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Abstract—We present explicit and online Model Predictive Con-
trollers (MPCs) for an excitable cell simulator based on the non-
linear FitzHugh-Nagumo model. Despite the plant’s nonlinearity,
we are able to formulate the model predictive control problem
as an instance of quadratic programming, using a PieceWise
Affine (PWA) abstraction of the plant. The speed-versus-accuracy
tradeoff for the explicit and online versions is analyzed on various
reference trajectories. Our MPC-based approach, enabled by the
PWA abstraction, presents a framework for designing automated
in silico biomedical control strategies for excitable cells, such as
cardiac myocytes and neurons.

Keywords–Biocomputing; Model Predictive Control; Excitable
Cells.

I. INTRODUCTION

Excitable cells, like neurons and cardiac myocytes, are
building blocks of mammalian organ systems like the ner-
vous and the cardiovascular systems. They exhibit charac-
teristic cyclical responses to electrical stimuli, which could
be provided externally or by neighboring cells via diffusion.
The response is observed in terms of the change in their
transmembrane potential in time and is called the Action
Potential (AP). The cells are arranged contiguously to form
the corresponding tissue. The periodic electrical excitation
and diffusion at the cell-level leads to emergent patterns of
electrical-wave propagation at the tissue-level [1]. Anomalous
patterns at the tissue-level are associated with potentially fatal
disorders like epilepsy and cardiac arrhythmias. For example,
reentry, which corresponds to spiral waves in the cardiac
tissue, is a precursor of Atrial Fibrillation (AFib) [2].

Controlling the cell-level response is critical for countering
abnormal patterns at the tissue level. Excitable cells have
the following distinguishing features that pose challenges to
designing effective control strategies.

• Nonlinearity: The state space models for neurons and
cardiac myocytes have highly nonlinear vector fields,
which leads to multiple time scales.

• Noise: An actuator controlling a biological entity
receives noisy readings corresponding to the state of

the plant. Thus, robustness is critical while designing
a control law.

• Dimensionality: Excitable cells are large dynami-
cal systems and many state variables could be non-
observable.

Model predictive control, a widely used process-control
strategy, is well suited for biomedical applications involving
excitable cells. It involves solving a finite horizon open-
loop optimal control problem subject to the dynamics of the
plant, which is the system to be controlled. Based on the
measurements obtained at time T, the controller predicts the
dynamic behavior of the system over a prediction horizon
(Tp) and optimizes the control input over a control horizon
(Tc < Tp) such that a predetermined open-loop performance
objective function is minimized [3]. The objective function
usually measures the plant’s divergence from a prescribed
reference trajectory, and thus is minimized by the controller.
Disturbances and model mismatch constrain the controller’s
performance. The optimization can either be performed online
(for accuracy) or can be done offline (for speed).

We present implementations of both the online and offline
strategies for model predictive control of a neuron. Specifically,
MPCs for a nonlinear model-based simulator of an neuron
are presented. Fast and accurate model predictive control of
excitable cells can be used for in-silico testing of biomedical
control strategies, where a control law is designed and tested
in software before fabrication. The biological entity being
controlled is modeled using a simulator and the control law
is tested on it, in software. Authors in [4] and [5] present
novel strategies controlling and managing anomalous behav-
iors of neurons (epilepsy) and cardiac myocytes (ventricular
tachycardia) respectively.

Model predictive control of plants with nonlinear dynam-
ics, such as neurons, has garnered interest in the community,
due to its unique challenges and wide-ranging applicability
[3], [6]. The nonlinearity of the neuron dynamics results in
an instance of nonlinear optimization to be solved during
MPC. In general, nonlinear optimization is NP hard [7] and
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thus the implementation of online MPC is computationally
expensive. Explicit MPC for nonlinear systems was proposed
in [8], and has limited tool support. To circumvent these issues,
we adopt an approximately equivalent PieceWise Affine (PWA)
abstraction of the nonlinear neuron model for both the online
and explicit MPCs. In [9], the Mixed Logical Dynamical
(MLD) formalism was introduced for modeling systems whose
state variables evolve continuously in time subject to logical
constraints. The MPC problem for MLD systems was shown
to be an instance of Mixed-Integer Quadratic Programming
(MIQP). Later in [10], it was shown that PWA systems are
equivalent to MLD systems. Thus, converting the nonlinear
neuron model to an approximately equivalent PWA form
transforms the corresponding MPC problem from an instance
of nonlinear optimization to one of MIQP. Also, the PWA
abstraction enables the design of explicit MPC by using the
Multi-Parametric Toolbox (MPT) [11] in MATLAB.

Next, we outline the architecture of the controllers, see Fig.
1. The plant simulates an excitable cell and outputs the AP
corresponding to the input stimuli provided by the MPC. The
MPC’s goal is to compute optimal inputs such that the plant
tracks, in discrete time, a reference trajectory that consists of
a nominal sequence of APs.

Figure 1. Architecture for tracking action potentials of nonlinear
excitable cells using MPCs.

1) The plant uses a nonlinear model Mp of an excitable
cell for its simulation. We use the FitzHugh-Nagumo
(FHN) model [12], described in Section II, as Mp.

2) The plant outputs the n-dimensional state of Mp as
the state of the underlying excitable cell. For the FHN
model n = 2, and one of the state variables is the
dimensionless transmembrane potential, which tracks
the reference trajectory.

3) The MPC uses a PWA abstraction, MC , of the plant
model, to predict the behavior of the cell under
simulation. We use a modified version of the hybrid
model proposed in [13], henceforth referred to as the
Dumas-Rondepierre (DR) model, as Mc. The PWA
abstraction is used to cast the MPC’s optimization
problem as an instance of MIQP.

4) MPC is also equipped with an optimizer to compute
the optimal stimulus input I , such that the observed
state of the plant tracks a pre-defined reference tra-
jectory.

The following simplifying assumptions are made in our im-
plementation, and justified in the appropriate sections of the
paper:

1) The plant’s state is completely visible to the MPC.

Ideally, only the membrane potential is measurable
and the internal state is hidden.

2) No exogenous inputs (noise) are considered in the
current implementation.

3) The only mismatch between the plant and its model,
Mp, used by the MPC is due to the PWA abstraction.

We summarize our contributions below before outlining the
remaining sections.

1) MPCs for a nonlinear model-based neuron have been
designed by using a PWA abstraction. The resulting
MIQP optimization instance is solved using both
online and explicit approaches.

2) The PWA abstraction is used to enable the design of
explicit MPC in MPT. The toolbox has been extended
to track moving reference trajectories by augmenting
the state vectors and thus making the penalty matrices
time-varying.

3) The online and explicit approaches to the PWA
abstraction-based MPC are compared using several
test cases to analyze the tradeoff between accuracy
and speed.

The remainder of the paper is organized as follows. The
next section introduces the two models Mp and Mc in detail.
We formulate the MPC problem for the FHN model-based
plant in Section III. The implementation details follow in
Section IV. Then, we compare and contrast the online and
explicit strategies in Section V. We discuss related work in
Section VI before concluding with directions for future work
in Section VII.

II. PHYSIOLOGICAL BACKGROUND

As mentioned in the previous section, excitable cells are
characterized by their response to an external electric current,
called the stimulus. Nonlinear Differential Equation Models
(DEMs) capture the behavior of excitable cells in terms of
the change in the transmembrane potential in time, as the
cell oscillates between depolarization and repolarization in
response to the stimulus.

The FHN model [12] is a two-dimensional system of
differential equations, representing the dynamics of a neuron:

v̇ = v(1− v)(v − a)− w + I(t), (1a)
ẇ = bv − cw, (1b)

where v is the dimensionless transmembrane potential, w is
a dimensionless recovery variable, I is the magnitude of the
stimulus current and the parameters a, b and c are given in
Table I.

TABLE I. PARAMETERS OF THE FHN MODEL (Mp) USED BY THE
PLANT TO SIMULATE AN EXCITABLE CELL.

Parameter a b c
Value 0.20 0.05 0.01

The MPC uses a Modified DR (MDR) model [13], a PWA
version of the FHN model, to predict the plant’s behavior
(simulation of the excitable cell). The cubic term in (1a) is
linearized to obtain the PWA dynamics (2):

v̇ = p̃(v)− w + I(t), (2)

where
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Figure 2. Simulations of the FHN and the MDR model. Maximum absolute
L1 error for v = 0.0056 and w = 0.0013.

p̃(v) =



p(v−)
v−

v v < v−[
p(v+)−p(v−)
v+−v−

]
v +

[
p(v+)−

p(v+)−p(v−)
v+−v− v+

]
v− ≤ v ≤ v+

p(v+)
1−v+ (1− v) v > v+.

(3)
The constants v+ and v− are given by

v− =
a+ (1−

√
a2 − a+ 1)

3
, and (4a)

v+ =
a+ (1 +

√
a2 − a+ 1)

3
. (4b)

The function p(.) is given by

p(v−) = v−(1− v−)(v− − a), and (5a)
p(v+) = v+(1− v+)(v+ − a). (5b)

The MDR model model represents Mc used by the controller
to predict the plant’s behavior and compute optimal stimuli
values. It can be viewed as a hybrid model consisting of three
modes and can be written in the following format:

ẋ = Aix +Biu + fi (6)

y = Cix +Diu + gi (7)

where
• i = index of the mode (piece),

• x(t) = Rn state vector,

• u(t) = Rm input vector,

• y(t) = Rp output vector,

• Ai = n× n the Dynamics matrix for mode i,

• Bi = n×m the Input matrix for mode i,

• Ci = p× n the Output matrix for mode i,

• Di = p×m the Feed-through matrix,

• fi = non-homogeneity in dynamics - real vector of
size n× 1 and

• gi = real vector of size p× 1.

In the MDR model, we have:

1) Three modes, i.e., 1 ≤ i ≤ 3.
2) Two states v and w, i.e., n = 2.
3) One input, Stimulus I , i.e., m = 1.
4) Two outputs v and w produced by plant, i.e., p = 2

(all the states are observable).
The MPC works in discrete time. MATLAB’s c2dm function
was used, with a sampling rate of 0.01 sec/sample and the zero-
order hold (zoh) method, to generate the discrete time version
of the MDR model. We obtain the following matrices based
on the parameters in Table I. The superscript “d” denotes the
corresponding matrix in the discrete time version.

1) Mode 1, i = 1
a) Invariant: v < 0.0945.

b) A1 =

[
−0.0955 −1

0.05 −0.01

]
,

Ad1 =

[
−0.9990 −0.01
0.0005 0.9999

]
.

c) B1 =

[
1
0

]
, Bd1 =

[
0.01

0

]
.

d) f1 =

[
0
0

]
, fd1 =

[
0
0

]
.

e) C1 =

[
1 0
0 1

]
, Cd1 =

[
1 0
0 1

]
.

f) D1 =

[
0
0

]
, Dd

1 =

[
0
0

]
.

g) g1 =

[
0
0

]
, gd1 =

[
0
0

]
.

2) Mode 2, i = 2
a) Invariant = 0.0945 ≤ v ≤ 0.7055.

b) A2 =

[
0.1867 −1
0.05 −0.01

]
,

Ad2 =

[
1.0019 −0.01
0.0005 0.9999

]
.

c) B2 =

[
1
0

]
, Bd2 =

[
0.01

0

]
.

d) f2 =

[
−0.0267

0

]
, fd2 =

[
−0.0267

0

]
.

e) C2 =

[
1 0
0 1

]
, Cd2 =

[
1 0
0 1

]
.

f) D2 =

[
0
0

]
, Dd

2 =

[
0
0

]
.

g) g2 =

[
0
0

]
, gd2 =

[
0
0

]
.

3) Mode 3, i = 3

a) Invariant = v > 0.7055.

b) A3 =

[
−0.3566 −1

0.05 −0.01

]
,

Ad3 =

[
0.9964 −0.01
0.0005 0.9999

]
.

c) B3 =

[
1
0

]
, Bd3 =

[
0.01

0

]
.

d) f3 =

[
0.3566

0

]
, fd3 =

[
0.3566

0

]
.
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e) C3 =

[
1 0
0 1

]
, Cd3 =

[
1 0
0 1

]
.

f) D3 =

[
0
0

]
, Dd

3 =

[
0
0

]
.

g) g3 =

[
0
0

]
, gd3 =

[
0
0

]
.

Fig. 2 compares the FHN model and the MDR model in
continuous time. A stimulus consisting of a spike of height
2.5 at the first time step was used to excite the model. The
simulation was performed in MATLAB using the Euler method
using a time step of 0.01 ms till 100 ms. Initial conditions were
v = 0 and w = 0.

III. MPC PROBLEM FORMULATION

Based on the n× 1 state measurement (assuming that the
complete state of the plant is observable: a state estimator
would be needed in case of partial observability.) x(t) obtained
at time t, the MPC predicts the dynamic behavior of the
system and optimizes the control inputs such that the objective
function in (8) is minimized:

minimize
U=[u(t),...,u(t+N−1)]

J(U, x(t)) =

N∑
k=1

[(x(t+ k)− xref (t+ k))′λk.Q(x(t+ k)− xref (t+ k))

+ (∆u(t+ k − 1))′R(∆ u(t+ k − 1))]

subject to:

x(t+ k + 1) = Adi x(t+ k) +Bdi u(t+ k) + fdi ,
y(t+ k) = Cdi x(t+ k) +Dd

i u + gi,
where
∆u(t+ k − 1) = u(t+ k − 1)− u(t+ k − 2)

0 ≤ k ≤ N − 1 and 1 ≤ i ≤ 3.
(8)

Optimization is performed over a finite horizon of length
N. Q is an n × n identity matrix and 0 < λ ≤ 1 is a
parameter that assigns exponentially receding weights to the
predicted deviations, (x(t+k)−xref (t+k)), over the horizon.
Thus, the scheme is also called receding horizon control. R
is a positive definite matrix that determines the penalty on
differences between consecutive inputs.

The optimization problem is solved at time t and the inputs
are calculated for the next N time steps. Only the next input
is passed on to the plant, before repeating the MPC process.

IV. IMPLEMENTATION OF MODEL PREDICTIVE
CONTROLLERS FOR THE FHN MODEL-BASED PLANT

Explicit and online MPCs were implemented for the FHN
model-based plant using the MDR model for prediction pur-
poses. The receding horizon parameter λ was fixed at 0.8 and
R =

[
10−3

]
was the input penalty matrix. Next, we describe

the implementation aspects of the online and explicit MPCs.
A. Online MPC

Online MPC involves solving (8) at every time step in
runtime. The constrained nonlinear optimizer fmincon [14] was
used to implement online MPC in MATLAB. At each time step
t, the current state x(t) of the plant and the reference input
[xref (t+ 1), ...,xref (t+N)] over the finite horizon N were

provided to the controller which then computed the optimal
input for the FHN plant. An interior point algorithm was used
for optimization. The FHN plant was then simulated using
Euler method for one time step by applying the optimal input.
This process was repeated for the whole simulation duration.

B. Explicit MPC

In explicit MPC, the optimization problem of (8) is cast
as an instance of multi-parametric quadratic programming
(mpQP) and solutions are computed offline for possibly over-
lapping polyhedral partitions, also known as coverings, of the
state space. As shown in Fig. 3, the result of this one-time
computation is a table of control laws corresponding to the
partitions. At runtime, the current state sample is tested for
membership in the list of partitions. The state may lie in
more than one region due to possible overlap. In this case, the
control law resulting in the most optimal value of the objective
function is applied. The process is then repeated for the next
state sample.

We implemented an explicit MPC for the FHN model-
based neuron simulator using the MDR model as its PWA
abstraction. The Multi Parametric Toolbox (MPT) [11] was
used to implement the MDR-model based explicit MPC in
MATLAB. The current implementation of MPT supports time-
varying reference trajectories, but it considers constant refer-
ence at every time step of prediction horizon. We extended the
tool to overcome this limitation. In the remaining sections, we
elaborate on these modifications.

The key idea for incorporating time-varying reference
trajectories is as follows. The reference trajectory over the
prediction horizon, xref is considered to be to be a sequence
of unknown variables. Then these unknown variables are
used to augment the state vector x. Then, the dynamics of
the augmented system is reformulated in a ∆u-form, as the
input necessary to keep the states at the reference are also
not generally known. In this formulation, the input at time
k is ∆u(k), where u(k − 1) is an additional state in the
dynamical model. So, the original system input can be obtained
as u(k) = u(k−1)+∆u(k). The state update equation is then
given by (9).(

x(k + 1)
u(k)

xref (k + 1)

)
=

(
Ai Bi 0
0 I 0
0 0 I

)(
x(k)

u(k − 1)
xref (k)

)

+

(
Ai
Bi
0

)
∆u(k), (9)

As the state vector is augmented with new state variables,
the penalty matrix Q needs to be augmented, too. The newly
augmented penalty matrix is given by(

Q 0 −Q
0 0 0
−Q 0 Q

)

In our modification scheme, we consider time-varying refer-
ence at all steps of the prediction horizon. We augment x with
the reference state vector for all steps of the horizon. The
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Figure 3. Workflow of Explicit MPC.

newly modified state update equation is given by (10)
x(k + 1)
u(k)

x1ref (k + 1)
...

xNref (k + 1)

 =

(
Ai Bi 0
0 I 0
0 0 I

)
x(k)

u(k − 1)
x1ref (k)

...
xNref (k)


+

(
Ai
Bi
0

)
∆u(k), (10)

where N is the number of steps in the horizon and xjref (k) is
the reference vector in jth time step of the horizon.

Due to the receding horizon principle, the penalty matrix
will be different for each step of prediction horizon. Current
implementation of MPT is amenable to add varying penalty
matrix. The general form of the penalty matrix is given by(

Q(k) 0 −Q(k) 0
0 0 0 0

−Q(k) 0 Q(k) 0

)
,

where Q(k) = λkQ for k− th step of the prediction horizon.

The positions of −Q(k) in the first row and Q(k) in the
third row are adjusted based on k.

V. RESULTS

We conducted two sets of experiments on the online and
the explicit MPCs to compare and contrast them.
Experiment Set 1: Speed vs. Accuracy Tradeoff for Different
Reference Trajectories
The online and the explicit MPCs were tested against the
same reference trajectory to study the speed vs. accuracy
tradeoff. Two reference trajectories [vir(t), w

i
r(t)], i = 1, 2

were generated by simulating the FHN model. The protocols
used to generate them were as follows.

S1 Protocol for generating [v1r(t), w1
r(t)]

1) Initial conditions: v = 0, w = 0 (rest conditions).
2) Time step used in the simulation: 0.1 ms.
3) Total duration of simulation: 240 ms (2400 time

steps).

4) Stimuli pattern: One time-step-long (0.1ms) supra-
threshold stimulus pulses of intensity (height) 1.5
were applied every 80 ms, to produce three APs in
the simulation. Thus, the pacing frequency was 12.5
Hz.

S2 Protocol for generating [v2r(t), w2
r(t)]

1) Initial conditions: v = 0, w = 0 (rest conditions).
2) Time step used in the simulation: 0.1 ms.
3) Total duration of simulation: 240 ms (2400 time

steps).
4) Stimuli pattern: 10-steps-long (1 ms) supra-threshold

stimulus pulses of intensity (height) 1.5 were applied
every 80 ms, to produce three APs in the simulation.
Thus, the pacing frequency was again 12.5 Hz.

The simulation was carried out using the Euler’s method of
numerical integration in MATLAB. Both the MPCs were tested
against the S1 and S2 reference trajectories using a 3-step
lookahead horizon. Their performance was compared using the
following two metrics:

1) Accuracy of the plant’s operation (µvl2, µwl2): mea-
sured using the mean L2 error between the reference
trajectory and the output of the simulation carried out
by the plant.

2) Timeliness constraint on the MPC: dictates that the
working of the MPC must be fast enough to cope with
the plant’s operation. The degree to which the two
MPCs met this constraint was measured as follows.
The time taken by the Euler method-based simulation
for producing the reference trajectory was noted, say
t1 secs. The plant + MPC combination was run on
a single thread in a lock-step fashion, i.e., the plant
was halted till the MPC finished its computation and
provided the stimuli value for the next time step. The
total time taken for tracking the reference trajectory
was noted, say t2 secs. Then, t12 = (t2−t1) provided
an estimate of the time taken by the MPC to compute
the stimuli. Ideally, t12 < t1, which ensures that the
MPC’s computation runs faster than the rate at which
the plant evolves (simulates the FHN model).

Table II provides performance metrics for the two MPCs.
Fig. 4 and Fig. 5 plot the evolution of v and w for protocols
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S1 and S2, respectively.
TABLE II. PERFORMANCE METRICS FOR ASSESSING THE SPEED VS.
ACCURACY TRADEOFF ACROSS DIFFERENT REFERENCE TRAJECTORIES.

Protocol Controller µv
l2 µw

l2 t1(s) t2(s)

S1 Online MPC 2.8× 10−5 4.9× 10−5 0.023 136.8
Explicit MPC 4.3× 10−4 1.1× 10−4 0.023 88.8

S2 Online MPC 1.8× 10−4 2.2× 10−4 0.023 147.3
Explicit MPC 2.7× 10−2 1.1× 10−2 0.023 88.3
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Figure 4. Performance of the online and explicit MPCs on spike-shaped
stimuli produced by the S1 protocol.
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Figure 5. Performance of the online and explicit MPCs on rectangular pulse-
shaped stimuli produced by the S2 protocol.

Discussion

Following inferences can be made from the results shown
in the preceding paragraphs:

1) The accuracy of the fmincon-based online MPC is
better than the MPT-based explicit MPC. This can be
attributed to an accurate solution to the optimization
problem, found by fmincon at run time, for the
specific current state of the plant. The explicit MPC
on the other hand, partitions the state space and
finds a common control law for the whole partition.
Accuracy is lost in this process.

2) The fmincon-based online MPC is much slower than
the MPT-based explicit MPC. FMINCON exhaus-
tively explores the whole state space at every time
step of the plant’s operation. This leads to its slow op-
eration. The most time consuming step for the explicit
MPC is searching for the partition corresponding to
the current state, and this is achieved much faster than
the online MPC’s operation.

Experiment Set 2: Effect of Horizon Length on Explicit MPC
Explicit MPC is enabled for time-varying reference trajecto-
ries by augmenting the state vectors and reformulating the

dynamics. State space augmentation leads to an exponential
increase in the number of polyhedral partitions. Table III
compares the build-time and the number of partitions for
different horizon lengths. Increasing the horizon length N is

TABLE III. EFFECT OF N ON EXPLICIT MPC DESIGN IN MPT.
HORIZON LENGTH OF 0, WHICH CORRESPONDS TO 0-STEP LOOKAHEAD,

IS SPECIFIED FOR COMPARISON PURPOSES.

Horizon length Build-time in MPT (secs.) Number of partitions
0 0.45 3
1 2.78 30
2 51.36 277
3 576.41 2581

expected to improve the predictive accuracy of MPC. In the
case of MPT-based design of explicit MPC, we observed that
accuracy did not improve considerably on changing the horizon
length from 2-step to 3-step lookahead. For both cases, the
mean L2 errors for v and w were recorded to be around 0.027
and 0.001 respectively (for S2-type stimuli).

Having a smaller horizon leads to significant reduction
in the search space, while searching for the partition corre-
sponding to a given state sample. This reduction is critical as
the search operation is performed at every time step during
operation. In our case, t2 reduced from 88.3 secs. to 11.2 secs
when the horizon length was changed from 3 to 2 for the S2
protocol.

VI. RELATED WORK

MPC has been widely used in many domains like the
chemical, food-processing, automotive, and aerospace indus-
tries. An exhaustive survey of both the theoretical and the
practical aspects can be found in [15]. Explicit MPC, which
is relatively new, has been surveyed in [16]. Recently MPC
has found interesting biological and biomedical applications.
In [17], [18], a platform for in silico realtime closed-loop
control of gene expression in yeast has been proposed. It
uses MPC to perturb inducible promoters in a systematic
way to gain insights about gene expression. MPC has been
successfully applied to devise therapeutic strategies in [19],
[20], [21], [22]. In [23] MPC is used for functional electrical
stimulation to estimate stimulation patterns for muscles that
have been paralyzed due to spinal cord injury. Controllers for
tracking neuron APs are designed in [24], [25] and thus are
closest to our work. We compare and contrast each of them
with our MPC-based approach below.

In [24], an adaptive input-output feedback linearization
controller is presented to track a nominal AP using the FHN
model. In contrast, MPC is a feed-forward control technique.
Its predictive capability allows the controller to quickly adapt
to a model mismatch caused due to the degradation/aging of
excitable cells. Parameter estimation and tuning the model are
the only steps involved in adapting to the changes, whereas
a feedback controller needs complete redesign. Also, explicit
MPC can track arbitrary fast-changing APs whereas the con-
troller in [24] is designed for a nominal AP.

In [25], the authors present a sophisticated controller for a
neuron based on the Hodgkin-Huxley (HH) model [26]. The
HH model is augmented with random variables to capture
stochastic behavior and external disturbances. Membrane po-
tential is treated as the only observable and a state-estimator
is employed for the other hidden variables of the HH model.
On the other hand, we focus on comparing the online and
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explicit approaches to MPC in the case of a nonlinear plant
being modeled using a PWA abstraction. The realistic setting
of [25] is complementary to our work and provides directions
for extending our scheme. Also, the FHN and the MDR models
used in our work are order-reduced versions of the HH model.

VII. CONCLUSION AND FUTURE WORK

Explicit and online MPCs were presented for tracking
a reference sequence of APs using an FHN model-based
neuron simulator. The MPCs employ a PWA abstraction of
the nonlinear plant, thus enabling a QP formulation of the
model predictive control optimization problem. The speed
versus accuracy tradeoff was assessed using several test cases.
The online approach provides excellent accuracy, but fails to
satisfy the timeliness constraint. Offline MPC on the other
hand, satisfies the timeliness constraint for a limited set of
reference trajectories, but provides relatively lower accuracy
than the online version.

We plan to pursue a combined approach that uses the
best features of both the explicit and online MPCs to achieve
high accuracy while satisfying the timeliness constraint. We
also plan on adding noise to our implementation to test the
robustness of the controller. Better QP solvers and search
techniques will be explored to speed up the explicit MPC.
The combined approach will then be examined for closed-
loop stability and computational efficiency. In a realistic
setting, the transmembrane potential is the only observable
and state estimators would be added on the lines of [25].
We would like also to investigate real implementations of
the proposed controllers using field-programmable gate arrays
or other embedded microcontrollers. Finally, the MPC-based
approach would be applied to complex excitable cells such
as cardiac myocytes. In particular, we aim to investigate the
use of piecewise multi-affine approximations of [27] to design
explicit and online MPCs for cardiac cells.
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