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Abstract—In this paper, we discuss incomplete data sets with
two interpretations of missing attribute values, lost values and
“do not care” conditions. For such incomplete data sets, we
apply data mining based on characteristic sets and maximal
consistent blocks. Our previous research shows that an error rate,
evaluated by ten-fold cross validation, is sometimes smaller for
characteristic sets and sometimes smaller for maximal consistent
blocks. Therefore, we are taking the next step, comparing the
quality of both approaches to mining incomplete data in terms
of complexity of induced rule sets. We show that for data sets
with lost values differences are insignificant while for data sets
with “do not care” conditions rule sets are the simplest for upper
approximations based on characteristic sets or maximal consistent
blocks.

Keywords–Data mining; rough set theory; probabilistic approx-
imations; MLEM2 rule induction algorithm; lost values; “do not
care” conditions.

I. INTRODUCTION
In this paper, we use two interpretations of a missing

attribute value: lost values and “do not care” conditions.
Lost values indicate that the original values were erased, and
as a result we should use only existing, specified attribute
values for rule induction. “Do not care” conditions mean
that the missing attribute value may be replaced by any
specified attribute value. Additionally, we use for data mining
probabilistic approximations, a generalization of the idea of
lower and upper approximations known in rough set theory.
A probabilistic approximation is associated with a parameter
(probability) α, if α = 1, a probabilistic approximation is
reduced to the lower approximation; if α is small positive
number, e.g., 0.001, a probabilistic approximation becomes
the upper approximation. Usually probabilistic approximations
are applied to completely specified data sets [1]–[9], such
approximations were generalized to incomplete data sets in
[10].

Characteristic sets were introduced in [11] for incomplete
data sets with any interpretation of missing attribute values.
On the other hand, maximal consistent blocks, introduced in

[12], were restricted only to data sets with “do not care” condi-
tions, using only lower and upper approximations. Definition
of maximal consistent blocks was generalized to cover lost
values and probabilistic approximations in [13]. Usefulness of
characteristic sets and maximal consistent blocks to mining
incomplete data in terms of an error rate was studied in [13].
It was shown that there is a small difference in quality of rule
sets induced either way. Therefore, our current objective is
to compare characteristic sets with maximal consistent blocks
in terms of complexity of induced rule sets. In this paper,
we show that for data sets with lost values differences are
insignificant while for data sets with “do not care” conditions
rule sets are the simplest for upper approximations based on
characteristic sets or maximal consistent blocks. The Modified
Learning from Examples Module, version 2 (MLEM2) [14]
was used for rule induction.

This paper starts with a discussion on incomplete data in
Section II where we define attribute-value blocks, character-
istic sets and maximal consistent blocks. In Section III, we
present probabilistic approximations based on characteristic
sets and maximal consistent blocks. Section IV contains the
details of our experiments. Finally, conclusions are presented
in Section V.

II. INCOMPLETE DATA
We assume that the input data sets are presented in the

form of a decision table. An example of a decision table
is shown in Table I. Rows of the decision table represent
cases, while columns are labeled by variables. The set of all
cases will be denoted by U . In Table I, U = {1, 2, 3, 4,
5, 6, 7, 8}. Independent variables are called attributes and a
dependent variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table I, A
= {Wind, Humidity, Temperature}. The value for a case x and
an attribute a will be denoted by a(x).

In this paper, we distinguish between two interpretations
of missing attribute values: lost values, denoted by “?” and
“do not care” conditions, denoted by “∗”. Table I presents an
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TABLE I. A DECISION TABLE

Attributes Decision

Case Wind Humidity Temperature Trip

1 high low medium yes
2 low * high yes
3 * ? medium yes
4 low low * yes
5 high * * no
6 low high * no
7 ? high ? no
8 * low medium no

incomplete data set with both lost values and “do not care”
conditions.

The set X of all cases defined by the same value of
the decision d is called a concept. For example, a concept
associated with the value yes of the decision Trip is the set
{1, 2, 3, 4}.

For a variable a and its value v, (a, v) is called a variable-
value pair. A block of (a, v), denoted by [(a, v)], is the set
{x ∈ U | a(x) = v} [15]. For incomplete decision tables, the
definition of a block of an attribute-value pair is modified in
the following way.
• If for an attribute a and a case x we have a(x) = ?, the

case x should not be included in any blocks [(a, v)]
for all values v of attribute a,

• If for an attribute a and a case x we have a(x) = ∗,
the case x should be included in blocks [(a, v)] for all
specified values v of attribute a.

For the data set from Table I, the blocks of attribute-value
pairs are:

[(Wind, low)] = {2, 3, 4, 6, 8},
[(Wind, high)] = {1, 3, 5, 8},
[(Humidity, low)] = {1, 2, 4, 5, 8},
[(Humidity, high)] = {2, 5, 6, 7},
[(Temperature, medium)] = {1, 3, 4, 5, 6, 8}, and
[(Temperature, high)] = {2, 4, 5, 6}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x)

is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:
• If a(x) is specified, then K(x, a) is the block

[(a, a(x))] of attribute a and its value a(x),
• If a(x) = ? or a(x) = ∗, then K(x, a) = U .
For Table I and B = A,
KA(1) = {1, 5, 8},
KA(2) = {2, 4, 6},
KA(3) = {1, 3, 4, 5, 6, 8},
KA(4) = {2, 4, 8},
KA(5) = {1, 3, 5, 8},
KA(6) = {2, 6},
KA(7) = {2, 5, 6, 7}, and
KA(8) = {1, 4, 5, 8}.
A binary relation R(B) on U , defined for x, y ∈ U in the

following way

(x, y) ∈ R(B) if and only if y ∈ KB(x) (1)

will be called the characteristic relation. In our example, R(A)
= {(1, 1), (1, 5), (1, 8), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3,
4), (3, 5), (3, 6), (3, 8), (4, 2), (4, 4), (4, 8), (5, 1), (5, 3), (5,
5), (5, 8), (6, 2), (6, 6), (7, 2), (7, 5), (7, 6), (7, 7), (8, 1), (8,
4), (8, 5), (8, 8)}.

We quote some definitions from [13]. Let X be a subset of
U . The set X is B-consistent if (x, y) ∈ R(B) for any x, y ∈
X . If there does not exist a consistent B-subset Y of U such
that X is a proper subset of Y , the set X is called a maximal
B-consistent block. The set of all B-maximal consistent blocks
will be denoted by C (B). In our example, C (A) = {{1, 5, 8},
{2, 4}, {2, 6}, {3, 5}, {4, 8}, {7}}.

Let B ⊆ A and Y ∈ C (B). The set of all maximal B-
consistent blocks which include an element x of the set U , i.e.
the set

{Y |Y ∈ C (B), x ∈ Y } (2)

will be denoted by Cx(B).
For data sets in which all missing attribute values are

“do not care” conditions, an idea of a maximal consistent
block of B was defined in [16]. Note that in our definition,
the maximal consistent blocks of B are defined for arbitrary
interpretations of missing attribute values. For Table I, the
maximal A-consistent blocks Cx(A) are

C1(A) = {{1, 5, 8}},
C2(A) = {{2, 4}, {2, 6}},
C3(A) = {{3, 5}},
C4(A) = {{2, 4}, {4, 8}},
C5(A) = {{1, 5, 8}, {3, 5}},
C6(A) = {{2, 6}},
C7(A) = {{7}},
C8(A) = {{1, 5, 8}, {4, 8}}.

III. PROBABILISTIC APPROXIMATIONS
In this section, we will discuss two types of probabilistic

approximations: based on characteristic sets and on maximal
consistent blocks.

A. Probabilistic Approximations Based on Characteristic Sets
In general, probabilistic approximations based on char-

acteristic sets may be categorized as singleton, subset and
concept [11][17]. In this paper, we restrict our attention only
to concept probabilistic approximations, for simplicity calling
them probabilistic approximations based on characteristic sets.

A probabilistic approximation based on characteristic sets
of the set X with the threshold α, 0 < α ≤ 1, denoted by
apprCSα (X), is defined as follows

∪{KA(x) | x ∈ X, Pr(X|KA(x)) ≥ α}. (3)

For Table I and both concepts {1, 2, 3, 4} and {5, 6, 7},
all distinct probabilistic approximations based on characteristic
sets are

apprCS0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprCS0.667({1, 2, 3, 4}) = {2, 4, 6, 8},

apprCS1 ({1, 2, 3, 4}) = ∅,
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Figure 1. Number of conditions for the Bankruptcy data set with lost values
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Figure 2. Number of conditions for the Breast cancer data set with lost
values

apprCS0.5 ({5, 6, 7, 8}) = U,

apprCS0.75({5, 6, 7, 8}) = {2, 5, 6, 7},

apprCS1 ({5, 6, 7, 8}) = ∅.

If for some β, 0 < β ≤ 1, a probabilistic ap-
proximation apprCSβ (X) is not listed above, it is equal to
the probabilistic approximation apprCSα (X) with the clos-
est α to β, α ≥ β. For example, apprCS0.6 ({1, 2, 3, 4}) =
apprCS0.667({1, 2, 3, 4}).

B. Probabilistic Approximations Based on Maximal Consistent
Blocks

By analogy with the definition of a probabilistic approx-
imation based on characteristic sets, we may define a proba-
bilistic approximation based on maximal consistent blocks as
follows:

A probabilistic approximation based on maximal consistent
blocks of the set X with the threshold α, 0 < α ≤ 1, and
denoted by apprMCB

α (X) is defined as follows

∪{Y | Y ∈ Cx(A), x ∈ X, Pr(X|Y ) ≥ α}. (4)

All distinct probabilistic approximations based on maximal
consistent blocks are
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Figure 3. Number of conditions for the Echocardiogram data set with lost
values
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Figure 4. Number of conditions for the Hepatitis data set with lost values
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Figure 5. Number of conditions for the Image segmentation data set with
lost values

apprMCB
0.333 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprMCB
0.5 ({1, 2, 3, 4}) = {2, 3, 4, 5, 6, 8},

apprMCB
1 ({1, 2, 3, 4}) = {2, 4},

apprMCB
0.5 ({5, 6, 7, 8}) = U,

apprMCB
0.667 ({5, 6, 7, 8}) = {1, 5, 7, 8},

apprMCB
1 ({5, 6, 7, 8}) = {7}.
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Figure 6. Number of conditions for the Iris data set with lost values

80
90

100
110
120
130
140
150
160
170
180
190
200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
on

di
tio

n 
co

un
t

Percentage of missing attribute values

Lower, CS
Middle, CS
Upper, CS
Lower, MCB
Middle, MCB
Upper, MCB

Figure 7. Number of conditions for the Lymphography data set with lost
values

60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 5 10 15 20 25 30 35 40 45 50 55 60 65

C
on

di
tio

n 
co

un
t

Percentage of missing attribute values

Lower, CS
Middle, CS
Upper, CS
Lower, MCB
Middle, MCB
Upper, MCB

Figure 8. Number of conditions for the Wine recognition data set with lost
values

IV. EXPERIMENTS
For our experiments, we used eight data sets that are

available in the University of California at Irvine Machine
Learning Repository.

For every data set, a template was created. Such a template
was formed by replacing randomly 5% of existing specified
attribute values by lost values, then adding another 5% of
specified values, and so on, until an entire row was full of
lost values. The same templates were used for constructing
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Figure 9. Number of conditions for the Bankruptcy data set with “do not
care” conditions
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Figure 10. Number of conditions for the Breast cancer data set with “do not
care” conditions
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Figure 11. Number of conditions for the Echocardiogram data set with “do
not care” conditions

data sets with “do not care” conditions, by replacing “?”s with
“∗”s.

In our experiments, we used an MLEM2 rule induction
algorithm of the Learning from Examples using Rough Sets
(LERS) data mining system [18]–[20]. Results of our exper-
iments are presented in Figures 1–16, where “CS” denotes a
characteristic set and “MCB” denotes a maximal consistent
block. In our experiments, six approaches for mining incom-
plete data sets were used, since we combined two options:
characteristic sets and maximal consistent blocks with three

87Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data



0
10
20
30
40
50
60
70
80
90

100
110
120

0 5 10 15 20 25 30 35 40 45 50 55 60

C
on

di
tio

n 
co

un
t

Percentage of missing attribute values

Lower, CS
Middle, CS
Upper, CS
Lower, MCB
Middle, MCB
Upper, MCB

Figure 12. Number of conditions for the Hepatitis data set with “do not
care” conditions
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Figure 13. Number of conditions for the Image segmentation data set with
“do not care” conditions
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Figure 14. Number of conditions for the Iris data set with “do not care”
conditions

options of probabilistic approximations: lower (α = 1), middle
(α = 0.5) and upper (α = 0.001).

These six approaches were compared by applying the
Friedman rank sum test combined with multiple comparisons,
with a 5% level of significance. We applied this test to all 16
data sets, eight with lost values and eight with “do not care”
conditions.

For eight data sets with lost values, the null hypothesis
H0 of the Friedman test saying that differences between these
approaches are insignificant was rejected for image recognition
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Figure 15. Number of conditions for the Lymphography data set with “do
not care” conditions
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Figure 16. Number of conditions for the Wine recognition data set with “do
not care” conditions

as the only data set. However, the post-hoc test (distribution-
free multiple comparisons based on the Friedman rank sums)
indicated that the differences between all six approaches were
statistically insignificant.

For eight data sets with “do not care” conditions, the null
hypothesis H0 of the Friedman test was rejected for all data
sets except wine recognition. Additionally, for echocardiogram
data set the post-hoc test shown that the differences between
all six approaches were insignificant. Results for the remaining
six data sets are presented in Table II. Image segmentation
data set needs an additional explanation. For all three best
approaches (lower approximation based on characteristic sets,
lower approximation based on maximal consistent blocks and
middle approximation based on characteristic sets) and for
large percentages of missing attribute values, lower approxima-
tions are reduced to empty sets. This is due to the fact that both
characteristic sets and maximal consistent blocks are large, so
they cannot be subsets of corresponding concepts. Thus we
may as well exclude this data set from further analysis. For re-
maining five data sets, clean winners are upper approximation
based on characteristic sets and maximal consistent blocks.
Obviously, for data sets with “do not care” conditions, concept
upper approximations are identical with upper approximations
based on maximal consistent blocks [12].
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TABLE II. Results of statistical analysis

Data set The best approaches The worst approaches

Bankruptcy Upper, CS; Upper, MCB Lower, CS
Breast cancer Upper, CS; Upper, MCB Lower, MCB

Hepatitis Upper, CS; Upper, MCB Lower, MCB
Image recognition Lower, CS; Lower, MCB; Middle, MCB;

Middle, CS Upper, CS; Upper, MCB
Iris Upper, CS; Upper, MCB Lower, CS; Lower, MCB

Lymphography Middle, CS; Lower, MCB
Upper, CS; Upper, MCB

V. CONCLUSIONS
In this paper, we compare six approaches for mining

incomplete data in terms of complexity of the rule sets. As
follows from our experiments, for data sets with lost values,
there is not significant difference between all six approaches.
For data sets with “do not care” conditions, rule sets induced
from upper approximations, based on characteristic sets or
maximal consistent blocks, are the simplest in terms of the
total number of conditions, in terms of complexity of rule sets.
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