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Abstract—Molecular docking are widely used computational 
technics that allow studying structure-based interactions 
complexes between biological objects at the molecular scale. 
The purpose of the current work is to develop a framework 
that allows performing inverse virtual screening to test at a 
large scale a chemical ligand docking on a large dataset of 
proteins, which has several applications in the field of drug 
research. We developed different strategies to distribute the 
docking procedure, as a way to efficiently exploit the 
computational performance of multi-core and multi-machine 
(cluster) environments. This tool has been tested on 24 
protein-ligand complexes taken from the Kellenberger dataset 
to show its ability to reproduce experimentally determined 
structures and binding affinities. 

Keywords—Protein-Ligand docking; inverse docking; ranking 
methods; distributed computations; HPC experiments. 

I.  INTRODUCTION 
In the field of drug discovery or drug design, molecular 

docking is focused on protein-ligand complexes to study 
how the chemical ligand that is a drug will bind the target 
protein receptor. The prediction of the binding mode of a 
ligand into a protein target cavity, the structure of the 
complex and the estimation of the binding affinity between 
both partners is crucial to find new therapeutic compounds 
to cure life threatening diseases. Molecular docking 
represents a virtual alternative to costly and time-consuming 
systematic wet biological experiments such as High 
Throughput Screening (HTS) processes and/or Nuclear 
Magnetic Resonance (NMR)-based screening. Then, it is 
called Virtual Ligand Screening (VLS) or in silico ligand 
screening and has become a method of choice for rational 
drug design, hits identification and hits to leads 
optimization [1][2][3]. At present, several applications are 
available for virtual screening, such as PLANTS [4], DOCK 
Blaster [5], GOLD [6], AutoDock [7][8], FlexX [9], Glide 
HTVS [10], ICM  [11] and LigMatch [12]. 

VLS tries to predict probable bindings of a huge number 
of ligands (to the order of millions) to a unique target 
receptor and is linked to multiple ligand dockings. Such 
methods require knowledge of the three dimensional 
structure of a receptor alone or associated with its 

experimental ligand. Many chemical databases and libraries 
provide millions of compounds, among which we can cite 
some public and free ones such as the PDBbind database 
[13] or the ZINC database [14], some with fees access as 
the Cambridge Structural Database [15] and several private 
pharmaceutical collections. Protein structures are obtained 
from the Research Collaboratory for Structural Biology 
(RCSB) Protein Data Bank (PDB) [16], an open source 
database that collects all public experimental data on 
tridimensional biological structures. For a large number of 
proteins, X-ray crystallography and NMR provide 
experimental structural data. In November 2013, the 
number of protein structures publicly available in the 
Protein Data Bank is over 85,000 the number of nucleic 
acids structures is about 2,500 and the number of structures 
of nucleic acids-protein complexes is about 4,000. The total 
number of structures available in the PDB increased on 
average by 6,500 structures per year during the last decade 
[16]. Yet, it is important to highlight that these statistics do 
not include the large number of proprietary structures as 
described above held by pharmaceutical companies that 
dispose of their own private structures databanks. To use 
non-resolved structures for a protein of interest, 3D 
prediction models can be built de novo [17] or based on 
partially known fragments by homology modelling 
[18][19]. 

The purpose of the current work is to develop a new 
virtual screening tool that allows performing large-scale 
structure-based inverse docking. The main idea of this 
approach is to test at a large scale a chemical ligand on a 
large dataset of proteins. In the fields of drug design and 
structural biology, inverse docking methodology would find 
several applications. It can be used to search for additional 
uses of new drugs, by searching for interactions with 
protein groups outside the usual research field. Inverse 
docking can also be used to identify potential side effects of 
new drugs or to help choosing the less harmful treatment for 
a disease. Several problems arise when performing inverse 
docking, as we are no longer targeting a single protein but 
thousands. One of the main concerns is the computation 
time, which represents a clear obstacle when dealing with a 
large number of different proteins. For instance, even with 
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the use of multicore processing we shall not restrain the 
inverse docking to a single computer but rely on multiple 
computational environments such as clusters and grids. In 
order to effectively use wide computational resources, 
however, we cannot simply launch a batch of docking 
computations but we must rethink docking in terms of task 
distribution, of pipelining, as well as load balance and fault 
tolerance. Recently, in number of works, several 
implementations to performed massively parallel ligand 
screening are reported in the literature with Message 
Passing Interface (MPI or openMP) only [20] or combined 
with multi-threading programming [21], with cloud-
computing to treat Full Flexible Receptors (FFR) models 
[22][23] or even with FPGAs or GPUs accelerators [24]. 

In this work, docking simulations were performed with 
the AutoDock4.2 software [25] and we developed a set of 
Python scripts to reverse the docking process. We also 
developed a Python framework embedding different 
strategies to distribute the docking procedure, as a way to 
efficiently exploit the computational performance of multi-
core and multi-machine (cluster) environments. Data 
presented in this paper result from the testing described 
hereafter. The experiment was conducted to compare the 
docked poses obtained with our tool for a set of chemical 
ligands on their experimental target to the determined 
structure of the complex obtained by X-ray crystallography. 
The rest of this paper is structured as follows: Section II 
presents the different strategies we developed to decompose 
the docking computation, the description of the test set and 
methods we used to generate and to rank the docking poses. 
In Section III, docking poses given by these strategies are 
compared to the native ones (X-ray structures). Finally, all 
results are afterward discussed in Section IV. 

II. METHODS 

A. Parallel Decomposition 
To obtain a better implication of the computational 

resources, we must imperatively improve task parallelism 
when conducting large-scale inverse docking. If 
decomposing a docking job in parallel task may trigger a 
better utilization of the computational resources through 
pipelining and load balance, it also contributes to the fault 
tolerance aspects since only a small segment of the 
execution is lost in the case of a computer crash or 
execution failure. For this, we developed two methods to 
decompose the docking computation and improve tasks 
distribution and fault tolerance. 

The first strategy to distribute docking computations 
aims at the reduction of the exploring space through the 
multiplication of the number of small 3D boxes. For 
instance, the "single grid" used in a blind docking 
experiment and describing the whole protein volume is 
arbitrary split into several grids. Each grid is a sub-volume 
of points covering a piece of the protein. Assuming a 
regular decomposition, we define a geometrical Arbitrary 
Cutting method (AC) as 12-part decomposition scheme, i.e., 
3x2x2 (3 on the longest axis of the protein). We also tested 

multiple space cuttings of the whole-space to find a suitable 
decomposition ratio in prior experiment and the 12-part 
scheme showed better quality docking results than other 
geometrical cuttings into multiple subspaces as n-part 
schemes where n = 8 (2x2x2), 27 (3x3x3) or 64 (4x4x4) 
[26]. Indeed, a large number of 3D boxes may improve 
parallelism but the number of subspaces is also dependent 
on the size and shape of the protein. So, having too small 
3D boxes may limit the movement of the ligand and impact 
the success of the ligand docking. Hence, the choice of 
decomposition must be carefully tuned and the number of 
generated chunks must be precisely balanced. Moreover, the 
several subspaces are overlapping each other to explore the 
entire protein surface and overcome the presence of the 3D 
boxes edges. Indeed, one of the constraints imposed by 
AutoDock is that the ligand cannot bind outside of the box. 
The overlapping is inherently dependent on the ligand size, 
so in our experiments we set two ranges for the partial 
overlapping: a third of the juxtaposed boxes if the ligand 
size is inferior to it, or the size of the ligand if the ligand is 
larger than that.  

This decomposition strategy is simple to implement and 
the subspace grids can be easily generated from the 
coordinates of the protein. By multiplying the number of 3D 
boxes we can deploy the docking over different processors 
in order to be computed in parallel. One drawback of this 
strategy, however, is that it does not check the protein 
surface for cavities (which are potential docking sites), and 
may therefore "cut" right in the middle of a potential cavity, 
making it less interesting. Another drawback of this method 
is that only ligands inside the grid can be evaluated. Indeed, 
any atom of the ligand outside the 3D box will not be 
treated and will eliminate the pose of the conformer during 
the sampling process, which may prevent the detection of 
potential bindings when part of the ligand crosses the 
boundaries of the 3D box. So, to overcome boundaries 
problems, we also use a more rational knowledge-based 
method.  

This second method to perform space cutting consists in 
predicting upstream pockets and cavities on the surface 
receptor with additional programs and carry out dockings 
only on these pockets [27][28]. For this Pocket Search 
method (PS), we used the Fpocket program [29] that 
screens pockets and cavities using a geometrical algorithm 
based on Voronoï tessellations. The second version of the 
software (Fpocket2) is compatible with a multiprocessing 
parallel use. Only pockets that show a long side superior to 
a third of the whole protein longest side and inferior to the 
half of the whole protein longest side are conserved as to 
limit the number of generated jobs and to avoid multi-
exploration of the same space. One advantage of the pocket 
strategy is to refocuse the docking algorithm exploration 
zones only on predictive biological sites of interest 
(potential binding sites). As only these interesting zones are 
included in the docking procedure they can drastically 
improve the overall inverse docking performance. At the 
opposite side, the pocket search is a predictive method and 
as such it may exclude some potential zones, which should 
not be overpassed by the AC method described above. 

21Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



B. Preparation of the Test Set 
The test set used in this study is constructed from the 

Rognan’s group [30] set of 100 protein-ligand complexes. 
To be able to perform accurate High Definition (HD) 
docking only proteins structures with a long side inferior to 
60 Angstroms are conserved. Twenty-four complexes have 
passed this process and are included in the final test set (see 
TABLE I). Molecular weights of ligand molecules range 
from 114 to 659 Daltons, number of atoms in the ligand 
range from 10 to 52 and number of rotatable single bonds 
(rotors) in ligand molecules range from 0 to 23. All ligands 
molecules bind to their target protein non-covalently. 
Structures files and coordinates of all the complexes are 
downloaded from the Structural Chemogenomics Group 
website [30]. For the convenience of computation, each 
complex file was split into a protein molecule file in PDB 
format and a ligand molecule file, which is saved in Mol2 
format. All preparation settings are available in the work 
from Kellenberger et al. [31]. The program automatically 
generates all docking parameters files and each complex is 
then subjected to an exhaustive conformational sampling 
procedure with AutoDock. 

C. Conformationnal Sampling Procedure 
The AutoDock program (version 4.2) is used to generate 

an ensemble of docked conformations for each ligand 
molecule. This program utilizes a Lamarckian Genetic 
Algorithm (LGA) for conformational sampling [32]. Each 
LGA run outputs a single docked conformation as a final 
result. For the AC method and the PS method 50 individual 

LGA runs are performed to generate 50 docked 
conformations for each ligand. All AutoDock docking 
experiments were performed with the default parameters of 
the Lamarckian algorithm for initial population size 
(ga_pop_size = 150), maximal number of energy evaluation 
(ga_num_evals = 2500000) and maximal number of 
generations  (ga_num_generations = 27000). The protein 
structure is kept fixed during docking. 

D. Ranking the Best Ligand Pose 
AutoDock needs to compute an affinity grid for each atomic 
type to pre-evaluate the binding energy. The affinity grid is 
contained in a 3D box that frames the protein surface. The 
binding energy is evaluated with a tri-linear interpolation of 
the eight-grid points affinity value surrounding each atom 
of the ligand.  For the scoring step, computation time will 
only depend of the number of atoms in the ligand and will 
be independent of the protein volume. The free energy of 
binding ΔG is computed with the AutoDock4 scoring 
function (AD4) [33]. The AD4 scoring function is 
composed by several energy terms of classical physics force 
fields. The free energy of bonding is expressed by the sum 
of molecular mechanics components such as a dispersion-
repulsion term, a term for the hydrogen bonding, a term for 
the electrostatics contribution, a term descripting the energy 
associated to bond lengths, bond angles and associated 
restriction entropy loss and a term for the desolvation 
energy (equation (1)). 

 
(1) ∆! = !∆!!"# + !∆!!!"#$ + !∆!!"!# + !∆!!"# + !∆!!"#$  
 

 

TABLE I.  THE 24 EXPERIMENTAL PROTEIN-LIGAND COMPLEXES 

PDB 
code 

Res. 
(Å) 

 
Protein 

 
Ligand 

1azm 2.0 Carbonic Anhydrase I 5-Acetamido-1,3,4-Thiadiazole-2-Sulfonamide 
1cbs 1.8 Cellular Retinoic-Acid-Binding Protein Type II Retinoic Acid 
1ebp 2.1 Epididymal retinoic acid binding protein Retinoic Acid 

1fkg 2.0 Fk506 Binding Protein (1R)-1,3-Diphenyl-1-Propyl(2S)-1-(3,3-Dimethyl-1,2-Dioxopentyl)-2-
Piperidinecarboxylate (Rotamase Inhibitor) 

1fki 2.2 Fk506 Binding Protein (21S)-1-Aza-4,4-Dimethyl-6,19-Dioxa-2,3,7,20-Tetraoxobicyclo Pentacosane 
1glp 1.9 Glutathione S-Transferase Yfyf  Glutathione Sulfonic Acid 
1glq 1.8 Glutathione S-Transferase Yfyf S-(P-Nitrobenzyl) Glutathione 
1hfc 1.5 Fibroblast Collagenase (N-(2-Hydroxymatemethylene-4-Methyl-Pentoyl)Phenylalanyl)Methyl Amine 
1icn 1.7 Intestinal Fatty Acid Binding Protein Oleate (Oleic Acid) 
1lic 1.6 Adipocyte Lipid-Binding Protein Hexadecanesulfonic Acid 
1lmo 1.8 Mucopeptide N-Acetylmuramylhydrolase Di-N-Acetylglucosamine 
1mcr 2.7 Immunoglobulin delta Light Chain Dimer N-Acetyl-L-His-D-Pro-Oh 
1mmq 1.9 Matrilysin Hydroxamate Inhibitor 
1mup 2.4 Major Urinary Protein Complex 2-(Sec-Butyl) Thiazoline 
1nco 1.8 Holo-Neocarzinostatin Apo-Carzinostatin chromophore 
1poc 2.0 Phospholipase A2 1-O-Octyl-2-Heptylphosphonyl-SN-Glycero-3-Phosphoenolamine 
1rob 1.6 Ribonuclease A Cytidylic Acid 
1srj 1.8 Streptavidin Naphthyl-Haba 
1stp 2.6 Streptavidin Biotin 
1tng 1.8 Trypsin  Aminomethylcyclohexane 
1tnl 1.9 Trypsin Tranylcypromine 
1ukz 1.9 Uridylate Kinase Adenosine-5'-Diphosphate 
3ptb 1.7 beta-Trypsin Benzyldiamine 
8gch 1.6 gamma-Chymotrypsin Gly-Ala-Trp (peptide) 
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The best ligand poses obtained by AC and PS methods 
are discriminated using the best energy of binding for each 
method with the AD4 function. In addition, the localization 
of best energy docked poses is compared to the 
experimental pose with the measurement of the Euclidian 
Distance (ED) between the two ligands geometrical mass 
centers. When ligands are in the same binding cavity as the 
experimental one and the ED is lower than 2.5 Angstroms, 
the ligand pose is considered similar to the crystallographic 
pose and is called X-pose. When ligands are partially 
docked in the experimental cavity or able to dock in a 
juxtaposed cavity and ED is included between 2.5 and 8.5 
Angstroms, the ligand pose is called J-pose (for Juxtaposed-
pose). Beyond this value, we checked that any ligand is 
localized in another binding area than the experimental 
structure. In this case, the wrong ligand pose is called W-
pose. (All of these ligands poses were checked by hand and 
visualized with VMD [34]). Thus, ligand pair Root Mean 
Square Deviation (RMSD) computation evaluates the shift 
between the binding conformation of the best-docked 
ligands and the crystallographic conformation. The RMSD 
corresponds to the measure of the average distance between 
atomic positions of two structures expressed in Angstroms 
as it shows in equation (2). 
 
(2) 

!"#$ !,! = ! 1
! (!!" − !!")! + (!!" − !!")! + (!!" − !!")!)

!

!!!
 

III. RESULTS 
As described above, our methodology was tested on 24 

experimental protein-ligand complexes available in the 
PDB. Both AC and PS methods were used individually and 
in a combined procedure to evaluate their ability to re-dock 
an experimental ligand on its native protein target receptor.  

For the PS method, the experiment shows that for this 
size of proteins (see II.A), the Fpocket algorithm found at 
the most five or six different well-sized pockets. TABLE II 
gives the volume of the three first pockets found for each 
experimental complex. For all proteins of the set (100%), 
one pocket at least is detected, for nineteen proteins in the 
set (19/24, 79%) two pockets are detected and for 14/24 
(58%) three pockets are detected. If structures displaying at 
least 4 pockets are selected, the ratio of the set falls down to 
9/24 (37.5%) and decreases even more when considering a 
higher number of pockets. Thus, it appears that for each 
protein-ligand complex selecting only the first pocket found 
by the Fpocket algorithm is enough to consider the whole 
set; the results point that selecting at most the three first 
pockets should refine the search. In addition, the number of 
jobs launched partly depends on the number of pockets that 
will be explored. Thus, the number of jobs launched is 
precisely defined for each complex. 

A fixed number of jobs can be very interesting to 
monitor the speed-up and the scalability of the program 
over a variant number of available cores. In theory, the 
optimal load balance should be reached if the number of 
available cores is superior or equal to the number of 
launched jobs. So, to optimize the computation time we 
should set the best ratio jobs/cores and to do this a fixed 
number of jobs is necessary. For example, this set of 
complexes generates a pool of maximum 360 jobs (24 
complexes x (12 AC method boxes + 3 pockets boxes from 
the PS method at the most)). So, the best energy structure of 
the ensemble of the twelve boxes is conserved for the AC 
method and the best energy structure of each of the first 
three pockets is conserved for the PS method. Finally, four 
docked poses at the most are obtained for each complex, 
which will be compared with the experimental ligand pose 
of the crystallographic ligand-protein complex. Previously, 
we define that the re-docking is successful if an X-pose or a 
J-pose were obtained for the ligand (see II.D). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Firstly, the results for AC and PS methods are compared 

with the corresponding Blind Docking experiment (BD). 
Blind Docking was introduced to detect possible binding 
sites and ligands binding modes by scanning the entire 
surface of protein targets [35][36]. This represents the 
“naïve” approach to dock ligands on unknown targets but is 
barely parallelizable. In fact, for each complex the 
AutoDock software will launch only one infrangible 
docking task with the whole volume to explore. Depending 
on the shape of each receptor, a large number of 
runs/generations is required in order to systematically cover 
the entire protein surface and consequently to obtain good 
docking results. 

 

Figure 1. Proportion of Best Binding Energy Values given 
by the Sampling Method (AC: 62.5%, PS: 29%, BD: 8.5%). 
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For twelve experiments out of the set (12/24, 50%) the 
best energy score was obtained by the PS method, for 10/24 
(41.5%) it was obtained by AC method and only for 2/24 
(8.5%), it was obtained by BD experiment (Figure 1). 
Moreover, the combined results of AC method and PS 
method give a better energy of docking for 22/24 (91.5%) 
compared to BD. Furthermore, for 54% of the cases the 
combined methods gave a RMSD between the experimental 
structure and the best docking pose lower than 5 Angstroms 
and a RMSD lower than 10 Angstroms for 23/24 (96%) 
versus only one for BD (4%) in both case (TABLE III). 
These results highlight that our methods perform better 
exploration of the protein surface. Indeed, the ratio 
(volume/number of runs) explored in the case of our 
methodology is better optimized than in the case of BD. 
Both methods ensure a better conformational sampling and 
a better quality of docking pose than using the BD.

The distribution of docked poses depending on the 
sampling method associated with the best energy is 
presented in Figure 2. For 18/24 (75%) the sample methods 
that give the best free energy of binding give also the best 
docking poses (X-pose or J-pose) distributed as follows: 7/18 
(39%) for AC method and 10/18 (55%) for the PS method 

and 1/18 (6%) for the BD experiment. Among these 
complexes, the combined method that gives the best free 
energy of binding gives also the best docking pose for 17 
(94.5%) versus only one for BD (5.5%). From TABLE III, 
we can extract the following correlation: comparing the 
docked poses at rank 1 of Euclidian distance and rank 1 for 
the lowest RMSD value, there is a match for 6/24 (25%) in 
the case where a J-pose is observed and for 14/24 (58.5%) in 
the case where an X-pose is observed. So, at rank 1 for the 
two previous criteria, the ligand docked poses (X-poses and 
J-poses) give the lowest RMSD value for 18/24 (75%). 
Comparing the docked poses at rank 1 of Euclidian distance 
and rank 1 and 2 for the lowest RMSD value the proportion 
reach 22/24 (91.5%). The match ratio is distributed by 
sampling method as follows:  The AC method gives the X-
pose for 3 complexes with a mean RMSD value equal to 
2.32 Angstroms compared to the experimental structures 
(1glp, 1mup, 1tnl). The AC method gives also a J-pose for 3 
complexes (1hfc, 1icn, 1rob) and an associated RMSD value 
equal to 7.82 Angstroms compared to the experimental 
structures. Nevertheless, it is important to mention that for 
1hfc and 1icn poses are reverse poses that is to say the ligand 
acquires a head to tail conformation compared to the 
experimental one so the RMSD increases. The PS method 
gives the X-pose for 11 complexes (1azm, 1cbs, 1ebp, 1fkg, 
1fki, 1mmq, 1nco, 1stp, 1tng, 3ptb, 8gch). In these cases, the 
mean RMSD with the experimental structure is 2.93 
Angstroms. The PS method gives a J-pose for 4 complexes 
(1lic, 1mcr, 1poc, 1ukz) and an associated mean RMSD 
value with the experimental structure of 5.54 Angstroms 
(Figure 3). The BD method gives an X-pose for 1srj with a 
RMSD value of 2.47 Angstroms. If the rank 2 for the 
Euclidian distance is also considered, the PS method is able 
to replace the ligand for 1srj in an X-pose with 2.35 

Figure 2. Distribution of docked poses (X-pose in grey, J-
pose in white and W-pose in black) by Sampling Method 

giving the Best Binding Energy. 

TABLE II.      NUMBER OF POCKETS DETECTED FOR EACH PROTEIN AND 
THEIR VOLUMES 

 Pocket 1 
(PS1) 

Pocket 2 
(PS2) 

Pocket 3 
(PS3) 

PDB Volume (Å3) Volume (Å3) Volume (Å3) 

1azm 833 786 244 

1cbs 1626 378 557 

1ebp 1262 370 616 

1fkg 549 N/A N/A 

1fki 576 756 N/A 

1glp 1307 370 640 

1glq 607 637 686 

1hfc 762 683 485 

1icn 1655 N/A N/A 

1lic 978 927 N/A 

1lmo 1306 143 561 

1mcr 676 192 N/A 

1mmq 409 276 548 

1mup 479 583 756 

1nco 350 N/A N/A 

1poc 1016 504 642 

1rob 654 576 686 

1srj 408 N/A N/A 

1stp 367 N/A N/A 

1tng 647 610 N/A 

1tnl 602 466 512 

1ukz 600 1072 N/A 

3ptb 549 328 529 

8gch 765 619 383 
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Angstroms of RMSD. So, the combined method with these 
evaluation criterions gives the best pose for 22/24, 91.5% of 

the cases of the total set. 

 

TABLE III. EVALUATION CRITERIONS OF THE SAMPLING METHODS 

 
Energy 

(kcal/mol) RMSD (Angstroms) Gravity Centers Euclidian Distance (Angstroms) 

Rank 1 Rank 1 Rank 2 Rank 1 Rank 2 

PDB Method Value Method Value Method Value Method Value Pose Method Value Pose 

1azm AC -5.15 PS1 1.95  N/A N/A PS1 1.12 X-pose  N/A N/A  N/A 

1cbs PS2 -6.84 PS2 2.24 AC 8.86 PS2 1.17 X-pose PS1 1.59 X-pose 

1ebp PS2 -8.68 PS2 2.00 AC 2.73 PS2 0.77 X-pose PS1 1.23 X-pose  

1fkg PS1 -5.96 PS1 5.49 AC 8.22 PS1 1.43 X-pose AC 3.98 J-pose 

1fki PS1 -10.49 PS1 0.60 PS2 1.75 PS1 0.59 X-pose PS2 1.00 X-pose 

1glp AC -4.46 AC 2.71 PS1 5.42 AC 0.76 X-pose PS1 2.74 X-pose 

1glq BD -3.66  N/A N/A  N/A N/A  N/A N/A  N/A  N/A  N/A  N/A 

1hfc AC -4.78 AC 8.75  N/A  N/A  AC 5.43 J-pose  N/A  N/A  N/A 

1icn AC -3.97 AC 8.80  N/A  N/A  PS1 3.49 J-pose AC 3.66 J-pose 

1lic PS1 -4.65 PS1 5.75  N/A  N/A  PS1 3.63 J-pose AC 4.23 J-pose 

1lmo AC -3.26  N/A  N/A   N/A  N/A   N/A  N/A   N/A  N/A  N/A  N/A 

1mcr AC -4.03 PS2 4.41  N/A  N/A  PS2 2.81 J-pose  N/A  N/A  N/A 

1mmq AC -6.31 AC 3.97 PS1 4.16 PS1 0.79 X-pose AC 1.59 X-pose 

1mup AC -4.23 AC 2.59 PS1 4.04 AC 1.55 X-pose PS1 2.02 X-pose 

1nco PS1 -7.19 PS1 7.83  N/A  N/A  PS1 2.10  X-pose AC 8.22 J-pose 

1poc PS1 -1.91  PS1 6.71  N/A N/A  PS1 3.95 J-pose  N/A  N/A  N/A 

1rob PS2 -5.29 AC 5.91 PS1 9.89 AC 5.32 J-pose PS2 8.05 J-pose 

1srj BD -7.48 PS1 2.35  BD 2.47 BD 0.45 X-pose PS1 1.23 X-pose 

1stp PS1 -6.10 PS1 1.34 AC 2.42 PS1 0.37 X-pose AC  0.55 X-pose 

1tng PS1 -5.87 PS1 1.05 AC 1.53 PS1 0.63 X-pose AC 0.83 X-pose 

1tnl AC -5.96 AC 1.68 PS1 2.44 AC 0.35 X-pose PS1 0.41 X-pose 

1ukz AC -6.74 PS1 5.31  N/A N/A PS1 3.39 J-pose  N/A N/A  N/A 

3ptb AC -5.52 PS1 1.52 AC 2.07 PS1 0.19 X-pose AC 0.23 X-pose 

8gch AC -5.00 PS1 4.32  N/A N/A PS1 1.03 X-pose  N/A N/A  N/A 

a. N/A: Non Applicable data – RMSD or Euclidian Distance > 10 Angstroms 
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Figure 4 shows the results obtained with the AC method 
for the experimental complex 1stp. An X-pose with an 
Euclidian distance between ligands geometrical mass centers 
of 0.55 Angstroms (rank 1) with a RMSD value of 2.42 
Angstroms (rank 1) is observed. As we can see on Figure 4 
and Figure 5 with two different types of protein 
representations, the re-docked ligand reached successfully 
the experimental cavity of binding and adopts a similar 
conformation compared to X-ray structure. On Figure 4, the 
New Cartoon style represents only the secondary structure of 
the backbone skeleton of the protein whereas on Figure 5, all 
amino-acids side chains are included to build the protein 
surface thanks to the MSMS algorithm. The local structure 
of side chains creates reliefs and since some of them display 
specific chemical properties, they can arrange themselves in 
binding cavities. The ligand pose and conformation in the 
binding site will be related to the cavity geometry. As we can 
see in Figure 4, a good ligand pose implies a chemical 
conformation that precisely place the chemical groups 
implied in Hydrogen bonds in an appropriate range of 
distance (around 2.0 Angstroms). Hydrogen bonds are strong 
dipole-dipole interactions between electro-negative atoms, 
and according to local chemical composing they are partially 
in charge of ligand docking in a binding pocket. For ligands 
from seven complexes, there is a match between RMSD and 
mass centers distance but not between both and the best 
binding energy. In all cases the pose giving the best energy 
is localized in different from cavities that the 
crystallographic ones. These results can be explained by 
several settings of using decomposing method (Figure 5). 
For 1azm, the best energy is obtained with the box-11 of the 
AC method (-5.15 kcal/mol) whereas best RMSD with an 
X-pose is obtained by the PS method (PS1). The AC pose is 

localized in a different cavity from the crystallographic one. 
The box-11 dimensions do not allow to include the 
crystallographic area and they do not permit to refind the 
experimental pose. On the other side, the PS1 box 
dimensions do not allow to refind the AC pose cavity 
neither. The experimental cavity (S1) is included in an 
another AC box, box-7. The ligand pose obtained with this 
box is localized in the same cavity as the previous AC box 
(S2) and presents a better energy than PS1 pose. If we set 
the dimensions of a tuned box able to include the two 
binding sites S1 and S2, the ligand pose obtained binds into 
S1 with even better energy of -5.26 kcal/mol. Finally, to 
maximise the number of energy evaluations and the 
conformationnal sampling, we carried out a 256 runs on the 
previous tuned box and anew the crystallographic cavity is 
obtained with a poorer energy compared to S1 of -4.49 
kcal/mol. So, just the box boundaries presence is not enough 
to conclude, 1azm complex may wrong prepared or this case 
shows the limits of the AutoDock force-field.  

Crystallographic pose refinding may be precluded by 
boxes boundaries but it is also impacted by protein shape 
specifications. In fact, for 1ukz, the cavity is closer to a 
funnel with a long and slight pipe that sinks into the protein 
structure. The experimental ligand is housed at the bottom 
of the pipe in a burried area in the protein core. Fpocket 
detects the left large extremity as part as a full binding 
pocket (PS2) and the hidden area as an another binding 
pocket (PS1). The AC box (giving the best energy) only 
takes in the funnel cavity and does not include the burried 
site (like PS2 does) and inversely PS1 includes the 
crystallographic cavity but does not take in the large surface 
cavity. It explains why there is no match between the AC 
method that gives the better energy and the PS1 X-pose. 

 

Figure 3. Mean RMSD (in Angstroms) for an X-pose (in 
grey) and a J-pose (in white) by Sampling Method at rank 1 

of Euclidian distance and rank 1 and 2 of RMSD. 

Figure 4. 1STP -- Streptavidin (New Cartoon, in purple)/Biotin 
(Licorice, X-ray in cyan, X-pose in yellow) protein-ligand 
complex stabilized by hydrogen bonds in the binding site. 
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Failed dockings can be explained by protein shape 
specifications but also by ligand chemical structure. Some 
ligands as 1lmo or 1rob are very exposed in large valleys at 
the protein surface, which are correctly identified by the 
Fpocket program as a binding pocket but the docking 
program could fail to place correctly the ligand on a planar 
surface. Else, the chemical nature of ligands could increase 
the docking process weakness: 1lmo ligand is a big flexible 
di-saccharide and 1rob ligand is an ADN nucleoside both 
containing –ose residues hard to treat with the Autodock 
force field. 

Only for 1glq in the test set, the best energy value is 
given by the blind docking experiment (-3.66 kcal/mol). The 
ligand pose is neither in the crystallographic cavity neither 
in any pocket cavity and binds on a relative open cavity. 
However, 1glq and 1glp are two crystallographic structures 
of the same protein with about the same degree of resolution 
complexed with two similar ligands (see TABLE I). For all 
that, Fpocket is not able to find precisely the same pockets 
in 1glq so the boundaries are not exactly at the same place 
and do not allow to retrieve the experimental pose with the 
PS method. The AC method does but the energy of binding 
is worse than for the pose obtained by the blind docking. 
Nevertheless, if we launch multiple blind docking 
experiments, this artefact binding mode should not be 
retrieved several times. 

1stp and 1srj are two crystallographic structures of the 
same protein (see TABLE I) with a large variation in 
resolution neatness. In fact, if a structure with a higher 
resolution than 2.0 Angstroms is available it is assumed that 
a structure with a lower resolution degree is a worse 
structure. In this case the two structures do not show 
remarkable difference of structure of the binding site. For 
the binding site in 1stp, the protein-ligand complex is the 
well known Streptavidin/Biotin complex in which the 
protein have a β-barrel secondary structure. This complex is 
one of a strongest non-covalent interactions known in 
nature. It is used extensively in molecular biology as a 
marker. The ligand fits perfectly in the binding site and the 
interactions are stabilized through a complex network of 
Hygrogens bonds. For 1stp, the experimental ligand was 
well replaced by the PS1 method (0.37 Angstroms) and AC 
method (0.55 Angstroms) with the best binding energy 
equal to -6.10 kcal/mol for PS1. For 1srj the ligand is 
Naphtyl-Haba docked in the same cavity as Biotin. It was 
well re-placed by the blind docking experiment (0.45 
Angstroms) and PS1 method (1.23 Angstroms) with the best 
binding energy equal to -7.48 kcal/mol for BD. This results 
could be explained by the asymetric shape of the protein 
that confers a geometry less spherical than a regular 
globular protein. Consequently, the long axis of the protein 
takes a high value and imposes the same grid spacing as the 
others proteins. But in this case, the surface to explore 
included in the blind docking box is less important and the 
majority of the grid points are not on the protein surface. So, 
the ratio volume/runs is very high and the algorithm explore 
much more precisely the binding pocket and leads to the 
best energy pose with the maximum goodness. 

IV. DISCUSSION/CONCLUSION 
In order to be able to treat many hundred proteins 

computations on High Performance Computing (HPC) 
architectures, we developed a set of methods to parallelize 
the treatment of each protein, as well as to distribute the 
tasks among a given set of machines as a way to speed up the 
overall execution of the inverse docking. For this, we 
developed a framework that can embed the AC and the PS 
method to explore as best as possible the protein surface and 
rationally dock the ligand into the binding cavity.  

 
Our results show that the methods we are developing 

perform better volume exploration with a better ratio 
volume/runs than a classical blind docking experiment. In 
fact, to perform an accurate high definition docking we have 
to deal with coherent grid spacing. By default, AutoDock 
builds affinity grids with a spacing of 0.375 Angstroms that 
corresponds to a quarter of the bond between two atoms of 
Carbone. We defined a spacing interval between 0.375 and 
0.450 in which we consider the accuracy of the simulation as 
a HD docking. The main drawback of this method is that 
AutoDock is able to build and also explore a 3D box of 126 
x 126 x 126 points at the most. So, only a protein whose long 
axis is lower than 60 Angstroms can fit into the grid box.

Figure 5. 1azm ligands in the crystallographic cavity (MSMS, 
in green): X-ray pose (in cyan), PS1 pose (in tan), Tuned box-
256R pose (in yellow) and 1azm ligands in another cavity: AC 
box-11 pose (in blue), AC box-7 pose (in purple), Tuned box-

50R pose (in purple) bound on the whole Carbonic Anhydrase I 
protein receptor with a: PS1 pocket box, b: Tuned box, c: AC 

box-7 
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Considering this kind of protein for a blind docking 
experiment, the AutoDock program is also limited in the 
number of simulations runs, that is to say in the number of 
times the initial LGA is reinterred (256 runs max.). So, AC 
method considers the BD box volume cut into 12 sub-boxes 
with a partial overlap. Each sub-box is explored by the LGA 
with 50 runs of simulations that roughly correspond to the 
half of the ratio volume/runs for the BD. Whereas the ratio is 
more difficult to precisely estimate, it is even better with PS 
method, which explains the effectiveness of the program to 
perform better exploration and to obtain better docking 
quality results than BD experiments.  

As many docking programs [37][38], we have shown that 
our framework is a successful tool to re-place correctly the 
ligand into the active site of the target receptor in a non-
covalent manner. Furthermore, it is also able to predict 
accurate ligands bindings independently of active site 
knowledge [39]. For this, we evaluated a good docking pose 
using three criteria: free energy of binding, Euclidian 
distance between mass centers and RMSD of the re-docked 
ligand with respect to the crystallographic ligand. 
Combinations of these criteria are able to discriminate right 
docking poses from experimental data. The combination 
between the binding energy and the RMSD (rank1 and 2) is 
able to discriminate 66.5% of the test set and the one 
between the mass center distance (rank1 and 2) and the 
RMSD (rank1 and 2) is able to discriminate 91.5% of the test 
set. On the other side, the ratio is 75% for the combination of 
binding energy and center of mass distances (rank1 and 2) 
and 71% for the combination of the triad. This is explained 
by the nature of the evaluation criteria. RMSD and mass 
centers distances are implicitly correlated because they both 
describe a space position. Mass centers distances describe a 
space position for the entire ligand whereas RMSD describe 
a space position for each atom of the ligand, both always in 
respect to the experimental structure. In fact the RMSD 
reflects the ligand structure in a local environment, its 
capacity to adapt itself to the binding cavity. Consequently, 
taking into account the numbers of atoms implied both in the 
binding site and in the ligand structure and the number of 
torsions available for the ligand, the probability to obtain a 
low RMSD in a different cavity than the crystallographic 
binding site is close to zero. This is well shown in TABLE 
III, for 8 cases out of 9 if the RMSD is higher than 10 
Angstroms the corresponding mass center distance is higher 
than 10 Angstroms too (N/A data). That explains the good 
ratio for these criteria combination. On the other side, the 
space position adopted by the ligand in the binding site 
translated by the RMSD value impacts the chemical match 
between chemical groups able to make non-covalent 
interactions (Hydrogen bonds, van der Waals forces and 
electrostatics) with atoms in the binding cavity. These forces 
represent a major contribution into the energy function that is 
used to evaluate the free energy of binding (see II.D). So, the 
ratio of the combination of RMSD and energy of binding can 
be explained partially by this relationship. 

Nonetheless, in this experiment we have shown that we 
reproduce ligands experimental poses with our framework. 
As the references are experimental data, we dispose of 

comparison elements (RMSD and mass centers distances). 
The results obtained in this study (distances determining X-
pose and J-pose and associated RMSD) are good enough to 
validate the method for detecting workable binding sites. To 
identify already known binding sites or new ones the aim of 
this program is to perform predictive experiments on large 
sets of proteins for a given ligand of interest. For these, we 
will only dispose of the free energy of binding to 
discriminate good docking poses. For 7/24 there is no match 
between the binding energy and the geometric criterions. In 
some remarkable cases we have shown previously, only the 
free binding energy computation does not allow to retrieve 
similar poses to the crystallographic ones. That is 
demonstrating that the evaluation of the binding energy is 
not an absolute reference. To reduce the unsuccessful ratio 
we have to reinforce the ranking evaluation process by 
adding other scoring methods able to make up rare cases of 
force field failures. However, in most of the cases we have 
seen that the PS method strongly performs to detect 
druggable cavities on a protein receptor. In fact some 
proteins present multiple binding sites well described in 
enzymology allosteric phenomena especially. The advantage 
of using multiple pockets search is to identify well 
differentiated multiple sites on the fly during a unique 
docking simulation. That allows us to consider ligand 
repositioning experiments and also second targets and off-
targets hunting. In addition the AC method is able to 
overcome the PS method failures with adding search 
completeness and not excluding planar binding surfaces such 
as protein-protein binding area in particular. So, we 
demonstrate that the combination of the two methods is an 
accurate strategy to identify new protein targets for a given 
ligand.  

 
We developed an effective tool to perform large-scale 

inverse virtual screening works on both HPC hardware and 
personal computer able to identify proteins targets for a 
chemical ligand of interest. Originally developed for and 
with AutoDock4.2, the framework will embed a version with 
AutoDock Vina [40] as docking engine that supports 
multithreading natively but does not allow fine-grain control 
of algorithm parameters contrary to the previous AutoDock 
software.  
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