’swi’

action_copy(*addr=0x000088a0, *transl_addr=0xb5cd6000) {

Encountered an interrupt - closing TU with some glue code

}-> CLOSE_GLUE

closing TU upon request, invoking translation function on 0 x000088a4

allocated trampolines: 0xb5ccf000, target: 0x000088a4, origin: 0 xb5cd6004

}-> 0xb5cd6000, next_tu=0x000088a4 (len: 0)

starting transaction at 0xb5cd6000 (orig. addr: 0x0000885c)

}

99Copyright (c) IARIA, 2016. ISBN: 978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications

