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Abstract—In this paper, we propose a new method which
considers the movement of a protein molecule as a whole for
the computation of so called dynamic channels in a molecular
dynamics trajectory. The method is based on maximizing the
information about the empty space over time and is built
on basic computational geometry principles. The dynamic
channels highlight pulsing and flexible parts of the molecule.
It is believed that such parts allow a ligand to pass into or out
from the active site. The method was tested on real protein
data and the results indicate that it presents new information
about the molecule.
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I. INTRODUCTION

The shape of a protein molecule is complicated and
contains many cavities and pockets. In our research, we are
primarily interested in specific cavities connecting a part of a
protein molecule (active site) with the surface of the protein.
Such cavities are denoted as channels. Channels are used by
a substrate molecule to pass into the active site where it can
react and may also be used by the products to leave the
active site.

The structure of a protein molecule does not remain
static over time. Atoms are continuously moving. With
this movement, cavities and channels are also changing.
The movement of atoms (protein dynamics) is represented
as a set of states of the protein molecule which we call
snapshots. The whole set is called a trajectory and may
contain thousands of snapshots.

Recent methods for computation of channels typically
detect channels separately in each snapshot. The channels
computed in one snapshot are optimized for bottleneck
radius in this particular snapshot only, but not in the whole
trajectory. Over time, as atoms are moving, the channel may
pulse and thus its parts may alternate from really narrow to
wide. In each snapshot then, only a part of a channel may
be wide while other parts of the same channel are narrow.
Evaluating snapshots separately implies that such a channel
would not be identified by existing methods. During a given
time interval the channel may be wide in different parts. If
these parts are considered altogether, we can find that the
channel was wide along its whole length and is maximized
in width for the whole trajectory (see Fig. 1).

Such a channel which is detectable in multiple snapshots
is called dynamic channel. The method proposed in this
paper is designed to detect dynamic channels. This approach
considers snapshots together which ensures that dynamic
channels are optimized for the whole trajectory. In other
words, a dynamic channel may be composed of parts from
different snapshots.

The dynamic channel is an approximation because it does
not take the order of snapshots into account. In spite of
this, such information is valuable since the trajectory is the
approximation of the reality as well and since it covers only
a short interval of protein life.

Each part of the dynamic channel is wide in a certain
snapshot and thus it is expected that the protein molecule
is flexible in that parts. This means that if the substrate
molecule would pass through a dynamic channel, the atoms
in the protein molecule may easily move and create the
necessary empty space.

Our method assumes that the whole protein molecule
does not change its position significantly. The data obtained
from molecular dynamics simulations usually satisfy this
condition. If not, there are various alignment techniques
which are able to omit the global movement of the molecule.

Preliminary testing on haloalkane dehalogenase DhaA
indicates that the method provides reasonable results. How-
ever, this paper does not address the issue of biochemical
relevance of computed channels – it presents the method and
its capabilities.

II. RELATED WORK

A channel in a protein molecule is defined [1] as a cen-
terline and a volume. The centerline is a three-dimensional
continuous curve and the volume is formed by the union
of spheres with centers on the centerline and with an
appropriate radius so that they do not intersect any atom
in the molecule. The example of a channel is demonstrated
in Fig. 1.

There are many methods which deal with the issue of
detecting cavities in protein molecules. For instance, the
method introduced in [2] is based on the alpha shape theory.
The latest approaches can be found for instance in [3],
[4]. The information about cavities is important, but these
methods do not consider the cavities as channels.
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Figure 1. Dynamic channel. (a), (b), (c) A part of a channel is very narrow
in each snapshot (emphasized). (d) All channels considered at once form a
dynamic channel which is maximized in width across all three snapshots.

There are various approaches to channel computation.
Most of them deal with the static case only. The first method
which was capable of detecting channels was introduced
in [5]. The method was based on sampling the molecule
using a three-dimensional grid and suffered from several
disadvantages. The methods that followed were based on
computational geometry – the first of them was proposed in
[1]. Other methods [6], [7] released later are similar. In all
these methods, the space partitioning is represented by the
Voronoi diagram (VD) or its dual Delaunay triangulation
(DT). These structures are processed by an algorithm for
finding the shortest path in a graph (typically Dijkstra’s
algorithm) and a channel which is optimal for given criteria
is found. In principle, the centerlines of channels computed
using these methods lead along Voronoi edges. A grid-based
method introduced in [8] is able to find static molecular
channels and voids.

The movement of atoms in a protein molecule is usually
obtained by complex physical simulations called molecular
dynamics [9]. In reality, the movement is continuous, but
the simulation provides discrete results in the form of a set
of snapshots as referred above. A variant of molecular dy-
namics, Random accelerated molecular dynamics (RAMD,
[10]) could be also used to detect channels. In RAMD, a
small molecule is placed into the active site and a simulation
is started. During the simulation, additional random forces
are applied to the small molecule and it is probable that
it reaches the surface and leaves the protein molecule. If
the small molecule leaves, an escape path exists and is
detected. The disadvantage of this approach is that it is time
consuming and it does not ensure that an escape path will
be found.

Other method introduced in [11] computes channels in
an existing trajectory. A given number of widest channels

is computed in each snapshot and they are partitioned into
clusters according to their similarity after all snapshots are
processed. Each cluster contains channels from different
snapshots which are similar and thus these channels can be
considered as states of one channel over time. The simi-
larity of channels is determined by a user-defined distance
function. This approach has an obvious disadvantage. The
method is not able to detect dynamic channels since it is
focused on the computation of channels with the biggest
bottleneck radius in each snapshot. The problem is that if we
compute a limited number of channels in each snapshot, the
dynamic channel may not be present among these channels,
because in each snapshot it may not be wide along its whole
centerline (see Fig. 1).

Recent methods for computation of channels are based
on computational geometry principles. The fundamental
geometric structures Voronoi diagram and Delaunay trian-
gulation are of key importance for the proposed method.
The duality which exists between these structures allows
the easy converting between them. In three dimensions, the
important correspondences which are used for our purposes
are such that a tetrahedron in the Delaunay triangulation
corresponds to Voronoi vertex, a triangle face shared by two
neighbouring tetrahedra in DT corresponds to Voronoi edge.
Certainly, there are other correspondences, but they are not
necessary for the purposes of this paper and are omitted. For
more details we refer to [12]. The illustration of the duality
in three dimensions can be seen in Fig. 2.

In the dynamic case, when processing the whole trajec-
tory, it is necessary to compute the Voronoi diagram in each
snapshot. The issue of computation of the Voronoi diagram
in the dynamic environment is described in [13]. Instead
of recomputing the Voronoi diagram, the algorithm only
performs necessary updates. The complexity of this algo-
rithm is dependent on the number of changes in the Voronoi
diagram. This approach assumes that input trajectories of
moving spheres are continuous and thus its use in the method
presented in this paper is limited. Therefore we recompute
the Voronoi diagram for each snapshot using the QuickHull
algorithm [14].

III. PROPOSED METHOD

A dynamic channel can be as well as static channel ([1])
defined as a centerline and a volume which is formed by
the union of empty spheres inserted in each point on the
centerline. In addition to previous definition, the dynamic
channel contains the information about snapshot number
for each point on the centerline – a sphere inserted at that
point does not intersect nor contain any of the atoms in that
particular snapshot.

Definition: Let M = {m1, ...,mk} be a set of snap-
shots in the trajectory. A dynamic channel T is defined as
T =

⋃
x∈aT

s(x, r, i) where aT is a three-dimensional curve
(centerline of T) and s(x, r, i) is a sphere with center x
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and radius r which does not intersect any atom in snapshot
mi ∈M .

The method we propose is based on the two algorithms
described in [1] and [15]. Therefore we first briefly describe
the main idea of these algorithms. Then, we describe a novel
method which is the main contribution of this paper.

The space partitioning of the protein molecule is stored in
the Delaunay triangulation (DT) computed for its atoms. In
[1], the DT computed for the set of atom centers is converted
to edge-weighted graph G. The nodes of G are formed by
Voronoi vertices dual to tetrahedra in the DT. In G, an edge
between two nodes exists, if the corresponding tetrahedra in
DT share a face (Fig. 2). The value of the edge is equal to
the distance from the edge to the surface of the nearest atom.
Graph G is then processed using the Dijkstra’s algorithm.
The cost function maximizes the bottleneck radius of the
channel.

The algorithm introduced in [15] is designed to track
the centerline of an existing channel in any snapshot in a
trajectory. In each snapshot, the algorithm locates the set of
tetrahedra intersected by the centerline of the channel and
determines Voronoi edges dual to faces shared by neigh-
bouring tetrahedra in this set. As a result of the algorithm,
a new centerline composed of Voronoi edges is returned.
The centerline is optimized in width while preserving its
location. The method uses so-called walks in the Delaunay
triangulation to speed up the tracking progress.

We propose a new method for the detection of dynamic
channels defined above. The method can be divided into
three main parts. Firstly, a graph Gini which represents the
molecule appropriately is created. The topology of the graph
Gini remains constant during the computation. Secondly, all
snapshots in the trajectory are processed. In each snapshot,
edges in Gini are updated so that after the processing of the
whole trajectory, the value of each edge is maximized. The
third step is to compute paths in Gini from the starting node
to any of the boundary nodes. The thorough description of
these steps follows.

A. Gini creation

There are many possibilities while creating Gini, but not
all of them, however, represent the molecule conveniently. In
this paper, we propose following two Gini variants which we
expect to provide accurate results. We either use the Voronoi
diagram (VD) from a selected snapshot of the trajectory
or create Gini based on a 3D grid. In case of grid, the
bounding volume of the molecule is sampled uniformly
using given sampling density. Samples in the grid are used
as nodes in Gini. Two nodes are connected by an edge if
the corresponding samples are neighbours in the 3D grid.
Both Gini variants are discussed in Results section.

The node in Gini that is the nearest to the active site
is marked as starting node. The active site is specified by
a user as three-dimensional coordinates or by surrounding

Figure 2. Voronoi – Delaunay duality in three dimensions. (a) Tetrahedra
dual to Voronoi vertices. (b) A triangle face shared by two neighbouring
tetrahedra is dual to a Voronoi edge. (c) Complete Voronoi – Delaunay
duality.

atoms in the molecule. If atoms are used, the coordinates
are typically computed by averaging the atom positions in
the first snapshot in the trajectory.

For further computation of channels it is necessary to
mark certain nodes in Gini as boundary. These nodes lay
near the surface of the molecule. In both Gini variants, nodes
of edges which are outside or intersect the convex boundary
of the molecule are marked as boundary.

B. Gini maximization

The maximization process of values of edges works as
follows. All edges in Gini are processed in each snapshot.
For each snapshot mi, each particular edge e in Gini

is tracked using the previously mentioned procedure for
tracking a channel [15]. Recall that the procedure returns
the set of Voronoi edges etrack = {et1 , ..., etn

} which are
dual to the tetrahedra intersected by e. The bottleneck of
edges in etrack is determined and compared against the
value of e. If the bottleneck is larger, then the value of e is
updated. Additionally, the actual snapshot mi for this edge
as well as its optimized geometry etrack is stored for further
reconstruction. The process of updating one edge is depicted
in Fig. 3.

After processing of all snapshots, the value of each edge
in Gini is maximal in the whole trajectory.

It is clear that it would be time consuming to apply the
tracking to each single edge e in Gini in each snapshot.
Since the edges etrack returned as a result of tracking pro-
cedure for e are dual to tetrahedra in DT, the last tetrahedron
intersected (i.e., the tetrahedron containing end node of e)
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Figure 3. Edge update. (a) Edge in Gini with so far maximal value. (b) Tracked edges etrack; bottleneck value: 3.3Å. (c) Edge value is updated.

can be stored with the node in Gini and reused when edges
emanating from this node are processed. Together with the
breadth-first search (BFS) processing of edges from the
starting node it is ensured that when an edge is processed,
the tetrahedron for the starting node of the edge is known and
the expensive tetrahedron location test has to be performed
for the starting node only.

C. Gini Dijkstra’s algorithm processing

Finally, updated Gini is processed by the Dijkstra’s algo-
rithm in the same way as in the static case [1]. Typically,
the path in Gini with the biggest bottleneck which connects
the starting node (located in the active site) with arbitrary
boundary node is computed. Such path defines the centerline
of a dynamic channel. Naturally, for each edge in the
centerline of the resulting channel, the information about
its geometry as well as the number of snapshot in which the
edge is valid is known.

The Dijkstra’s algorithm cost function is modified in the
way such that channels with the biggest possible bottleneck
are computed. In addition, it is ensured that if a boundary
node is selected during the algorithm progress, the path with
the biggest bottleneck connecting the starting node with the
boundary is found. At this point, the computation is termi-
nated and the resulting channel is reported. Alternatively,
certain edges in Gini can be disabled and the Dijkstra’s
algorithm may be run again to find another different dynamic
channel. Such approach is widely used when computing
channels in static molecules, see [16].

D. Complexity

The number of nodes in Gini is equal to the number
of Voronoi edges from any snapshot in case the VD is
used. If the grid solution is used, the number of edges is
appropriate to the sampling density. Let i be the number
of edges in Gini. The theoretical maximum number of
tetrahedra processed to track the i edges in Gini in one
snapshot is O(i · n2). However, for the analysed real data,
the expected complexity is significantly better. Each edge
in Gini intersects only a limited number of tetrahedra in
the DT computed for each snapshot. With the BFS applied,
the expected time to track all i edges in Gini is linear
with respect to the number of tetrahedra in the DT in

each snapshot. After processing all snapshots, the Dijkstra’s
algorithm is run. Its complexity is O(i2) in the worst case.
Again, the expected time is smaller since the algorithm can
terminate before processing all edges in Gini if a path which
ends in a boundary node is computed.

E. Dynamic channels and channel states

Once a dynamic channel is computed, its actual geometry
can be visualized in the corresponding valid snapshots. This
means that a user would view the snapshots in a trajectory
and the corresponding parts of a channel would be visualized
in their respective snapshots.

In addition, the behaviour of the empty space near the
whole centerline of the dynamic channel can be computed
using the method in [15]. In each snapshot, the centerline is
tracked and the resulting geometry can be visualized. In this
manner, the user can get a state of the dynamic channel in
each snapshot and can get a complex view on the behaviour
of the molecule near the dynamic channel. Alternatively, the
method proposed in [18] could be used. The method can
effectively update the triangulation near the centerline of the
dynamic channel and use it for the determination of states
of dynamic channel in each snapshot.

IV. RESULTS

To show that spatial changes appear in the molecule, we
analyzed the width of all edges in Gini for each snapshot.
As the input data, trajectories of haloalkane dehalogenase
DhaA were used (wild-type wt, mutated with codenames
04, 14, 15; more details on the data can be found in [17]).
The number of updates and the average edge value were
determined. As mentioned in the previous section, the update
happens only when the value of an edge in the current
snapshot is larger than the value of the corresponding edge
in Gini. As shown in Fig. 4 (a) the average edge value
has increased after processing each snapshot. Moreover, the
increase is relatively high which indicates that there are
significant changes in the behaviour of empty space inside
the protein. In addition, the results indicate that the value
of edges is increasing despite the fact that the number of
edge updates is relatively low and decreases (see Fig. 4 (a,
b)). After processing a certain number of snapshots we can
compute the channel in Gini with the largest bottleneck – the
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Figure 4. The analysis of 04 rdcl.cl and 04 sdcl.cl (details in [17]). (a) The average width of edge in Gini after processing certain number of snapshots.
(b) The percentage of edges updated after adding each snapshot. (c) The bottleneck radius of the widest dynamic channel computed after adding i-th
snapshot. Similar trends were observed for other analysed trajectories.

Figure 5. Example on 04 sdcl.cl (a) Edges with value above 3.0Å em-
phasized – the midpoint of each such edge visualized as a small sphere.
The visualization is clipped with a clipping plane perpendicular to the view
in order to reveal the inner parts of the molecule. (b) Computed dynamic
channel. The molecule is visualized as a line model, first snapshot of the
trajectory. Visualized in PyMOL [19].

dynamic channel. The results show that there is an increase
in the bottleneck radius of the dynamic channel. Such an
increase with respect to the number of snapshots processed
is shown in Fig. 4 (c). In practical case, the computation
of a dynamic channel would be performed only once after
processing the whole sequence.

In the experiments, the computed dynamic channels for
both proposed Gini variants led in general through the same
parts of the molecule. Therefore, for the following tests,
we chose the VD variant that we consider to be more
prospective for its better computational time.

Fig. 5 shows the visualization of a computed dynamic
channel. Edges in Gini with value above certain threshold
are visualized as small spheres located at midpoints of each
edge (a). The surface of the channel is shown in (b).

The computed dynamic channel was compared against the
channel (from the set of channels computed separately in
each snapshot) with the biggest bottleneck radius. The com-
parison shows that the radii of dynamic channels computed
for selected trajectories are significantly larger implying that
the molecule is flexible at that regions and potentially a small

Table I
COMPARISON OF BOTTLENECK RADII. THE BOTTLENECK OF A

DYNAMIC CHANNEL IS COMPARED WITH THE CHANNEL WHICH HAS
THE MAXIMUM BOTTLENECK IN THE WHOLE SET OF CHANNELS

COMPUTED SEPARATELY IN EACH SNAPSHOT.

Bottleneck radius
Trajectory Dynamic channel Set of channels

(VD Gini variant) (computed separately, maximum)
wt sdcl.cl 2.798 Å 2.021 Å
04 sdcl.cl 3.051 Å 1.968 Å
14 sdcl.cl 2.568 Å 2.079 Å
15 sdcl.cl 2.601 Å 1.725 Å

ligand molecule may pass through. Table I illustrates the
results of the comparison for protein trajectories of wild-
type (wt) and mutated (04,14,15) haloalkane dehalogenase
DhaA molecules.

For example, the time requirement to update Gini (maxi-
mization) in one snapshot (approx. 4500 atoms), in the case
VD is used, is below 8 seconds on the common desktop
computer (single-threaded, 2.0GHz, 2GB RAM). We have
to point out, that the time for processing the trajectory
is linearly dependent on the number of snapshots in the
trajectory.

After snapshots are processed, the Dijkstra’s algorithm is
to be run. The complexity, again, is not dependent on the
number of snapshots previously processed since the topology
of Gini remains constant over time. The Dijkstra’s algorithm
running time on the previously mentioned sample Gini and
computer is below 5 seconds. Unlike the update of Gini in
each snapshot, the Dijkstra’s algorithm is run only once after
all snapshots are processed.

V. CONCLUSION

We have presented a method capable of computing dy-
namic channels. Dynamic channels are optimized for the
whole trajectory and not for one particular snapshot only.
Our method is able to consider the whole trajectory at once
– computed dynamic channels are composed of parts from
different snapshots.
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Dynamic channels are able to highlight pulsing local
neighbourhood and parts of the molecule with high flexi-
bility. A ligand may pass through such pulsing areas.

In combination with previous methods, the proposed so-
lution may help chemists to find possible paths which could
provide an access to the active site. The residues surrounding
the selected channel in the molecule could be replaced so
that the active site becomes either more easily accessible or,
on the contrary, inaccessible through the particular part of
the molecule.

We expect that, by using this method, new information
about the behaviour of various protein molecules will be
revealed. After the development of sophisticated visualiza-
tion methods the algorithm will be integrated into protein
visualization software Caver Viewer (http://www.caver.cz).

The testing version of the algorithm was implemented in
Java programming language and is available for download
from http://decibel.fi.muni.cz/˜xbenes2/dynChannels.
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