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Abstract - In the past several years, the amount of microarray
data accessible on the Internet has grown dramatically,
representing millions of Euros worth of underused
information. We propose a method to use this data in a
coexpression study. The method is simplein principle: the aim
is to detect which genes react in the same way in certain
circumstances (such as a disease, stress, medication,),
potentially highlighting new interaction partners or even new
pathways. We propose to study coexpression using a large
amount of data, process it through an adequate algorithm and
visualize the results with a dynamic graphical representation.
We gather the microarray data using the PathEx database
developed in our lab, which allows searching through more
than 120,000 microarrays experiments on Homo sapiens using
specific criteria such as the tissue sample, the biological
background or any information contained in the metadata
describing the experiment. Then, we process the data using the
Minet R package, which allows for coexpression analysis using
cutting-edge algorithms such as ARACNE or MRNET
methods. This step computesthe weighted relations between all
the probesets in the microarrays and provides a GraphML
representation of therelations. In order to exploretherelations
optimally, we channel the GraphML into a dynamic graphical
program we developed called gViz. This program allows for
data visualization but also for exploration and post-analysis.
We can extract meaningful information from the network
computed, compare this information with curated databases
such as KEGG (Kyoto Encyclopedia of Genes and Genomes),
highlight the discrepancies and hopefully discover new
interactions or add new stepsin canonic pathways. We present
here a fast, free and user-friendly working methodology to
analyze co-expression in microarray data
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the cell fine machinery. Ultimately, this approachuld
provide a compendium of gene interactions maps iever-
growing array of cell states.

Currently, there lies in databases millions of EBunmrth
of underused microarray data, since researchemucting
those experiments usually focus only on a small memof
genes among the thousands available on the chip.
propose a way to make use of this data mass, loyisty
co-expression relations between all genes repredemt the
chip, using state of the art processing algorittand an
adapted graphical interface for exploration. Wittistwe
hope to predict new interactions, which we willrthiey to
confirm using wet-lab analysis.

Our approach implies the possession of severalezitan
a large deposit of microarray data, if possibledatabase
form; an algorithm to process this data efficiently
graphical interface to browse the map of interarstiand an
external verification database for the validations.
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Figure 1. General layout of the co-expression analysis

We

Each step of this general layout will be developed

hereunder. We first discuss about data collectibant
present the different steps of the co-expressionpeation
process. Section IV is about the visualization sohs,

while Sections V and VI present the validations and

conclusions respectively.

II.  DATA COLLECTION

. INTRODUCTION The main microarray deposits are the well known &en

Co-expression analysis in gene networks in an tnfanExpression Omnibus (GEO) [1] and ArrayExpress [2]
domain in the teenager field of network biologyislonly a  databases. The data collection, although labo=mastime-
few years ago that the technology, knowledge, aath d consuming, could be done directly from these websit
mass mandatory for these analysis has been madalbd®a However the construction of the websites does hotvdor
to researchers. Co-expression analysis is the stfidhe  advanced querying on the biological parameters hef t
similarities in changes of genes expressions imouarcir-  experiment. This aspect is crucial: indeed, thatiehs we
cumstances (such as diseases). Using this techniqysotentially will highlight in the end of the analgsare
researchers aim to discover new relationships leiwe related to the biological state of the cells on alhihe
known genes, new partners in known pathways or evemicroarray experiment was done. In other words, tlad
entirely new pathways. This holds promises for mesights  information we will extract from the analysis has be
into complex biological states, such as cancer oalready buried in the microarray experiment wecteéthis
degenerative diseases, as well as further compsehenf  step.
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To help the process of selection, we developedabdae B. Mutual Information Matrix (MIM) computation
manually into a database, thus making high-levedrigs (e similarity in the behaviors of the genes. Riep is very
possible. This database — PathEx [3] — allows ugiy all  icky, often biased but is crucial for the gooduits of the
the microarray experiments on criterions such aealie, \nole procedure. It is not surprising that theréstermany
cell lines, age of the patient, organ studied,,etus  ajternative algorithms for this step. Without goimgo too
allowing for a much more precise choosing of data. many details, here is an overview of the MIM corapioin

. CO-EXPRESSION COMPUTATION algorithms available in the MINET package:

During this part of the methodology, gene expreassio 1) General formulation
data from the microarrays selected in the previtep are

processed to generate a representation of the pressions The MIM computation requires the computation of a

between those genes. This processing can be done Byyare matrix whos®, element is given by
several algorithms such as the R packages nemajpgipgr

GeneNet [4, 5, 6]. We chose to use the R packdiET mim; = 1(X; X) Q)
to process our data based on its speed, ease ofange : v
choice Of. m.ethods' al each steps and poss@hty 0\Evherel (X; X) is the Mutual Information between variable
parameterization. This package was developed bsicRat % andx.

Meyer in the Machine Learning Group at the Univigrsif ! ’

Bruxelles (ULB) [7]. MINET computes the weighted
relations between every probeset in the microaitagkes
as input the preprocessed microarray data and tsutpu
GraphML representation of the interactions.

The Mutual Information networks are a subcategdry o
inference methods. In those networks, a link is ikat
exhibits a high score based on pairwise mutuakinéion. ) )
One of the advantages of these methods is the loWhereH (X)is the entropy of the variable
computational complexity. This is due to the fabhatt

n(n—% calls of mutual information, based on bivariate

The difference between the methods lies in the caimg
of this term I(X; X) Mutual Information computation
requires the determination of three entropy terms:

HX5 X)) = HX) + H(X)) —H(X; X)) 2

Entropy has to be estimated and an effective ast fa
entropy estimator is essential. The reduction & bias
probability distributions, are required to comptiie mutual ~ inherent to the entropy estimation has gained niniehest
information matrix. Since each estimation of a bat over the last years and most approaches have foous
distribution can be done quickly and does not negailarge  Minimizing this bias. However, in the case of mamay
number of samples, this method is ideal to analyz&nalysis, the reduction of the bias should not Hee dnly
microarray data [8]. criterion, as computational complexity/speed shal be

The MINET package consists of three successivesstepminimized. To save space, we only discuss Shrenk and
Discretization, Mutual Information computation and the Schurmann-Grassberger estimators.
Network Inference.
. o 2) Shrink Estimator
A. Discretization

This step is mandatory for the next computing step. The rationale behind this algorithm is to combimeo t
However, it is known that there is an inevitablsdoof  different estimators: one with low bias and onehwlibw
information when discretizing continuous data. Timimize  variance, by use of a weighting factof0, 1]. The general
this loss, two discretization algorithms are impbsted:  formulation is the following [7]:
equalWidth and equalFreq. The principle of the first is to
divide the interval [a, b] into [X intervals of same size, R 1 #(X)
while the principle of the latter is to divide [a] into [X] P, (%) =Am+(1-/1)
intervals, each having the same number of datatgoline
number of bins is also important, as it controle tatio
between the bias and the variance. Practically ifs the
number samples, it is considered that a numbeinsfdqual
to the square root of m is a fair trade-off betwées and
variance [9].

©)

m
where) is the weighting factor [0, 1]y||is the number of
non null bins, #(x) is the number of data pointsihg the
value x and m is the number of samples.

The entropy can then be estimated with:
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H" shrink(x) = _Z ﬁ)l* (X)|Og ﬁ/]x(x)
Xy

where H is the entropy and is the value oft minimizing

the mean square error [10] [8].

3) The Schurmann-Grassberger estimator

selection based on a score above a certain thoepal X))
< 0 is performed in both directions: for two gengsandX;,
there will be an edge X; is a well predictor o¥; (s > 6) or
if X; is a well predictor o¥; (5 > 6). The complexity of this
methods lies between Gjrand O(f).

D. Methods selection

Following MINET author's recommendation based on
validations on external datasets, we use the fatigw

It is a Bayesian estimator which assumes the Samp@ethods to analyze our datualFreq discretization, the

distribution follow a Dirichlet distribution. A Dichlet
distribution is the generalization of the Beta rlisition
[11]. The density of this distribution is describeygl[8]

p(X;0) = et ) o
r( Zei) iD{l,Z,A..\)(\I}
io{1.2. x|}

The entropy can then be estimated by

H\dir(x)z 1

m + [x[N &,

2 @ (x)+ N)

(@ (m+ YN +1)-¢ #(x)+ N +1))

wherey (z) =

weighting factor. Various choices of parameters this

dinl(2)
dz

is the digamma function, N is a

factor N have been proposed [12 , 13].

C. Network inference

5 J—)
( ) Data collection Schurmann- o > ) —— genesets/
visualisation comparison
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v
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where®; is the prior probability of an event, x; being the
ith element of the sgtandrI” (.) is the gamma function.

Shrink estimator if the number of replicates is low ahd t
Schurmann-Grassberger  estimator otherwise and the
MRNET algorithm [7]. Our figure 1 then becomes:

cqualfreq

Shrink List of
rink/ Network External Lo

Figure 2. Layout of the analysis with choice of methods ilN&IT

IV. NETWORK VISUALIZATION

The easiest way to explore the results found at the
previous step is to use a graphical representatiothe
network. Although there are several softwareslalbg for
the task [17-19], we were not satisfied either wilie
functionalities proposed or with the interactiormsgibilities
of said softwares. We decided to develop our vizaabn
software, which we called gViz. An application note
describing it has been submitted to Bioinformatims
January 22'[20].

gViz takes as input the network computed by MINEBT i
GraphML format. It can then translate the probéBstinto

Once the MIM computation is done, the networka wide range of mainstream identifiers: Entrez gene

inference step can take place. This step is esdlgna
translation of the Mutual Information links compditat the
previous step into a graph of the probable relatioetween
the variables. In the case of microarray data tides in the
graph represent probesets and the arcs represent

Ensembl, UniGene or KEGG IDs. The advantage of gViz
over the other network softwares is that it canubed to
visualize specific parts of the network. The usam select
one of several identifiers in the left panel (s&g3) and

tisplay the network containing only the relationg/ants to

regulator/regulated relations between them. Varioudocus on. The network displayed in gViz is dynaraitd
network inference methods are available in the MINE interactive. The user can choose to display the levho

package:Relevance network, CLR, ARACNE and MRNET
algorithms [14-16]. We will only discuss thBIRNET

method, to save space.

network (although it can be resources consuming) or
specific parts of it. When clicking on a node, tser can
highlight as well the neighbors of the node, with a

MRNET is based on the Maximum Relevance /adjustable deepness. gViz also has a feature @bl
Minimum Redundancy (MRMR) rationale [7]. Simply put filtering the entire network based on the MRMR scgiven

if we consider a set of geneX)(and a target gen¥, the
algorithm will first select the gen& with the highest
mutual score to variablé. Then, the next selectel;, will

by MINET or by nodes degree (i.e. the number of
neighbors) or also based on annotation criterieo(ired in
same bhiological process). The user can at anydifjest the

be the one with a high(X;; Y) score (maximum relevance), Vvalue of the exclusion threshold.

and at the same time a 1d{X;; X) (minimum redundancy).
At each step, the algorithm is thus expected tecsehe
variables with and efficient trade-off between velece and

Several layout algorithms are available. Other uals
features allow to display the thickness of the ®ode
(representing the degree of said node) and of tges

redundancy, for every gene; o the set of X genes. A (representing the MINET score for said edge).
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Figure 3. General layout of the gViz interface

V. VALIDATIONS

This part is still in progress. However, we havelear 7.
picture of the three validations that should beeddtirst we
will perform a consistency validation, to ensurattiour
method can retrieve known interactions, and a amer
validation to estimates the method’s ability torimte all g,
data present in the original dataset. Once thospsséare
done, we will be able to make predictions by corimpgpour
results with an external database, such as KEGG, [21g
highlight discrepancies and test the correspondemes in
wet-lab analysis, therefore biologically validatingur
approach. These experiments will be performed ia th
course of 2011.

10.

VI. CONCLUSION

We presented a method to analyze co-expression in
microarray data, with the help of a large data masting-
edge algorithms and suitable visualization solutibm a
short time we will finish the first validations. Wepe to
spot new interactions which we will explore furtherwet-

lab analysis. We will then have produced a relialfdet, 12.

cheap and user-friendly way for researchers toyaagheir
microarray data prior to the wet-lab. In the na#urfe, we
will apply this methodology to try and discover ngenes

or interactions involved in the metastatic transfation of  13.

primary cancer cell and eventually provide new gégsgor
cancer treatments.

ACKNOWLEDGEMENT 14

B. D.M. thanks Patrick Meyer and Raphaél Helaerdhép
and technical ideas. B. D.M. benefits from a FRIREN
Télévie Grant n° FC 81726.

15.

REFERENCES

1. T. Barrett et al. NCBI GEO: mining tens of millions of
expression profiles--database and tools update. Nucleic Acids

Res, 200735(Database issue): pp. D760-765. 16.

2. H. Parkinson et al.ArrayExpress-a public database of
microarray experiments and gene expression profiles. Nucleic
Acids Res, 200735(Database issue): pp. D747-750.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-137-3

11.

E. Bareke et alPathEx: a novel multi factors based datasets
selector web tool. BMC Bioinformatics, 201011: pp. 528-
537.

H. Frohlich, M. Fellmann, H. Sultmann, A. Poustland T.
Beissbarth, Estimating large-scale signaling networks
through nested effect models with intervention effects from
microarray data. Bioinformatics, 2008.24(22): pp. 2650-
2656.

R. Castelo and A. Roveratdieverse engineering molecular
regulatory networks from microarray data with qp-graphs. J
Comput Biol, 200916(2): pp. 213-227.

R. Opgen-Rhein and K. StrimmeFrom correlation to
causation networks: a simple approximate learning algorithm
and its application to high-dimensional plant gene expression
data. BMC Syst Biol, 20071: p. 37. Last access date: 22
March 2011.

P.E. Meyer, F. Lafitte, and G. Bontempininet: A
R/Bioconductor package for inferring large transcriptional
networks using mutual information. BMC Bioinformatics,
2008.9: p. 461. Last access date: 22 March 2011.

P.E. Meyer, PhD Thesis. 2008. Available from
http://mww.ulb.ac.be/di/map/pmeyer. Last accesse:d&?2
March 2011.

Y. Yang and G. WebbDiscretization for naive-bayes
learning: managing discretization bias and variance, in
Technical report, S.0.C.S.a.S. Engineering, Editor. 2003,
Monash University.

J. Hausser/mproving entropy estimation and inferring
genetic regulatory networks. , in National Institute of Applied
Sciences. 2006: Lyon. Available from
http://jean.hausser.org/site/64. Last access da2e:March
2011.

T. Schurmann and P. Grassberdemropy estimation of
symbol sequences. Chaos, 19965(3): pp. 414-427.

N. Beerenwinkel et alDiversity and complexity of HIV-1
drug resistance: a bioinformatics approach to predicting
phenotype from genotype. Proc Natl Acad Sci U S A, 2002.
99(12): pp. 8271-8276.

L. Wu, P. Neskovic, E. Reyes, E. Festa, andH&indel,
Classifying nback eeg data using entropy and mutual
information features. in European symposium on Artificial
Neural Networks. 2007.

. AJ. Butte and I.S. Kohan#&]utual information relevance

networks: functional genomic clustering using pairwise
entropy measurements. Pac Symp Biocomput, 2000: pp. 418-
429.

J.J. Faith et al.large-scale mapping and validation of
Escherichia coli transcriptional regulation from a
compendium of expression profiles. PLoS Biol, 20075(1): p.
e8. Last access date: 22 March 2011.

A.A Margolin et al., ARACNE: an algorithm for the
reconstruction of gene regulatory networks in a mammalian
cellular context. BMC Bioinformatics, 20067 Suppl 1: p.
S7. Last access date: 22 March 2011.

59



BIOTECHNO 2011 : The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

17.

18.

Copyright (c) IARIA, 2011.

yEd-  Graph  Editor. 2010 Available
http://www.yworks.com/en/products_yed_about.html Last
access date: 22 March 2011.

N. Salomonis et alGenMAPP 2: new features and resources
for pathway analysis. BMC Bioinformatics, 20078: p. 217.
Last access date: 22 March 2011.

ISBN: 978-1-61208-137-3

from:

19.

20.

21.

P. Shannon et alGytoscape: a software environment for
integrated models of biomolecular interaction networks.
Genome Res, 20033(11): pp. 2498-2504.

R. Helaers et algViz - A novel co-expression network
visualization tool., unpublished.

H. Ogata, S. Goto, K. Sato, W. Fujibichi, H.nBp and M.
Kanehisa, KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res, 19927(1): pp. 29-34.

60



