
Reproducible Evaluation of Semantic Storage Options

Jedrzej Rybicki∗ and Benedikt von St. Vieth†
Juelich Supercomputing Center (JSC)

Email: ∗j.rybicki@fz-juelich.de, †b.von.st.vieth@fz-juelich.de

Abstract—Distributed infrastructures are continuously challenged
with the task of storing and managing different types of data.
To this end, suitability and performance evaluations of different
available technologies have to be conducted. We motivate our
work with the concrete challenge of storing semantic annotations
in an efficient way. We treat this problem from the resource
provider perspective. The paper includes work in progress of
evaluating possible storage engines for semantic annotations. The
main focus, however, is on creating a framework to conduct such
evaluations in a transparent and reproducible way. Our approach
is based on Docker tools, and, therefore, the tests can be run on
different platforms, and can be repeated if new version of the
evaluated technologies become available.

Keywords–Deploying Linked data; Reproducibility; Distributed
infrastructures.

I. INTRODUCTION

Distributed research infrastructures like EUDAT (EUropean
DATa [1]) provide generic services to manage research data
in an efficient and cost-effective way. Since the research
communities which use the services advance over time, they
are constantly expressing new requirements with respect to
kinds of data and possible usages that the infrastructure should
be able to handle. To this end, resource and service providers
are constantly evaluating possible approaches and new tech-
nologies. Such evaluation must adhere to scientific standards
in terms of methodology, transparency, and reproducibility.

In our previous paper [2], we have shown how Docker [3]
can be leveraged to provide on-demand instances of popular
web services in context of a distributed research infrastructure.
Although, such seamless provisioning of services can be used
to conduct reproducible research, there are more aspects to
it. In this paper, we will exercise a whole workflow from
testing, through result processing, up to visualization of the
outcomes. We will use Docker and docker-compose to
conduct the steps in a transparent, sharable, and reproducible
way. We will test our approach by evaluating storage options
to handle semantic annotations.

Semantic annotations are a very powerful tool to work
with data in distributed infrastructures. On the very high
level, they allow to add comments to entities managed in the
infrastructure. An example would be a keyword attached to a
digital object, but more sophisticated examples are envisioned
as well. We will explain the model in more detail later in this
paper, but astute reader can imagine that efficient annotations
handling should enable different types of queries. It should
be possible to retrieve all annotations for a given object, but
also reverse lookups (i.e., localizing all data objects with given
keyword in our example) will be used. The uptake of this new
service will only happen if sufficient performance of both kind
of queries is offered.

There are many ways in which annotations can be stored.
The EUDAT service plans to use the World Wide Web Con-
sortium (W3C) Annotation Data Model [4]. Since it is based
on JavaScript Object Notation for Linked Data (JSON-LD),
an obvious approach would be to use document stores for
the task. Since annotations are attached to data object, the
whole data set forms a graph with nodes as managed entities
and annotations as relations. Thus, graph databases could also
serve as storage backends. Regardless of the technology used
it should be possible to evaluate its performance and tune it to
account for this particular use case. Such a tuning is usually
done in an iterative way, where the results of each change
are verified, it is critical to possess tools that can perform the
benchmarking tests in a reproducible manner.

The rest of this paper is structured as follows. In Section II,
we explain what semantic annotations are and discuss suitable
storage options. Subsequently, a short introduction to Docker
follows and technical details of our effort to make the eval-
uation reproducible are presented. Section IV comprises the
preliminary results for selected storage options. We conclude
the paper with an outlook.

II. SEMANTIC ANNOTATIONS

EUDAT is working on enabling semantic annotations of
the objects stored in its distributed research infrastructure. The
current approach is to use the W3C format for annotations.
The W3C web annotation data format is pretty simple: Each
annotation is a relation between a body, e.g., EUDAT data
object, and target, e.g., metadata describing that object. Basic
annotation model is shown in Figure 1.

It is important to notice that both target and body have
unique identifiers. These are crucial from the user perspective.
It can be expect that the users will be interested to view a list of
all annotations for given body id, i.e., all metadata descriptions
for a given data object. But also a reverse lookup producing
all the data objects with specific tag (i.e., a retrieval by target
id) embodies important functionality. These expected usage
scenarios were used as corner stones for our benchmarks. In
particular, we defined three metrics for the storage backend
evaluation:

• creation times (creation of new, non-existing annota-
tions),

• annotation retrieval by target id,
• annotation retrieval by body id.

There are many options to store semantic annotations. One
obvious approach would be to stick to the JSON-LD rendering
as proposed by W3C, use is also as internal storing format
and find a storage backend which can support it. There are
many NoSQL solutions on the market, which can store JSON
documents, with MongoDB [5] being one of the most popular.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-552-4

ALLDATA 2017 : The Third International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2017)

Figure 1. Basic W3C Annotation Data Model

Another storage option is based on the observation that an-
notations and annotated objects form a graph (with annotations
as edges). To account for this way of thinking, a graph database
like neo4j [6] could serve as a storage backend. We decided
not to include relation database systems in our evaluation. The
reasons are twofold. As can be seen on the Figure 1, the
model used for annotations is dynamic with optional fields
(like format or language), such flexibility is hard to deal with
when using relational database. Second reason was the fact
that creation and explorations of data objects and annotations
would involve a lot of joins in the case of relational model:
One would have to jump from one annotation body (i.e., data
object) to a target (e.g., keyword) and then again to body to
identify objects similar to the starting node.

III. EXPERIMENTAL SETUP

To obtain meaningful evaluation results it is important to
minimize the number of “moving parts” and reduce the testing
environment to components which are absolutely necessary.
In particular, we were not interested in the performance of
the web interface that will be used to work with annotations
or the performance penalty caused by its integration with
other EUDAT services. Therefore, we have written a small
program in Python, with methods for generating annotations
with unique body and target identifiers, and for retrieval of
the data. The methods use simple interfaces to access selected
database stores: MongoDB and neo4j.

A. Docker
To enable easy reproducibility of the conducted tests,

we have prepared a Docker-based environment. Docker is a
lightweight virtualization solution which is using Linux Kernel
features like namespaces and cgroups to isolate guest and host
systems. Docker uses image templates to start containers (i.e.,
guest processes). Images are build in a hierarchical fashion by
applying a “write-on-modify” principle. Thus, it is possible
to trace back all the changes done in a given image during
the installation and configuration of the software it comprises.
Docker provides tools to easily exchange the images via a
public Docker Hub [7], or private on-site repositories. Docker
introduces notion of official images which are created and
maintained by the providers of a given technology. There are
official images for major Linux distributions but also for popu-
lar content management systems, or databases. Docker ecosys-
tem embrace many tools, we will use docker-compose [8]

which is an orchestration solution to start and manage more
complex Docker-based deployments.

The main reason why we are using Docker is due to the
virtualization it is possible to run our test programs on almost
any platform (regardless of the operating system it uses). The
images also contains the dependencies and libraries required,
so again the configuration of the host system may be neglected.
The possibility to review all the changes done in a particular
Docker image enables transparency and understandability of
the obtained results. Last but not least, by using Docker
featured called volumes, it is possible to separate data from
the programs, in our case: results and processing tools.

B. Solution details
Both technology providers (MongoDB and neo4j) offer

official images for their databases which we used for our
evaluation. We created a Docker image with our testing
program and prepared a docker-compose-based testing
environment. The source code and documentation is stored on
GitHub [9], allowing for verification and repetition of the tests.
In fact, we plan to reuse this framework to do some further
testing of different EUDAT-inspired use cases in the future.

Given a system with a running Docker daemon and
docker-compose, starting tests is a matter of merely is-
suing one command like:

docker-compose run tester --name exp1

The last parameter of the above command is not strictly
required, it attaches a user-defined name to the particular
experimental run which is convenient for the further analysis.

Also, Docker images for processing of the results and
visualizing them are provided. The first step transforms the
results from the evaluation by using following command:

docker run --volumes-from exp1 processor

Please note that we are using the name assigned to the ex-
periment in the previous step (exp1), the --volumes-from
parameter is used to attach storage volume with the data pro-
duced in the first step to the newly created Docker container.

Finally, the plots that we present in the following section
are created with help of gnuplot [10] and other tools em-
bodied in a Docker image which again uses volume with data
from previous steps and can be run with a simple command:

docker run --volumes-from exp1 visualizer

To enable sequential processing of data, we internally
agreed to store all the data (results, visualizations, etc.) in
the same path defined as a Docker volume. Thanks to this
contract, we can guarantee that data are not becoming part
of the Docker images and thus will not hinder their reuse.
Secondly, it is easily possible to extend the workflow by adding
new steps or modify existing ones, for instance, if different
types of visualization are required.

IV. RESULTS

The tests are defined by three parameters:

1) engine: database engine (currently MongoDB and
neo4j),

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-552-4

ALLDATA 2017 : The Third International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2017)

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9

T
im

e
 [

s
]

Round number

reps = 1000
reps = 5000

reps = 10000

Figure 2. Retrieval scalability for MongoDB (reps records are added, and
reps random records are retrieved in each round).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9

T
im

e
 [

s
]

Round number

reps = 1000
reps = 5000

reps = 10000

Figure 3. Retrieval scalability for neo4j (reps new records are added, and
reps random records are retrieved in each round).

2) rounds: number of rounds,
3) reps: number of repetitions in each round.

The tests were divided into rounds and in each round all the
above database operations were conducted in the given order.
Firstly reps number of records were created, subsequently
random (with repetition) reps annotations were retrieved by
specifying existing target.id, finally reps random annotations
were fetched by body.id. We measured time of each activity,
that is complete time to create records, time to retrieve all
reps record by target and body id. Three time measurements
were made in each round. Please note, that no records were
removed, i.e., for given reps = 1000, the database grown in
each round by new 1000 record.

All the tests were run on the same virtual machine with 4
VCPUs, 4GB RAM, using Ubuntu 16.04.

In Figure 2 and Figure 3, we depicted the retrieval scalabil-
ity of each database. For that we conducted three experiments
with different values of reps, each had 10 rounds. Figure 2
shows that the performance of MongoDB is dramatically
decreasing with the increasing number of records in store.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9

T
im

e
 [

s
]

Round number

MongoDB: creation (reps = 5000)
neo4j: creation (reps = 5000)

MongoDB: creation (reps = 1000)
neo4j: creation (reps = 1000)

Figure 4. Comparison of creation scalability (reps new records are added in
each round).

Also, the absolute values achieved by MongoDB are not very
good, to retrieve 10 000 random annotations from a database
with 90 000 documents, more than one minute is required.

The retrieval times for the same amount of data from the
neo4j database of the same size are much smaller as can
be seen in Figure 3 (please note that the y axis was scaled
comparing to Figure 2). Also, the scalability of neo4j is much
better, neo4j produces constant answer times regardless of the
size of the database. For comparison with the MongoDB, to
retrieve 10 000 random entities from a neo4j graph with 90
000 annotations, only 1.65s is required.

The situation is a little bit different for creation times. We
depicted them in Figure 4. For smaller values of reps neo4j
outperforms MongoDB but with reps = 5000 MongoDB is
faster. We also conducted the tests for higher values of reps
(not depicted for the sake of clarity) and MongoDB maintained
its advantage in this regard. Neo4j also displays high variance
in the creation times and the values decreased over time. This
kind of behavior could be caused by the fact that neo4j is
written in Java and Scala and the Java Virtual Machine can
need some time to “warm up”. Perhaps further investigations
are required there, like warm-up phase before the actual tests
to at least get rid of the high delay in the first round.

V. CONCLUSION AND FUTURE WORK

In this paper, we evaluate options for storing semantic
annotations in a reproducible manner. We selected two tech-
nologies: MongoDB and neo4j. We believe that the presented
approach is applicable also for other use cases. Our results
support the hypothesis that annotations naturally form a graph
and thus, can be efficiently stored in a graph database. Further
investigations of the weak creation performance might be
necessary.

It is clear that the presented work in progress is just a
first step towards answering the question on how to efficiently
manage annotation-like data. Both neo4j and MongoDB offer
numerous possibilities to fine tune the performance to account
for particular data and query types. Although, it was not
the primary goal of this work we believe that by having a

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-552-4

ALLDATA 2017 : The Third International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2017)

possibility to conduct performance evaluation in a repeatable
way, such a tuning can be done much faster.

The challenge of constantly evaluating emerging technolo-
gies and dealing with the management of new kinds of data is
common for distributed research infrastructures. Therefore, it
is crucial to define evaluations in a reproducible manner. Our
Docker-based toolkit has proven its potential as a basis for
such reproducible computer-based experiments. In our future
work, we will look into ways of extending this toolkit with
a means of executing whole workflows rather that manually
starting single steps as we currently do.

ACKNOWLEDGMENT

The work has been supported by EUDAT2020, funded by
the European Union under the Horizon 2020 programme - DG
CONNECT e-Infrastructures (Contract No. 654065).

REFERENCES
[1] W. Gentzsch, D. Lecarpentier, and P. Wittenburg, “Big data in science

and the EUDAT project,” in SRII Global Conference, Apr. 2014, pp.
191–194.

[2] J. Rybicki and B. v. St. Vieth, “DARIAH Meta Hosting: Sharing
software in a distributed infrastructure,” in MIPRO ’15: 38th IEEE In-
ternational Convention on Information and Communication Technology,
Electronics and Microelectronics, May 2015, pp. 217–222.

[3] (2016, Dec.) Docker. [Online]. Available: https://www.docker.com/
[4] (2016, Nov.) Web annotation data model. [Online]. Available:

https://www.w3.org/TR/annotation-model/
[5] (2016, Dec.) MongoDB. [Online]. Available:

https://www.mongodb.com/
[6] J. Webber, “A programmatic introduction to Neo4j,” in SPLASH ’12: 3rd

ACM Annual Conference on Systems, Programming, and Applications:
Software for Humanity, Oct. 2012, pp. 217–218.

[7] (2016, Dec.) Docker Hub. [Online]. Available: https://hub.docker.com/
[8] (2016, Dec.) Docker Compose. [Online]. Available:

https://docs.docker.com/compose/
[9] (2016, Dec.) Annotations scalablity. [Online]. Available:

https://github.com/httpPrincess/annotations-scalability
[10] (2016, Dec.) Gnuplot. [Online]. Available:

http://gnuplot.sourceforge.net/

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-552-4

ALLDATA 2017 : The Third International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2017)

