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Abstract—Robot localization needs to be solved in order to
use the robot for other purposes. In this paper, we examine the
feasibility of DASH7 tags, operating on the 433 MHz unlicensed
band, for locating mobile robots in domestic environments.
We achieve the same level of accuracy as laser range finder
based localization, while using less processing power. Our results
indicate that DASH7 can be used for robot localization, solving
the robot localization problem.
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I. INTRODUCTION

DASH7 is a new, emerging standard for active Radio Fre-
quency Identification (RFID) and uses a 433 Mhz frequency.
On the Media Access Control layer it supports Wireless Sensor
Networks (WSN), but has many advantages over traditional
WSN technologies, as described by Laurijssen et al. [1].
These include lower power usage, improved range, and better
battery life. Recent advances in tag development will allow
us to use DASH7 in various commercial applications, such
as building automation, smart energy, location-based services,
mobile advertising, automotive, and logistics within the next
few years.

Robot localization in mobile robotics can be divided into
two key problems, as shown by Dellaert et al. [2]: global
position estimation and local position tracking. The global
localization problem deals with a robot that does not know
its initial position and has to locate itself. The robot is
placed somewhere on the map; therefore, the uncertainty of
its location is uniformly distributed over the map. The local
localization problem is much easier because the initial position
of the robot is known, so only small compensations have to
be made for the odometric drift.

Static landmarks can improve both localization problems.
Hahnel et al. [3] showed that RFID technology can be used as
static landmarks that improve the global and local localization
problem. This paper uses key concepts of the work of Hahnel
et al. [3], but uses the new upcoming DASH7 tag technology.

The remainder of this paper is organized in the following
sections. Firstly, we describe the main goal of this research
in the following section. Secondly, in Section III we discuss
the used materials for this research. Thirdly, we describe the
methods in Section IV. Fourthly, we explain the achieved
results in Section V. Finally, in Section VI, we provide a
conclusion for this research.

Fig. 1: Location of the different sensors.

II. MAIN GOAL

The main goal of this paper is to examine the feasibility of
DASH7 tags for locating the robot in a domestic environment.
The DASH7 tags’ position in the environment is known. The
traditional laser range finder based localization is compared
with DASH7 based localization, and DASH7 and laser range
finder combined.

III. MATERIALS

We use a mobile robot equipped with one omni-directional
DASH7 antenna mounted on top of the robot. The robot is
an off-the-shelf Pioneer P3-DX [4]. It is a standard robot
platform that is widely used in the academic world [5]–[8].
It is equipped with a laser range finder, the Sick LMS-100
[9], which is mounted in-front of the robot. The laser range
finder is a basic model with a good price/quality ratio and a
270 degrees field of view. For this research, we limit the field
of view to 180 degrees. A Raspberry Pi [10] ARM processing
unit is used because it is cheap and has a large developer
community. The ultrasonic array, that comes by default with
the Pioneer P3-DX, is not used in this research. Figure 1 shows
the location of the various sensors discussed in this section.
The number one indicates the DASH7 receiving tag and two
indicates the laser range finder. The left image shows the side
view of the robot with the laser range finder in front of the
robot. The right image shows the top view of the robot with
a DASH7 receiver tag on top of the robot.

Two different types of antennas are used for the DASH7
receivers and transmitters, as shown in Figure 2. The receivers
have a whip antenna, because it performs better than the
onboard short Printed Circuit Board (PCB) stub antenna of
the transmitters. The transmitters have a holder with two AA
batteries to provide power and make them portable, so they
can be easily mounted against various objects.
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Fig. 2: Transmitter tag on the left, receiver tag on the right.

IV. METHODS

A. Bayesian Filtering

We use a non-linear recursive Bayesian filter for localizing
the robot, explained in Section IV-C. An advanced technique
for implementing the recursive Bayesian filter is a particle
filter, described by Thrun et al. [11], using the sequential
Monte Carlo method [12].

Monte-Carlo Localization (MCL) is a particle filter used
for localization and is a version of probabilistic Markov
localization, as shown by Burgard et al. [13]. The key concept
is to represent a posterior belief by a set of K weighted,
random samples called particles. A set of particles represents
an approximation of a probability distribution. Particles in
MCL contain the robot position, heading direction and a
numerical weighting factor analogous to a discrete probability.
The algorithm proceeds in three phases:

Motion The motion model resembles the movement of the
robot. Every particle in the current set is moved according to
the motion model.

Measurement When the robot sensors are read, the mea-
surements are incorporated in the algorithm. The particles
receive a new weight by recalculating the probability of a
measurement if the particle is specified.

Resampling A new particle set, of K new particles, is
created from the current set, by selecting particles from the
set, where each new particle is chosen with a probability
proportional to the weight of the old particle. This results in
particles with a low weight to have a high chance of being
ignored, while particles with a high weight to have a high
change of being duplicated multiple times. A normalizing
factor enforces a probability distribution over all the particles.

B. Tag Detection

Detecting the DASH7 tags is done by using the Received
Signal Strength (RSS). A particle filter, as described in Sec-
tion IV-A, is used for locating a detected tag. Our idea is based

on the works of Hahnel et al. [3], which used two directional
antennas mounted on the robot to find RFID tags. We use the
same idea and create a sensor model from the antenna patterns
to update the particle filer and so locate our DASH7 tags. The
following aspects need to be considered when creating a sensor
model for the DASH7 tag.

1) There are a considerable amount of reflections when
using a 433 Mhz frequency indoor.

2) Additionally, the RSS value will fluctuate even more
when tags are not properly aligned.

3) Because of antenna coupling the RSS value will fluc-
tuate within the distance of two times the wavelength.

When using the tags indoor, metal objects will generate
reflections that have a lower RSS value than the transmitted
power. The orientation of the tag with respect to the receivers
on the robot influences the RSS value. When the tags are
not aligned, different RSS values are received for the same
distance. All these considerations must be taken into account
before creating a sensor model.

The ratio between the RSS value and the distance from the
tag must be determined so the sensor model can be applied
correctly. The results in Section V-A indicate that no clear
ratio can be extracted from the RSS value alone. A typical
directional Yagi antenna for 433 MHz is 75 cm long and 45 cm
wide, which is very impractical to mount on the Pioneer P3-
DX robot.

Taking in account the practical limitations and the DASH7
considerations, we adapted our initial idea and decided to
use fixed tags in the environment. The algorithm knows the
exact location of the DASH7 tags and uses a simplified model
to update the weights of the particles. From the results in
Section V-A, two different thresholds can be determined. A
tag with a received RSS value between 0 dBm and -60 dBm
is assumed to be in the range of two meters, and when it has
a value between -60 and -80 dBm we assume it is six meters
in range. We use lower ranges than described in the results
because we have to account for a cluttered environment. This
results in ranges for two meters between zero and -70 dBm
and for six meters between -70 dBm and -90 dBm.

C. Robot Localization

The Adaptive Monte Carlo Localization (AMCL) algorithm
is used to determine the location of the robot. The AMCL
algorithm, as shown by Fox [14], is based on a particle
filter discussed in Section IV-A. It lowers the amount of
particles needed and improves the performance on the on-board
ARM computer. In the first stages of global localization, the
robot is completely unaware of where it is. Therefore, a lot
of particles are needed to represent this uncertainty. During
position tracking, the uncertainty is rather small and can be
represented with fewer particles.

The key concept of adaptive particle filters is to determine,
at each iteration of the particle filter, the number of particles
that are needed to represent the true posterior distribution. The
main goal of a particle filter is to estimate this posterior. The
solution to this problem is to rely on the particle representation
in the measurement step, described in Section IV-A, and use
it as an estimation of the true posterior.
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The Kullback-Leibler distance (KL-distance) is a measure
of the difference between two probability distributions, as
shown by Cover and Thomas [15]. The distance between the
sample-based approximation and the true posterior is calcu-
lated using the KL-distance, hence the name KLD-sampling.

The KLD-Sampling algorithm calculates the amount of
particles needed during the resampling step, as described in
Section IV-A. The particles are placed in bins, depending on
their location and angle. The bins have a specific size and
angle, and can be seen as a 3D histogram, with x, y, and angle
as the three dimensions. The algorithm works in the following
way: First, a particle is placed in a bin which is then marked as
full. Next, all occupied bins are counted and the new amount
of particles needed to represent the true posterior distribution
is determined. Finally, we see if we have enough particles
in the new set and return. The algorithm is repeated for every
particle in the current set until the new set has the right amount
of particles. When the size of the bins are small then fewer
bins are needed in order for the algorithm to stop, compared
to a large bin size. The more bins used, the more particles are
needed.

A multidimensional binary search tree or kd-tree, as shown
by Bentley [16], is used to keep track of the different bins.
Using a search tree, bins can be easily found and updated.
The tree is also used to keep track of multiple hypothesis and
calculate their variance and mean.

The simplified model for converting a RSS value to a
specific distance, discussed in Section IV-B, can then be used
in the AMCL algorithm. The calculated distances from the
RSS value will determine how the weights of the particles are
updated. A particle that is closer to the measured tag than
the calulated distance is called an inside particle. A particle
that is farther away from the measured tag than the calculated
distance is called an outside particle. For these two thresholds
the following method is applied. Firstly, if the threshold is two
meters, all the inside particles’ weight is multiplied by 0.9, and
the outside particles’ weight by 0.1. Secondly, if the threshold
is six meters, the inside particles’ weight is multiplied by 0.7,
and the outside particles’ weight by 0.3.

V. RESULTS

A. Tag Detection

An experiment is conducted to determine the ratio between
the RSS value and the distance from a tag. A transmitter is
fixed at the same approximated height as the tags on the robot.
The robot drives slowly away from the tag in a straight line.
Every second, the transmitter sends out a packet. The RSS
value of those packets are plotted in Figure 3. The described
experiment is run in an indoor, open environment. The RSS
value first decreases with little fluctuations. After four meters,
the robot came near tables and chairs and the RSS fluctuates.
When repeating the test in an environment with more objects
the RSS value cannot be linked to a specific distance. From
this graph, only two possible regions can be identified. The
robot is very close to a tag and the robot is somewhere near
a tag.
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Fig. 3: The RSS value from a robot that drives away in a
straight line from a tag. Experiment is run in an indoor open
environment

B. Standard Deviation

Before we can use laser range finder based localization, the
standard deviation for the particle filter needs to be determined.
It influences how the weights are distributed for a laser range
finder measurement. We started with a very small distance,
making the particles stick closer together, and then slowly
increase the distance. The robot drives around and at the
last checkpoint, number 15 in Figure 5, we see how far the
localization estimation differs from the ground truth. During
the experiment we keep track of how many times the particle
filter needed to reinitialize itself. This happens when the total
weight of all the particles becomes zero. Figure 4 shows the
result of the described experiment. The number next to a data
point indicates how many times the particle filter reinitialized.
The y axis shows the Euclidean distance error for x and y, and
the error bars indicated the variance of the hypothesis.

On the graph, we see that after 3.5 meters, we do not
need any reinitialization of the particle filter. When we look at
the acquired accuracy of the localization, using the different
parameters, we clearly see that the accuracy staggers after
3.5 meter, meaning that increasing the standard deviation will
not result in a increase accuracy of the algorithm. We do see
an increasing variance with values above 3.5 meter. The values
below 3.5 meter sometimes have a very good accuracy, but also
require a high amount of reinitialization. When a higher value
than 3.5 meters is used, the robot has more possible hypothesis
with a higher variance indicating its uncertainty of its current
position estimation.

For the reasons described in the results, we use a standard
deviation of 3.5 meters. It shows no reinitialization of the
particle filter and provides the smallest variance with an equal
error, compared with higher distances.
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Fig. 4: Graph showing different tested standard deviation
values.

C. Localization Comparison

For localizing the robot, the same office environment
is used in every experiment. This environment consists of
an office, hallway and conference room. Figure 5 gives an
overview of two different paths and the location of the different
DASH7 transmitting tags. The numbers indicate the different
checkpoints, the circles are the DASH7 tags. The top floorplan
shows the first path, the bottom figure shows the second
path. The localization uses the AMCL algorithm described
in Section IV-C. An experiment is conducted to compare the
different sensors that are used in the algorithm. At every
checkpoint on the different paths, the information about the
particle filter is saved. The error value and variance of the
best hypothesis is used to compare the different sensors in
the AMCL algorithm. This experiment is repeated for every
sensor: laser range finder, DASH7 tags, and DASH7 and laser
combined.

Figure 6 shows the results of the experiment for every
sensor, using the first robot path. We clearly see that laser range
finder based localization needs more information before it can
converge to the position of the robot. After checkpoint eight,
we see that the laser has the same error as other sensors and
has around the same variance. For DASH7 based localization,
we see that it converges very fast to the right position with a
large variance. After checkpoint five the variance lowers and
the global localization of the robot turns into local position
tracking. This comes because there is a DASH7 tag very
close to the starting position of the robot, as indicated in
Figure 5. The values are acquired by taking the average value
of four measurements using a specific sensor. The x axis show
the different checkpoints and the y axis shows the Euclidean
distance error for x and y. The combination of DASH7 and
laser gives mixed results. The DASH7 tags undo the negative
effects of slow convergence from the laser range finder, but
do not increase the accuracy of the particle filter. The error is
the same for the DASH7/laser localization compared with the
DASH7 only localization.

Fig. 5: Location of the different sensors on the laser generated
floorplan.
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Fig. 6: The accuracy of the different sensors compared at the
checkpoints using the first path.
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Fig. 7: The accuracy of the different sensors compared at the
checkpoints using the second path.

The results of the second path in the same environment
are shown in Figure 7. The values are acquired by taking the
average value of four measurements using a specific sensor.
The x axis show the different checkpoints and the y axis shows
the Euclidean distance error for x and y. We see that the laser
range finder based localization converges with the same rate as
the DASH7 based localization. We explain this by examining
both starting positions in Figure 5, for the first path we start
next to a tag, so it converges very fast. However, the second
path does not start next to a tag so the DASH7 localization
needs more information before it can converge to the position
of the robot. The combination with DASH7 and the laser range
finder does improve the global localization.

All the different sensors can be used in the AMCL algo-
rithm for successfully locating the robot, and, at the last 4
checkpoints, they have the same accuracy, but a difference in
variance. The laser range finder has a higher variance then the
DASH7 based localization.

Figure 8 shows the Cumulative Distribution Function
(CDF) for every sensor in both paths. We see that for path one
the DASH7 based localization and Laser and DASH7 local-
ization, outperform the other sensors. For path two, DASH7
achieves the same performances as the laser and combining
them results in a better localization.

Figure 9 shows the time it takes to acquire a sensor reading
and apply this reading in the measurement model of the particle
filter. For the experiment we used 1500 particles and took the
average of 1000 measurements. The laser range finder and
DASH7 use around the same amount of time to read in the
sensor information. We clearly see that DASH7 only requires a
fraction of the time to update the weights in the measurement
model compared with the laser range finder. The results show
that DASH7 is five times faster then traditional laser-based
localization.
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Fig. 9: Shows the time it takes for reading a measurement
from the DASH7 tags and laser range finder, and applying the
measurement in the particle filter.

VI. CONCLUSION

In this paper, we presented a new localization method based
on DASH7 technology. Our approach involves the use of the
AMCL algorithm to localize the robot. We use a simplified
sensor model to update the particles. We have successfully
implemented our approach and presented with the comparison
of the different localization methods. Our results indicate that
DASH7 can be used for localization and converges faster than
typical laser range finder based localization. Combining laser
and DASH7 slightly improves the accuracy of the localization,
but results in a more computational heavy algorithm. DASH7
has more advantages than the laser range finder and preforms
better in our experiments. It requires less computational power
to achieve the same error and variance compared with laser
range finder based localization. The amount of tags used in
the environment will greatly influence the accuracy of the
DASH7 based localization. More research has to be conducted
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to understand the influence of the amount of tags on the
localization. To our knowledge, this is the first implementation
of robot localization with DASH7 technology.
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