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Abstract - In the past several years, the amount of microarray 
data accessible on the Internet has grown dramatically, 
representing millions of Euros worth of underused 
information. We propose a method to use this data in a 
coexpression study. The method is simple in principle: the aim 
is to detect which genes react in the same way in certain 
circumstances (such as a disease, stress, medication,), 
potentially highlighting new interaction partners or even new 
pathways. We propose to study coexpression using a large 
amount of data, process it through an adequate algorithm and 
visualize the results with a dynamic graphical representation. 
We gather the microarray data using the PathEx database 
developed in our lab, which allows searching through more 
than 120,000 microarrays experiments on Homo sapiens using 
specific criteria such as the tissue sample, the biological 
background or any information contained in the metadata 
describing the experiment. Then, we process the data using the 
Minet R package, which allows for coexpression analysis using 
cutting-edge algorithms such as ARACNE or MRNET 
methods. This step computes the weighted relations between all 
the probesets in the microarrays and provides a GraphML 
representation of the relations. In order to explore the relations 
optimally, we channel the GraphML into a dynamic graphical 
program we developed called gViz. This program allows for 
data visualization but also for exploration and post-analysis. 
We can extract meaningful information from the network 
computed, compare this information with curated databases 
such as KEGG (Kyoto Encyclopedia of Genes and Genomes), 
highlight the discrepancies and hopefully discover new 
interactions or add new steps in canonic pathways. We present 
here a fast, free and user-friendly working methodology to 
analyze co-expression in microarray data 

Keywords: Co-expression; microarray; methodology 

I.  INTRODUCTION 

Co-expression analysis in gene networks in an infant 
domain in the teenager field of network biology. It is only a 
few years ago that the technology, knowledge, and data 
mass mandatory for these analysis has been made available 
to researchers. Co-expression analysis is the study of the 
similarities in changes of genes expressions in various cir-
cumstances (such as diseases). Using this technique, 
researchers aim to discover new relationships between 
known genes, new partners in known pathways or even 
entirely new pathways. This holds promises for new insights 
into complex biological states, such as cancer or 
degenerative diseases, as well as further comprehension of 

the cell fine machinery. Ultimately, this approach could 
provide a compendium of gene interactions maps in an ever-
growing array of cell states. 

Currently, there lies in databases millions of Euros worth 
of underused microarray data, since researchers conducting 
those experiments usually focus only on a small number of 
genes among the thousands available on the chip. We 
propose a way to make use of this data mass, by studying 
co-expression relations between all genes represented on the 
chip, using state of the art processing algorithms and an 
adapted graphical interface for exploration. With this we 
hope to predict new interactions, which we will then try to 
confirm using wet-lab analysis. 

Our approach implies the possession of several elements: 
a large deposit of microarray data, if possible in database 
form; an algorithm to process this data efficiently; a 
graphical interface to browse the map of interactions and an 
external verification database for the validations. 
 

 
Figure 1.   General layout of the co-expression analysis 

Each step of this general layout will be developed 
hereunder. We first discuss about data collection then 
present the different steps of the co-expression computation 
process. Section IV is about the visualization solutions, 
while Sections V and VI present the validations and 
conclusions respectively.  

II. DATA COLLECTION 

The main microarray deposits are the well known Gene 
Expression Omnibus (GEO) [1] and ArrayExpress [2] 
databases. The data collection, although laborious and time-
consuming, could be done directly from these websites. 
However the construction of the websites does not allow for 
advanced querying on the biological parameters of the 
experiment. This aspect is crucial: indeed, the relations we 
potentially will highlight in the end of the analysis are 
related to the biological state of the cells on which the 
microarray experiment was done. In other words, all the 
information we will extract from the analysis has to be 
already buried in the microarray experiment we select at this 
step.  
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To help the process of selection, we developed a database 
with the data included in both GEO and ArrayExpress and 
we included all the information in the description field 
manually into a database, thus making high-level queries 
possible. This database – PathEx [3] – allows us to query all 
the microarray experiments on criterions such as disease, 
cell lines, age of the patient, organ studied, etc., thus 
allowing for a much more precise choosing of data.  

III.  CO-EXPRESSION COMPUTATION 

During this part of the methodology, gene expression 
data from the microarrays selected in the previous step are 
processed to generate a representation of the co-expressions 
between those genes. This processing can be done by 
several algorithms such as the R packages nem, qpgraph or 
GeneNet [4 , 5 , 6]. We chose to use the R package MINET 
to process our data based on its speed, ease of use, large 
choice of methods at each steps and possibility of 
parameterization. This package was developed by Patrick 
Meyer in the Machine Learning Group at the University of 
Bruxelles (ULB) [7]. MINET computes the weighted 
relations between every probeset in the microarray; it takes 
as input the preprocessed microarray data and outputs a 
GraphML representation of the interactions.  

The Mutual Information networks are a subcategory of 
inference methods. In those networks, a link is set if it 
exhibits a high score based on pairwise mutual information. 
One of the advantages of these methods is the low 
computational complexity. This is due to the fact that 

2
)1( −nn  calls of mutual information, based on bivariate 

probability distributions, are required to compute the mutual 
information matrix. Since each estimation of a bivariate 
distribution can be done quickly and does not require a large 
number of samples, this method is ideal to analyze 
microarray data [8].  

The MINET package consists of three successive steps: 
Discretization, Mutual Information computation and 
Network Inference.  

A. Discretization 

This step is mandatory for the next computing step. 
However, it is known that there is an inevitable loss of 
information when discretizing continuous data. To minimize 
this loss, two discretization algorithms are implemented: 
equalWidth and equalFreq. The principle of the first is to 
divide the interval [a, b] into [Xi] intervals of same size, 
while the principle of the latter is to divide [a, b] into [Xi] 
intervals, each having the same number of data points. The 
number of bins is also important, as it controls the ratio 
between the bias and the variance. Practically, if m is the 
number samples, it is considered that a number of bins equal 
to the square root of m is a fair trade-off between bias and 
variance [9].   

B. Mutual Information Matrix (MIM) computation 

This step consists in the computing, between all pairs of 
genes present in the dataset, of the mutual information, i.e. 
the similarity in the behaviors of the genes. This step is very 
tricky, often biased but is crucial for the good results of the 
whole procedure. It is not surprising that there exist many 
alternative algorithms for this step. Without going into too 
many details, here is an overview of the MIM computation 
algorithms available in the MINET package:  
 

1) General formulation 
 

The MIM computation requires the computation of a 
square matrix whose mij element is given by 

 
 

);( jiij XXImim =  (1) 

where I (Xi; Xj) is the Mutual Information between variable 
Xi and Xj.  
 

The difference between the methods lies in the computing 
of this term I(Xi; Xj) Mutual Information computation 
requires the determination of three entropy terms: 

);()()();( jijiji XXHXHXHXXI −+=  (2) 

where H (X) is the entropy of the variable X.  
 

Entropy has to be estimated and an effective and fast 
entropy estimator is essential. The reduction of the bias 
inherent to the entropy estimation has gained much interest 
over the last years and most approaches have focus on 
minimizing this bias. However, in the case of microarray 
analysis, the reduction of the bias should not be the only 
criterion, as computational complexity/speed should also be 
minimized. To save space, we only discuss the Shrink and 
the Schurmann-Grassberger estimators. 
 

2) Shrink Estimator 
 

The rationale behind this algorithm is to combine two 
different estimators: one with low bias and one with low 
variance, by use of a weighting factor λ [0, 1]. The general 
formulation is the following [7]:  
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where λ is the weighting factor [0, 1], |χ| is the number of 
non null bins, #(x) is the number of data points having the 
value x and m is the number of samples. 
 

The entropy can then be estimated with: 
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where H is the entropy and λ* is the value of λ minimizing 
the mean square error [10] [8].  
 

3) The Schurmann-Grassberger estimator 
 

It is a Bayesian estimator which assumes the sample 
distribution follow a Dirichlet distribution. A Dirichlet 
distribution is the generalization of the Beta distribution 
[11]. The density of this distribution is described by [8] 
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where θi is the prior probability of an event xi, xi being the 
ith element of the set χ and Г (.) is the gamma function. 
 

The entropy can then be estimated by  
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Γ=ψ is the digamma function, N is a 

weighting factor. Various choices of parameters for this 
factor N have been proposed [12 , 13].  

C. Network inference 

Once the MIM computation is done, the network 
inference step can take place. This step is essentially a 
translation of the Mutual Information links computed at the 
previous step into a graph of the probable relations between 
the variables. In the case of microarray data the nodes in the 
graph represent probesets and the arcs represent the 
regulator/regulated relations between them. Various 
network inference methods are available in the MINET 
package: Relevance network, CLR, ARACNE and MRNET 
algorithms [14-16]. We will only discuss the MRNET 
method, to save space.  

MRNET is based on the Maximum Relevance / 
Minimum Redundancy (MRMR) rationale [7]. Simply put, 
if we consider a set of genes (X) and a target gene Y, the 
algorithm will first select the gene Xi with the highest 
mutual score to variable Y. Then, the next selected, Xj, will 
be the one with a high I(Xj; Y) score (maximum relevance), 
and at the same time a low I(Xi; Xj) (minimum redundancy). 
At each step, the algorithm is thus expected to select the 
variables with and efficient trade-off between relevance and 
redundancy, for every gene Xi in the set of X genes. A 

selection based on a score above a certain threshold I(Xi; Xj) 
< θ is performed in both directions: for two genes Xi and Xj, 
there will be an edge if Xi is a well predictor of Xj (si > θ) or 
if Xj is a well predictor of Xi (sj > θ). The complexity of this 
methods lies between O(n2) and O(n3).  

D. Methods selection 

Following MINET author’s recommendation based on 
validations on external datasets, we use the following 
methods to analyze our data: equalFreq discretization, the 
Shrink estimator if the number of replicates is low and the 
Schurmann-Grassberger estimator otherwise and the 
MRNET algorithm [7]. Our figure 1 then becomes:  
 

 
Figure 2.  Layout of the analysis with choice of methods in MINET 

IV. NETWORK VISUALIZATION 

The easiest way to explore the results found at the 
previous step is to use a graphical representation of the 
network.  Although there are several softwares available for 
the task [17-19], we were not satisfied either with the 
functionalities proposed or with the interactions possibilities 
of said softwares. We decided to develop our visualization 
software, which we called gViz. An application note 
describing it has been submitted to Bioinformatics on 
January 22nd [20].  

gViz takes as input the network computed by MINET in 
GraphML format. It can then translate the probeset IDs into 
a wide range of mainstream identifiers: Entrez gene, 
Ensembl, UniGene or KEGG IDs. The advantage of gViz 
over the other network softwares is that it can be used to 
visualize specific parts of the network. The user can select 
one of several identifiers in the left panel (see fig 3) and 
display the network containing only the relations it wants to 
focus on. The network displayed in gViz is dynamic and 
interactive. The user can choose to display the whole 
network (although it can be resources consuming) or 
specific parts of it. When clicking on a node, the user can 
highlight as well the neighbors of the node, with an 
adjustable deepness. gViz also has a feature capable of 
filtering the entire network based on the MRMR score given 
by MINET or by nodes degree (i.e. the number of 
neighbors) or also based on annotation criteria (involved in 
same biological process). The user can at any time adjust the 
value of the exclusion threshold.  

Several layout algorithms are available. Other ‘visual’ 
features allow to display the thickness of the nodes 
(representing the degree of said node) and of the edges 
(representing the MINET score for said edge).  
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Figure 3.  General layout of the gViz interface 

V. VALIDATIONS  

This part is still in progress. However, we have a clear 
picture of the three validations that should be done. First we 
will perform a consistency validation, to ensure that our 
method can retrieve known interactions, and a coverage 
validation to estimates the method’s ability to retrieve all 
data present in the original dataset. Once those steps are 
done, we will be able to make predictions by comparing our 
results with an external database, such as KEGG [21], 
highlight discrepancies and test the corresponding genes in 
wet-lab analysis, therefore biologically validating our 
approach. These experiments will be performed in the 
course of 2011. 

VI. CONCLUSION 

We presented a method to analyze co-expression in 
microarray data, with the help of a large data mass, cutting-
edge algorithms and suitable visualization solution. In a 
short time we will finish the first validations. We hope to 
spot new interactions which we will explore further in wet-
lab analysis. We will then have produced a reliable, fast, 
cheap and user-friendly way for researchers to analyze their 
microarray data prior to the wet-lab. In the near future, we 
will apply this methodology to try and discover new genes 
or interactions involved in the metastatic transformation of 
primary cancer cell and eventually provide new targets for 
cancer treatments.  
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