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Abstract—Software dynamic translation is a technique that 

allows code modification and monitoring of program 

execution. This paper addresses some applications of software 

dynamic translation (SDT) and the porting of fastBT—a 

dynamic translator for the IA32 architecture—to the ARM 

architecture. The result is a dynamic translator called 
FBT_ARM that works for the ARM and IA32 architectures. 
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I.  INTRODUCTION 

Software Dynamic Translation (SDT) is a technique that 
allows code modification and monitoring of the execution of 
program instructions at runtime. In the last few years, 
products using dynamic binary translation have become 
popular in the areas of virtualization, instrumentation and 
emulation [8]. SDT can be applied in several forms: 
dynamic code optimization, hardware architecture 
simulation, system virtualization, instruction set translation, 
profilers, debuggers, security constraint checking at runtime, 
co-designed virtual machines etc. 

In the implementation of a SDT system, a software layer 
acts as virtual machine that manages the execution 
examining and dynamically translating all or part of the 
instructions of a program before they get executed by the 
host CPU. 

Software dynamic translators are often written for a 
single application and/or platform. Besides the lack of 
portability due to the single application and single 
architecture approaches, few of the translation or 
instrumentation systems are open which prevents research in 
the area making them hard to study requiring the 
reimplementation of complex and delicate systems. Most of 
the code of a SDT system depends on the target hardware 
architecture. Both the data structures and the translated code 
emission must be designed according to the instruction set 
architecture. 

Unfortunately, robust, general-purpose instrumentation 
tools are not nearly as common in the embedded arena 
compared to IA32, for example [3]. 

The Pin dynamic software translation system [4] 
provided support for the ARM architecture [3], but the ARM 
support has been discontinued in early 2007 (a search on 
http://archive.org indicates that the last version of Pin for 
ARM was released in January 2007). With the growing 
relevance of the ARM architecture driven by its adoption on 
most of the Smartphones, tablets, several embedded systems, 

and even some network servers (where x86 is commonly 
used), it makes sense to develop tools that improves the 
understanding of the ARM architecture, software 
development and execution in this platform. 

As a result of this work, we present a software dynamic 
translator for the ARM architecture called “FBT_ARM”. 
The translator can be used for program instrumentation in 
embedded systems based on ARM processors. The designer 
of a software instrumentation product can provide his own 
translation table. Such table should contain the routines that 
must be executed while translating the instructions of the 
executable code from the original program being 
instrumented. Such tool can be used to analyze the behavior 
of a software during its development (searching bugs, 
performance analysis, exploring ARM extension ideas) or 
even to run the program in production environment over the 
dynamic translator (e.g., implementation of a security layer 
that prevents a program from executing certain functions on 
a server, execution of a binary that contains non-standard 
ARM instructions implemented in software, implementation 
of a software-based transactional memory system). 

The rest of the paper is structured as follows. Section II 
presents main concepts about SDT systems, section III is 
dedicated to fastBT translator, which is the baseline of our 
SDT for ARM. Section IV presents the steps for porting 
fastBT to our FBT_ARM. Finally, section V presents the 
conclusions and some ideas for future works. 

II. THEORY AND IMPLEMENTATION OF SOFTWARE 

DYNAMIC TRANSLATION SYSTEMS 

SDT systems can be divided in two classes according to 
its implementation approach: based on intermediate 
representation and table-based. Many SDT systems translate 
machine code to be executed into an Intermediate 
Representation (IR) that can be executed by an interpreter or 
just-in-time compiler. This additional level of indirection 
simplifies the implementation of the translator that can then 
represent the state of the translated program (execution 
stack, registers) in software. Valgrind [5], Strata [7], Pin [4] 
and QEMU [2] are examples of SDT systems that use an IR 
(Intermediate Representation) for their translators. An 
advantage of an IR is that it allows software reuse.  

Other approach used in several projects is the Dynamic 
Binary Recompilation (DBR) [5]. It is similar to the use of 
IR in compiler projects where the front-ends of several high 
level programming languages deal with IR code generation 
that can be compiled by the backend of every supported 
hardware architecture. Reusing the backend allows 
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compilers of many languages to use most of the compilation 
optimizations from IR and apply them to all architectures 
supported by the backend, thus greatly reducing the effort of 
compiler creation. 

A table-based software dynamic translator translates 
each instruction by executing specified functions from a 
table for each instruction. In general, this approach 
generates translators with better performance than IR-based 
translators. With the gain in performance comes a loss of 
flexibility, so many restrictions are imposed to the 
translation of instructions. Branch instructions, for example, 
should be treated especially so that translated code 
execution does not escape from translator control. 

Finally, SDT can be used in different applications, 
especially as virtualization, instrumentation and emulation. 

Virtualization: SDT is one of the approaches of 
virtualization of 32-bit x86 systems implemented by 
VMware [1] in all versions of VMware ESX until version 
4.0. VMware ESX is an enterprise level product that 
provides computer virtualization at the kernel level. The 
translator used by VMWARE does not map instructions 
coming from target architecture to another. Instead, it 
translates the unrestricted x86 code to a subset of itself that 
can be safely executed. The translator particularly replaces 
privileged instructions with instruction sequences that 
perform the same privileged operations in the virtual 
machine instead of performing them in the physical 
machine. 

Instrumentation: it is a technique that consists in the 
insertion of code in a program for the data collection and 
analysis of the instrumented program. One of the 
instrumentation techniques, Dynamic Binary 
Instrumentation (DBI), uses SDT to execute the 
instrumentation code at runtime. One example of the use of 
this technique is the Valgrind tool set [5]. 

Emulation: SDT systems are used to implement 
instruction set emulators. QEMU is an example of 
architecture emulator that allows, for example, the execution 
of ARM programs on x86 processors [2]. 

III. THE FASTBT DYNAMIC TRANSLATOR 

The fastBT is a low overhead dynamic translator, it has a 
low memory footprint, is table-based and provides 
optimizations for all forms of dynamic control transfer 
instructions. fastBT presents a novel technique of translated 
target address prediction for dynamic control instructions 
combined with adaptive schemes to select the best 
configuration for each indirect control transfer. These 
optimizations lead to optimal translation depending on the 
instruction location in the program and not only in the class 
of the instruction [6]. 

The project and implementation of fastBT is neutral in 
relation to the processor architecture, but the available open 
source implementation is compatible only with IA-32 and 
Linux systems. The current implementation provides a table 
for the IA-32 architecture instructions and uses a thread-
local cache for translated code [6]. Although it may increase 
memory usage, it avoids a complicated and error-prone lock 
scheme for the translation of multithreaded programs.  

Besides that, fastBT authors say that in practice little 
code is shared between threads during the execution of 
programs, rendering the translated code cache redundancy 
even less of a problem. 

The translation tables are generated from a high level 
description and are statically linked to the translator 
program during compilation. This is a flexibility that is not 
offered by many translators, see examples on Fig. 1 and 
Table I. 

Finally, we made some experiments with fastBT and 
studied the performance. We used the programs from the 
Computer Language Benchmarks Game available in [10]. 
For most programs the overhead was small except for some 
cases where the overhead reached 400 % (revcomp) or 
even more than 23000 % (knucleotide-4). 

IV. FBT_ARM: PORTING FASTBT TO ARM SYSTEMS 

In this section we show the steps for porting fastBT to 
our FBT_ARM software, specific to ARM architectures. We 
show it using four subsections: How the translator works, 
the instructions table, the ARM instructions disassembler, 
implementations of simple calls, and finally, an example 
how the FBT_ARM works in a real program. 

A. How the Translator Works 
 

A program can be translated dynamically by preloading 
the libfastbt.so library before program execution. 
This libfastbt.so defines two symbols that will 
overwrite the symbols of the same name in the executable: 
_init and _fini. These two symbols are routines 
responsible for initialization and finalization of the program 
execution. Thus, this libfastbt.so defines _init with 
code that starts the dynamic translator hijacking control and 
starting the translation of the program.  

The code in _fini finishes the translator with an error 
message. This error message is a warning about the loss of 
control of execution by the translator. If the translator works 
correctly _fini should not be executed, for the translator, 
as the first step, creates a mapping from the code in _fini 
to a routine the finishes the translator with no error message. 
Thus, if the translator is translating the program code, the 
eventual branch to _fini will be redirected to the routine 
that finishes the translator without any error. 

The sequence diagram in Figure 2 shows how program 
control is hijacked by the translator. 

At first fbt init initializes the thread-local storage 
space and initializes the trampolines. Trampolines are small 
dynamically generated code blocks that are used when a 
branch to some specific address in the program is requested 
and some code must be executed before the branch.  
For example, when translating an indirect branch instruction 
the translator should not simply copy the instruction with 
the same target in program code as the control of the 
program would be lost by the translator after the branch to 
an address in the untranslated original program. This is what 
happens instead: the branch instruction is translated as a 
branch to a tld->unmanaged_code_trampoline. 
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Figure 1. Example of the ARM Instructions Table  

 

 
The code in this trampoline saves the execution context, 

calls a function that translates the code in the target of the 
indirect branch (or finds this code in the translated code 
cache), modifies tld->ind_target to point to the 
translated code, restores the execution context and finally 
executes a branch to tld->ind_target. 

These small code blocks are called trampolines because 
they are the target of branches and quickly branch to another 
code region. After initialization, 
fbt_start_transaction gets executed. This function 
finds out the return address using 
_builtin_return_address. This return address is 
the address of the first instruction after the branch to 
FBT_start_transaction which is located in the 
beginning of the program since the call to 
fbt_start_transaction is one of the first things 
done by the program. It is from this address—
orig_begin— that code translation starts with the call to 
fbt_translate_noexecute.  

Eventually, when fbt_translate_noexecute 
returns a pointer to the translated code block, the return 
address of the call to fbt_start_transaction at the 
top of the stack is replaced by the pointer to the translated 
code. Thus, fbt_start_transaction does not return 
execution to the untranslated program code but to the 
translated code. 

The fbt_translate_noexecute has a loop that 
iterates over the program instructions from orig_begin, 
calls fbt_disasm_instr for each instruction and 
executes an action found in the instructions table (see Fig.1 
and Table I to generate the translated code equivalent to that 
instruction. Besides that, action_copy, 
action_branch, and action_branch_and_link, 
and others return a value that indicated whether the block 
translation should be interrupted. Branch instructions (B, 

BL. … ) for example, interrupt block translation.  
Once it happens, a trampoline is added at the end of the 

translated code block. This trampoline is responsible for 
starting the translation or execution of the next translation 
block. When execution reaches the end of the translated 
code block, control returns to the translator or to the next 
translated instruction. 

B. The Instructions Table 

To understand the instructions (which operation, 
arguments …) and decide how to translate each instruction, 
the translator queries a table with information about each 
instruction. 

This table is generated from many other tables with a 
higher level description of the instructions. FBT_ARM 
supports only the 32-bit ARM instruction set which makes 
the table-based instruction decoding simpler.  

The high level tables in 
arm_table_generator/arm_opcode.map.h are 
built from the observation that it is possible to define what 
each instruction is about from the [27:20] and [7:4] bits. 

For example, when the 32 bits of an ARM instruction 
follow the 0x 08 1 format it is already possible to assume 
that it is an ADD and that the second operand is left-shifted 
by a length specified in a register. 0x 08 1 is the bi-nary 
enconding of addf<c>g <Rd>, <Rn>, <Rm>, lsl <Rs> in 
ARM assembly language. 

There is a high level table with 16 entries for each 
configuration of the [27:20] bits. The index of each entry is 
the configuration of the [7:4] bits. Fig. 2 shows the table with 
information about the instructions where the [27:20] bits are 
0x80.  

These tables are analyzed by the ARM table generator to 
automate the generation of a table with 4096 (212) entries. 
The index used to query this table is the concatenation of the 
8 [27:20] bits with the 4 [7:4] bits.  

instr_description table_opcode_08[] = { 

 
/*0x0*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 
/*0x1*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"}, 
/*0x2*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 

/*0x3*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"}, 
/*0x4*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 
/*0x5*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"}, 

/*0x6*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 
/*0x7*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_REG, "action_copy", Add_to_register"}, 
/*0x8*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 

/*0x9*/ {0, "UMULL", UMULL, None "action_copy", Unsigned_long_multiply _(32x32_to_64); 
/*0xa*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 
/*0xb*/ {0, "STRH",     STRH, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Store"}, 

/*0xc*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 
/*0xd*/ {0, "LDRD",     LDRD, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Load"}, 
/*0xe*/ {0, "ADD",       ADD, OPND_REG_SHIFT_BY_IMM, "action_copy", Add_to_register"}, 

/*0xf*/ {0, "STRD",      STRD, OPND_REG_OFFSET | OPND_INCR_OFFSET, "action_copy", Store"},  
}; 
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                                                                           tld 
 

                                            fbt start transaction(tld, fbt commit transaction) 
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                                                                                                                                Orig_begin 
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transl begin 

 
                        PATCH_STACK_RIP(transl_begin) 

 

 
 
 

 
 
 

Figure 2. fastBT sequence diagram 

 

TABLE I. COMPARISON OF THE FBT ARM DISASSEMBLER AND OBJDUMP DISASSEMBLER 

0x FBT_ARM FBT_ARM (--sugar) objdump -d 

e52de004 str lr, [sp, #-4]! push flrg push flrg ; (str lr, [sp, #-4]!) 

e92d4008 stmdb sp!, fr3, lrg push fr3, lrg push fr3, lrg 

e59fe004 ldr lr, [pc, #4] ldr lr, [pc, #4] ldr lr, [pc, #4] ; 83d4 

e8bd8008 ldmia sp!, fr3, pcg pop fr3, pcg pop fr3, pcg 

eb00002c bl 8474 bl 8474 bl 8474 

012fff1e bxeq lr bxeq lr bxeq lr 

e12fff33 blx r3 blx r3 blx r3 

e1b010a1 movs r1, r1, lsr #1 lsrs r1, r1, lsr #1 lsrs r1, r1, #1 

e1a0c06c mov ip, ip, rrx rrx ip, ip rrx ip, ip 

01b0c0a0 movseq ip, r0, r0, lsr #1 lsrseq ip, r0, #1 lsrseq ip, r0, #1 

e2844001 add r4, r4, #1 ; 0x1 add r4, r4, #1 add r4, r4, #1 

e0a11a04 adc r1, r1, r4, lsl #20 adc r1, r1, r4, lsl #20 adc r1, r1, r4, lsl #20 
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The tables with the high level description of the ARM 
instructions for FBT_ARM were created after reading the 
ARM architecture reference manual. 

C. The ARM Instructions Disassembler 

To test the instruction table and understand what 
information is necessary in the tables to decode the 
instructions, we developed an ARM disassembler 
(src/arm/fbt_disassemble.c). 

Table 1 shows the output produced by the FBT-ARM 
disassembler and the output of the objdump -d command 
that comes from the GNU binutils software package. 
When the --sugar flag is passed, FBT_ARM translates some 
instructions to pseudo-instructions if appropriate. Load 
instructions like LDR, and LDMIA are translated to the 
POP pseudo-instruction when the memory address is the 
register storing the pointer to the base of the stack—SP—
and the operands configuration makes the instruction 
semantically equivalent to the popping from the stack. 
Similarly, store instructions can be translated to PUSH; and 
MOVs with shifted-operands can be translated as pseudo 
shift instructions. 

D. Implementation of System Calls 

To avoid libc as a dependency and allow the 
interception of system calls we had to implement Linux 
syscalls in Fbt. The ARM ABI standard defines how system 
calls should be implemented. 

The source file src/arm/fbt_syscalls_impl.h 
has C preprocessor macros and the im-plementation of 
many syscalls using inline assembly. Besides being used in 
the translator, this syscalls implementation is also used to 
implement I/O functions (e.g. fllwrite, fllprintf ...) 
and a low-level memory allocator (fbt lalloc, 
fbt_mem_free …) which are used by our FBT_ARM. 

E. Translating a Simple Program 

Fig. 3 shows the ARM code of the program that will be 
translated using FBT_ARM. This program sums two 1-digit 
numbers passed as arguments from the command line 
(./prog 3 7) and terminates with an exit code equals to 
the sum of the two numbers. It is a simple example without 
branches consisting of a single translation block. Fig. 4 
shows the output of the program of Fig. 3. It is important to 
observe that the exit code (the $? shell variable) is indeed 
the sum of the two arguments (see Fig. 4). 

Fig. 5 shows fragments of the debug output 
(debug.txt) produced by FBT_ARM during the dynamic 
execution of the program. The debug output fragment 
produced by FBT_ARM shows the translation of each 
instruction until SWI, that when found by the translator, 
concludes the translation of the block (closing TU 
upon request, invoking translation 

function on 0x000088a4).  
It is after the translation of the block that execution con-

trol is passed to the translated code (starting 

transaction at 0xb5cd6000 (orig. addr: 

0x0000885c)). 
The original program code starts at 0x0000885c and 

the translated code which is the one executed by the 
processor can be found at the 0xb5cd6000 address. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Program  code to be dynamically translated 
 

 
 
 

 
 
 

 
 
 

 
 

Figure 4. Dynamic execution of a simple program 

V. CONCLUSIONS 

To make this work possible it was necessary to analyze 
software dynamic translation solutions and the 
implementation techniques they use. The main target of the 
analysis was fastBT whose code was extended to support 
the ARM architecture. FBT_ARM has tables describing 32-
bit instructions of the ARMv6 architecture and necessary 
routines for instruction decoding. To demonstrate how the 
tables can be used, we have implemented a disassembler 
that produces the output similar to the output of production 
disassemblers (objdump -d). Although FBT-ARM is not 
capable of translating full programs, all the infrastructure of 
fastBT was ported and works on ARM processors.  

bl fbt_start_transaction 

          // int a = argv[1][0] - ’0’; 

 
ldr r3, [fp, #-20]      // r3 = argv (argv stored in the stack) 

add r3, r3, #4           // r3 = argv + 1 

ldr r3, [r3]                // r3 = *(argv + 1) or r3 = argv[1] 
ldrb r3, [r3]              // r3 = *(argv[1]) or r3 = argv[1][0] 

sub r3, r3, #48          // r3 = argv[1][0] - ’0’ 
str r3, [fp, #-8]          // stores a in the stack 

 

           // int b = argv[2][0] - ’0’; 
ldr r3, [fp, #-20]      // r3 = argv (argv stored in the stack) 
add r3, r3, #8             // r3 = argv + 2 

ldr r3, [r3]                 // r3 *(argv + 2) or r3 = argv[2] 
ldrb r3, [r3]              // r3 * (argv[2]) or r3 = argv[2][0] 
sub r3, r3, #48          // r3 argv[2][0] - ’0’ 

str r3, [fp, #-12]       // stores b in the stack 

 
           // a + b 

ldr  r2, [fp, #-8]      // r2= a 

ldr  r3, [fp, #-12]   // r3= b 

add r3, r2, r3        // r3 = a + b 

 
          // exit(a + b) 
mov r0, r3           // first argument (a + b) 

mov r7, #1          // SYS_exit (syscall code) 
swi   0                 // request syscall handling by the kernel 
 

bl     fbt_commit_transaction 

$ ./prog 2 3 

Starting BT 
Stopping BT $ 
echo $? 

5 
$ ./prog 8 7 
Starting BT 

Stopping BT $ 
echo $? 
15 
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Figure 5. Debug output produced by FBT_ARM 

 

 
FBT_ARM is open source and available in [9]. Since it 

is a table-based translator which often means better 
performance than those based on intermediate 
representation, there are many possibilities of use for 
FBT_ARM. Its implementation can be extended in the 
development of several tools that benefit from software 
dynamic translation like memory profilers, general program 
analysis tools, secure execution environments, etc. 

For future works, we would like to suggest: (i) finish the 
implementation of our FBT_ARM, adding the translation to 
ARM´s control instructions, and (ii) execute a final version 
in real programs and benchmarks, and (iii) compare the 
performance of FBT_ARM to other systems. 
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fbt_start_transaction(commit_function = 0x0000dcb8) { 

 

 translate_noexecute(*tld=0xb6f2e000, *orig_address=0x0000885c) { 

fbt_ccache_find(*tld=0xb6f2e000, *orig_address=0x0000885c) {  

 

}-> 0x00000000 

 

tld->ts.transl_instr: 0xb5cd6000 fbt_ccache_add_entry(*tld=0xb6f2e000, *orig_address=0x0000885c, *transl_address=0xb5cd6000) 

{} 

fbt_disasm_instr(*ts=0xb6f2e458) { Disassembling 0xe51b3014 } translating a ’ldr’ 

action_copy(*addr=0x0000885c, *transl_addr=0xb5cd6000) {}-> NEUTRAL 

fbt_disasm_instr(*ts=0xb6f2e458) { Disassembling 0xef000000 } translating a ’swi’ 

action_copy(*addr=0x000088a0, *transl_addr=0xb5cd6000) {  

 

Encountered an interrupt - closing TU with some glue code 

}-> CLOSE_GLUE 

 

closing TU upon request, invoking translation function on 0 x000088a4 

allocated trampolines: 0xb5ccf000, target: 0x000088a4, origin: 0 xb5cd6004 

}-> 0xb5cd6000, next_tu=0x000088a4 (len: 0) 

starting transaction at 0xb5cd6000 (orig. addr: 0x0000885c) 

 

} 
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