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Abstract—It is unknown which computational method the
brain uses to perceive a visual scene. Given current advance-
ments, it is now possible to model perceptual processes of the
brain using spiking neural network models. We have developed
a computational model for robust figure/ground separation.The
model is based on a laterally connected sheet of spiking neurons.
The sheet of neurons receives its visual input from a virtual
retina. It is assumed to be located inside V1 or a higher visual
area. The neurons are assumed to be laterally connected to
their nearest neighbors through gap-junctions. These lateral
connections allow the neurons to exchange information and
therefore allow for robust figure/ground separation. Even though
we only show results for visual signals, the method is quite general
and may be used in various areas of the brain. A result of
the lateral coupling is that the neurons synchronize their firing
behavior resulting in the so called gamma-synchrony which is
also a result of our computational model.

Index Terms—visual perception; spiking neurons; lateral-
coupling; gap-junctions; gamma-oscillations

I. I NTRODUCTION

In computational neuroscience, one tries to understand how
the brain actually processes information at the neural level.
The goal is to seek an algorithmic description. Once this
description is obtained it may be used to simulate the same
behavior in another medium, i.e. on a computer. We are still
a long way from being able to fully understand how human
visual processing works. However, we have been able to show
how the brain can process visual information using a sheet of
spiking neurons. Our sheet of neurons is laterally connected to
neighboring neurons. The connections (assumed to be due to
gap junctions) allow the neurons to exchange data with their
neighbors and therefore tune their firing behavior such thatthe
relevant neurons collectively respond to a certain stimulus.
Our contribution is to extend the spiking neuron model to
include lateral connections. We provide a complete algorithmic
description of our theoretical model which can be used for
comparison with real data or for predictions. We show how
the sheet of neurons automatically adapts its behavior so asto
robustly extract a figure from ground.

In our simulations, we model a single sheet of neurons. The
input to this sheet of neurons is assumed to come from a virtual
retina, i.e. from neural cells responding to visual stimuli.
Hence, the sheet of neurons perceives and represents a visual

scene. Even though we only show results for visual stimuli, the
method is quite general and may be used to process arbitrary
signals. It could also be used to process haptic or auditory
information. Our model assumes that cells performing a related
function are connected through gap junctions while no lateral
connection exists between cells tuned to process different
kinds of information. Since a gap-junction can be modeled as
a resistive connection, the entire set of interconnected neurons
form a resistive grid. This resistive grid causes the neurons
to laterally exchange part of their activation level with nearby
neurons provided that the connected gap junction is in an open
state. The resistive grid is also used to temporally and spatially
average the incoming spikes. This enables the network to tune
their behavior and to perform robust figure/ground separation.
The temporally and spatially averaged signal is used as an
adjustive signal for the neuron. Depending on this signal,
the gap junctions open or close. When the temporal average
of the neuron’s dendritic input is above the spatial average
of the neuron’s dendritic input, then the gap junction opens
it’s connection. If the temporal average is below the spatial
average, then the gap junction closes. Once, the gap junction
between two neurons is open, then these two neurons exchange
part of their activation, thereby synchronizing their firing
behavior. Eventually, other nearby neurons will also open their
gap junctions, thereby forming an extended zone of laterally
connected neurons with synchronized firing behavior. All of
the neurons whose receptive field shows part of the figure will
fire in synchrony. Neurons for which the figure is outside the
receptive field will fire out of sync and at a much lower rate.

II. SPIKING NEURAL NETWORKS

Sensory perception, motor control and learning are due to
the neural processing which occurs inside the brain. The brain
itself is usually modeled as a set of spiking neurons [2]. In
this standard model, each neuron independently integratesthe
electrical inputs which it receives from other neurons. This
happens until the activation of the neuron rises above a certain
level or threshold. Once this happens, the neuron is said to fire.
The neuron then sends an electrical impulse or signal along
the axon. This signal may then be integrated by other neurons
which eventually will also fire.
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It is standard practice to only model the spiking behavior
of neurons as this is thought to be the most relevant aspect
of neural information processing. It is assumed that the entire
function of the neuron can be replicated by only modeling the
spiking behavior of the neuron. Low level interactions between
neurons, i.e. at the level of neuro transmitters and ion channels,
are thought not to be relevant to replicate neural processing.
Hence, these aspects are usually omitted in computational
modeling. By abstracting and given powerful computational
resources, it is possible to even model thalamocortical systems
[1].

In the standard so called integrate and fire model, each
neuron is viewed as a functional unit. The neuron integratesthe
input received through the dendrites. Once a given threshold is
reached, then the neuron is said to fire. The input of a neuron is
due to electrical signals received via axons from other neurons.
Whenever a neuron fires, then a voltage spike is sent along
its axon. This electrical signal is received by other neurons
through their dendrites (and also via their cell bodies). Each
neuron integrates its input over time resulting in a buildupof
the activation potential. If the activation potential of a cell is
high enough, then the neuron will again send a spike down its
axon. This signal will be integrated by other neurons and the
process continues.

Let Vi be the activation potential of neuroni of a larger
network. The change of the activation potentialVi can be
modeled by the following equation (modified from [3]):

C
dVi

dt
= gi(Ei − Vi) + Itonic + Ii +

N∑

j=1

wijKj (1)

Here, C is the capacitance of the neuron. The factorgi is
the leakage conductance. This factor will determine the speed
with which the cell will eventually reach the resting potential
Ei if no input is received. A tonic current can be modeled
through the termItonic. An input current to neuroni from
an external source can be provided through the termIi. Let
Kj be the input received from neuronj. Each input will be
weighted with factorswij describing the connection strength
between neuronsi and j. The connection strengths can be
tuned through neural learning. The input of a neuron is the
weighted sum over all its inputs received from other neurons.

In this standard neural model, an important ingredient is
missing. Lateral connections between neurons are not consid-
ered. We find such lateral connections between neurons to be
highly useful for signal processing. The lateral connections
allow the neurons to exchange data with their immediate
neighbors and thereby to collectively tune the response to a
given stimulus.

III. L ATERAL CONNECTIONS

Our model neuron extends the standard model by also
including lateral connections between neurons. Similar tothe
standard model, the neuron temporally integrates the incoming
spikes. This leads to a rise of the activation voltage until a
particular threshold is reached. Once this happens, the neuron

dendrites

neuron (gap junction)
connection to neighboring

spatial averaging of
input (conditional)input (unconditional)

spatial averaging of

spike generation

axon

can be open or
closed

thresholding

gap junction

temporal averaging
of input

temporal averaging of input for
conditional opening of gap junctions

Fig. 1. Artificial neuron. Each neuron is laterally connected via gap junctions
to several other neurons (only 4 gap junctions are shown).

sends a spike along its axon, i.e. it fires. In contrast to the
integrate and fire model, our neuron includes lateral connec-
tions which as assumed to be due to gap junctions between
neurons. Only neurons which perform a similar function are
assumed to be laterally connected. During development, lateral
connections may just occur completely at random. In the
course of time, some neighboring neurons will fire together by
chance. This may lead to gap junctions between these neurons.
The laterally connected neurons will form a sub-network. A
gap junction can be modeled as a resistive connection between
neurons [4], [5]. Hence, the connected neurons form a resistive
grid. Since the gap-junctions are always there, the gap-junction
connections form an unconditional resistive grid. This resistive
grid is used to adaptively tune the neuron to a given stimulus.

A gap junction may be in one of two states. It can be open
or closed. The state that is chosen is voltage dependent. A
voltage dependent conductance of gap junctions was also used
by Traub et al. [6]. In our model, a channel is opened for each
open gap junction allowing the connected set of neurons to
exchange part of their activation. This leakage current causes
the conditionally connected neurons to synchronize their firing
behavior. In computational modeling, an open gap junction
is modeled as a resistor. The synchronization of laterally
connected neurons occurs in the same way that chaotic or non-
linear electrical circuits synchronize their behavior if they are
resistively connected, i.e. a signal is exchanged between the
two circuits [7]–[9].

The input spikes passing next to each gap-junction are
temporally integrated and, through the resistive grid, also
spatially averaged. The spatially averaged input results in an
adjustive signal for the neuron. Gap junctions open and close
depending on this signal. In our model, we call this signal the
sync-threshold. Gap junctions open if the temporal averageof
a neuron’s input is above the spatial average. Otherwise, the
gap junctions close.

An illustration of our neuron including lateral connections is
shown in Figure 1. The lateral connections are shown extrud-
ing from the body of the neuron in order to make clear that this

68

BIOTECHNO 2011 :  The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-137-3



is a connection to other neurons on the same level. In reality,
the gap-junctions are located on the dendrites which are shown
on the left part of Figure 1 leading up to the neuron body. The
neuron receives its input through the dendrites. This inputis
temporally integrated as is illustrated by the center box labeled
“
∫
dt”. The same input is also temporally integrated (although

with a different factor) and also spatially averaged at eachgap-
junction as illustrated by the boxes “

∫
dt and “

∫
dx”. Figure

1 shows 8 dendritic connections but only 4 gap-junctions in
order not to overload the figure. In an actual neuron, the
connections are not necessarily uniformly distributed. For each
gap-junction, two connections are shown. One dark connection
and one light connection. The lighter connection illustrates the
resistive grid that is formed because the gap-junction exists.
The darker connection illustrates the conditional connection
between neighboring neurons as the gap junctions open or
close (sphere on the dark lateral connection). If the temporal
average of the incoming signal is clearly above the spatial
average, then the gap junctions open. If the temporal average
is below the spatial average, then the gap junctions close.
The dendritic input to the neuron is integrated by the second
box labeled “

∫
dx”. Note that this input passes through the

first box labeled “
∫
dx” which is the integration due to the

unconditional resistive grid. If the gap junction is open, part
of the activation will be exchanged between the connected
neurons. The current will flow from the neuron having a higher
activation to the neuron having a lower activation. This causes
the connected neurons to synchronize their firing behavior.If
the activation of the neuron rises above a threshold (illustrated
by the “Threshold”-box), then the neuron will fire. In this case,
an electrical impulse is sent along the axon. This is illustrated
by the box with the spike.

A connected network of such neurons is able to extract
an arbitrary signal which is above the average. The same
function could also be achieved with multiple interconnected
neurons. It could be that the above behavior illustrated within
a single neuron is actually spread over multiple neurons inside
a cortical column. See Mountcastle [10] for a review of
columnar organization of the neocortex.

IV. ROBUST FIGURE/GROUND SEPARATION

In order to evaluate our model, we first start off using
virtual stimuli. A sheet of 1000 laterally connected neurons
is simulated. This sheet of neurons processes input from a
virtual retina. The 1000 neurons are randomly placed insidea
100×100×2 area. It would suffice to model a two-dimensional
sheet of neurons. However, we have used a three-dimensional
sheet in order to include the fact that actual neurons are
not perfectly positioned inside a two-dimensional plane. Let
(xi, yi, zi) be the position of thei-th neuron inside the three-
dimensional area. Each neuron is laterally connected to its
6 nearest neighbors the sheet. Input to neuroni is provided
by a virtual retina. The receptive field of neuroni is mapped
topographically from its position inside the sheet to the retinal
neurons. Letxi, yi, andzI be the normalized coordinates with
range [0, 1], then neuroni receives its input from position

(wxi + xr, hyi + yr) wherew is the width of the retina and
h is the height of the retina and(xr , yr) is a random offset
selected from−1, 0, 1.

Our sheet of neurons could theoretically be located inside
V1, however, it is more likely to be located in some higher
visual area. It could be used wherever a signal has to be sepa-
rated from ground. Below, we will show how the network can
be used to separate a lighter signal from a darker background.
The same network, however, can also be used to separate
more complicated signals which depend on motion or texture.
Neurons processing these features would be located in V3 or
V5 or inside higher areas [11], [12].

The human visual system uses two different types of recep-
tors: rods and cones. The cones are used for color vision. Three
different cones can be distinguished. Their peak response
lies either in the red, green or blue parts of the spectrum
[13]. The retinal receptors measure the light falling onto
the retina. The information is then passed on to the lateral
geniculate nucleus and finally reaches V1. By the time, the
visual information has reached the visual cortex, it has been
transformed from a red-green-blue coordinate system to a
rotated coordinate system. This rotation is caused by color
opponent and double-opponent cells. The axes of the rotated
coordinate system are: bright-dark, red-green and yellow-
blue [14]. For our experiments, we will be using only the
bright-dark channel (also called lightness). We process data
which is stored as computer images. The transformation from
red, green, and blue non-linear pixel intensities(R,G,B)
is given by L = 0.299R + 0.587G + 0.114B [15]. Each
neuroni of our sheet receives lightnessL from 3 different
positions of the virtual retina. The mapping from neurons to
their input is defined as described above. Thus, we have for
the outputoi of the retinal neuroni: oi = L(x′

i, y
′

i) with
(x′

i, y
′

i) = (wxi + xr, hyi + yr).
Each neuron is fully described by the following state

variables:ai activation, ti fire-threshold,oi output voltage,
ãi, temporal average of incoming spikes,āi spatial average of
temporal average. The variablẽai is actually associated with
every gap-junction. However, we have used one variable per
neuron to speed up the simulation. The algorithm which is run
by each neuroni is shown in Figure 2. Due to the leakage fac-
tors, the state variables can be initialized with random values at
the start of the algorithm. For our experiments, we have used
the following parameters:αa = 0.9995 decay of activation
potential,αo = 0.5 decay of output voltage,αt = 0.001
temporal averaging factor of gap-junction,αs = 0.0001 spatial
averaging factor of gap-junction input,ǫ = 0.0001 leakage to
adjacent neurons upon firing,γ = 0.0005 reduction of fire-
threshold,ω = 1.999 factor for over-relaxation,∆tr = 10
refractory period of neuron,wij = 1 weight between neurons
i andj. We have used only positive unit weights because the
input image is directly processed by the neural sheet. In the
brain, the weights can be found using neural learning, e.g.,
Hebbian learning [16]. Of couse, it is also possible to include
negative weights. Negative weights would represent inhibitory
signals. The type of weights that have to be used, are of course
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(01) oi = (1− αo)oi // decay of output
(02) ai = (1− αa)ai // decay of activation
(03) ai = ai + αa

∑
j
wijoj // integrate input

(04) ãi = (1− αt)ãi + αt

∑
j
wijoj // temporal average

(05) ā′′ = āi // save previous result
(06) ā′ = 1

1+|N|

∑
j∈N

āi // compute spatial average
(07) āi = (1− αs)ā

′ + αsãi // add temp. average
(08) āi = (1− ω)ā′′ + ωāi // use over-relaxation
(09) if (ãi > āi) open gap junctions
(10) elseclose gap junctions
(11) if Neuroni fired within ∆tr return
(12) N = {j|Neuronj is laterally connected to
(13) neuroni via open gap junction}
(14) a′ = ai; n = 1 // initialize spatial averaging
(15) for all j ∈ N do : if Neuronj did not fire within∆tr
(16) { a′ = a′ + aj ; n = n+ 1 }
(17) ai = a′/n // spatial averaging completed
(18) // distribute sp. avg to neighboring neurons
(19) for all j ∈ N do : if Neuronj did not fire within∆tr
(20) { aj = ai; }
(21) ti = max[0, 1− γ ·Ns] // comp. fire-threshold
(22) if (ai > ti) {// does the neuron fire?
(23) ai = 0 // reset activation
(24) oi = 1− ǫ|N | // output rises to 1
(25) for all j ∈ N do : aj = aj + ǫ // distribute leakage
(26) }

Fig. 2. Algorithm of neuroni

dependent on the problem that has to be solved. For our task,
unit weights suffice. The parameterNs denotes the number of
neurons in the sub-network.

In the following, we will refer to the line numbers of Figure
2 in order to explain what the neuron does. First, the output
voltage (01) as well as the activation (02) decays. Each neuron
integrates the input (03). The gap junctions are controlled
depending on whether the temporal average of the input is
above the spatial average (09-10). The temporal average of the
input is computed in (04). The spatial average of the temporal
average is computed using over-relaxation in (05-08). This
spatial average is basically an adaptive threshold which allows
for adaptive figure/ground separation.

Note that in an earlier model [17], we have used the
firing signal of the neuron as a feedback signal to control
all of the gap-junctions at the same time. It is probably more
accurate, that each gap-junction is controlled independently
by the temporal average of the signal passing through the
dendrite where the gap-junction is located. Thus, according to
our theory, each gap-junction opens or closed independently
of the other gap-junctions depending on the signal that passes
through its dendrite. The algorithm that we use for our
simulation, nevertheless takes the signal running throughall of
the dendrites as a single input and controls all gap-junctions
of a neuron at the same time. This allows for faster simulation
of the entire sheet of neurons.

Condition (09) ensures that the brightest stimulus is ex-
tracted. Parts of the image with high lightness correspond to
the figure whereas other parts with low lightness correspond
to the background. Processing continues if the neuron is no
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Fig. 3. Experimental results for different noisy input images (zero mean,
standard deviation 0.05). The relationship between background lightness
Lb and figure lightnessLf is (a) Lb/Lf=0.1/0.3 (b)Lb/Lf=0.3/0.5 (c)
Lb/Lf=0.5/0.7 (d)Lb/Lf=0.7/0.9

longer in its refractory period (11). Lines (12-20) distribute
part of the activation across open gap junctions. The acti-
vation flows from the neuron having a higher activation to
neighboring neurons having a lower activation. This causes
adjacent neurons with open gap-junctions to synchronize their
firing behavior. The fire-threshold is set depending on the
size of the connected sub-network (21). If the connected sub-
network is large, then the threshold is lowered, whereas if the
connected sub-network is small, then the threshold is higher.
This causes neurons belonging to a larger object to fire with
a higher frequency. Once the neuron fires (22-26), most of
the activation is sent along the axon. However, part of the
activation is also distributed to neighboring neurons.

A single neuron could also perform a bright/dark classi-
fication with a proper choice of parameters. However, such
a neuron will not be adaptive to the image content. Figure
3 shows the results for different input images with static
noise. The input received by the retinal neurons is shown
on the left hand side. The sheet of neurons is shown in the
middle. Each neuron is marked by a dot. Open gap junctions
between neurons are drawn with colored lines. The right
hand side shows the distribution of the lightness of the input
image. In Figure 3(a) both background and the foreground
square (figure) are quite dark. Subsequently, in cases (b-d),
the lightness is increased. We can see that for input image (a),
a lightness of 0.3 is classified as figure because the background
has a lower lightness, e.g., 0.1. However, for case (d), a
lightness of as high as 0.7 is classified as background because
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Fig. 4. (a) input stimulus (b) behavior of six different neurons (marked).
Neurons 1-3 are located on the figure and show synchronous firing behavior
whereas neurons 4-6 are located on the background and fire outof sync.
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Fig. 5. (a) input stimulus (b) behavior of six different neurons (marked).
Neurons 1-3 are located on the figure and show synchronous firing behavior
whereas neurons 4-6 are located on the background and fire outof sync.

the figure has a higher lightness of 0.9. Thus, we see that our
network is able to adapt to the image content and extract the
correct figure. It is also robust in that it is able to cope with
noisy input stimuli.

By using other types of input with appropriate weights in
(03) and (04), arbitrary stimuli can be extracted. For instance,
one could envisage a sheet of neurons processing input from
V4 (color) or V5 (motion). Such a sheet could be tuned to
extract a moving color stimulus.

Figure 4 shows that the neurons that have their receptive
field on the figure fire in synchrony while other neurons fire
out of sync. Figure 4(a) shows the neural sheet overlaid on
the input image. The output of six different neurons is shown
in Figure 4(b). Figure 5 shows what happens for a stimulus of
larger size. In this case, the neurons increase their firing rate.
This effect is due to the adaptive threshold that is computed
in Figure 2(21). Higher visual areas can discern objects of
different sizes based on their firing rate.

Figure 6 shows how the network behaves for real input
images moving across the virtual retina. As the object or
figure moves across the retina, different neurons are activated
in the course of time. Neurons of a connected sub-network
synchronize their firing rates. Different objects will have
different firing rates. This allows for visual servoing techniques
[18], [19] which can be used by higher visual areas to track
an object.

V. D ISCUSSION ANDBASIS OF OURMODEL

The sheet of neurons segments the scene into figure and
ground. Related work for scene segmentation includes the
work of Zhao and Breve [20]. They have used Wilson-Cowan

(f)

(a) (b)

(d) (e)

(c)

Fig. 6. (a-c) Moving stimulus. (d-f) A connected sub-network tracks the
figure.

neural oscillators [21] and segmented static input. Quileset
al. [22] have developed a visual selection mechanism and
show how their integrate and fire network responds to different
static images. Their model includes short range excitatory
connections and long-range inhibitory connections. Eckhorn
et al. [23] simulated results from the visual cortex of the cat.
They simulated two one-dimensional layers of neurons and
used a moving stimulus as input. In contrast to our model, they
have used long range feeding connections connecting neurons
of the same layer. Our computational model is quite simple,
yet it shows how synchronized zones of activity can arise and
move around in the brain. These zones of activity are assumed
to correlate with conscious perception and control.

Our model of laterally connected neurons show a syn-
chronous firing behavior of neurons responding to the main
stimulus (figure) whereas the remaining neurons fire out of
sync. Indeed, the electroencephalogram (EEG) shows the syn-
chronized firing behavior of neurons inside the frequency band
from 40 to 80Hz [24], [25] This is called gamma synchrony
EEG. A review on how gamma synchrony correlates with
perception and motor control is given by Singer [26]. The
gamma synchrony is due to inter-dendritic gap junctions [27],
[28]. Hameroff [29] has put forward the “conscious pilot”
model. According to this model, gap junctions open and
close, thereby creating synchronized zones of activity. These
zones move through the brain and convert non-conscious
cognition, i.e. cognition on auto-pilot, to conscious cognition.
A review of several different theories of conciousness is given
by Kouider [30]. Several theories of consciousness assume
re-entrant, i.e. recurrent, processing of information, e.g., the
re-entrant dynamic core hypothesis by Tononi and Edelman
[31], or the local recurrence theory by Lamme [32]. Crick
and Koch [33] have noted that humans appear not to be
aware of processing which occurs inside V1. Thus, conscious
processing probably starts somewhere above V1. According
to Zeki [34], multiple consciousnesses are distributed across
different processing sites giving rise to microconsciousness.
Attributes such as color, form and motion are bound which
then gives rise to macroconsciousness. And finally, there isa
global form of conciousness or unified consciousness which
involves linguistic and communication skills. Our model is
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based on recurrent information processing. Hence, it is in line
with theories of Tononi and Edelman as well as the theory
of Lamme. In Zeki’s terms, our model would be a case of
microconsciousness.

Synchronized firing can be achieved through either local
or global connections. Our model only uses local connections
between neurons. No global connections are required. Never-
theless, global connections could be used to pass information
on to higher areas or to provide feedback to lower areas. Wang
[35] as well as König and Schillen [36] have used global
connections to establish synchronous firing. They use long
range excitatory delay connections to achieve desynchroniza-
tion across different regions. Terman and Wang [37] use a
global inhibitor to achieve desynchronization. In our model,
neurons responding to the same object will synchronize their
firing behavior because they are laterally connected through
gap-junctions. Two neurons, each responding to a different
object will not be synchronized because of the dependence
of the firing threshold on the size of the connected zone of
neurons.

VI. CONCLUSION

The standard integrate and fire model does not take lateral
connections between neurons into account. The lateral con-
nections are assumed to occur through gap junctions which
behave like resistors. A gap junction may be either in an
open state or in a closed state. The gap-junctions form two
resistive networks. An unconditional network and a conditional
network. The unconditional network is used by our model
to tune the network to the correct input level. It computes a
spatial average of the temporally smoothed input. This spatial
average is used to set the sync-threshold by comparing it to
the temporal average of the overall input to the neuron. If
the overall input is above the spatial average, then the gap
junctions open. This causes the neuron to synchronize its firing
behavior such that neurons which have their receptive field
above the stimulus fire in synchrony. We have shown that
our model allows for robust figure/ground separation both on
artificial stimuli as well as with real stimuli.
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