
SOAdapt: A Framework for Developing Service-Oriented
Multi-Tenant Applications

Sascha Alda, Rüdiger Buck-Emden
Department of Computer Science

Bonn-Rhine-Sieg University of Applied Sciences
Sankt Augustin, Germany

e-mail: sascha.alda@brsu.de, ruediger.buck-emden@brsu.de

Abstract— A plethora of architectural patterns and elements
for developing service-oriented applications can be gathered
from the state-of-the-art. Most of these approaches are merely
applicable for single-tenant applications. However, less me-
thodical support is provided for scenarios, in which multiple
different tenants with varying requirements access the same
application stack concurrently. In order to fill this gap, both
novel and existing architectural patterns, architectural ele-
ments, as well as fundamental design decisions must be consid-
ered and integrated into a framework that leverages the devel-
opment of multi-tenant application. This paper addresses this
demand and presents the SOAdapt framework. It promotes the
development of adaptable multi-tenant applications based on a
service-oriented architecture that is capable of incorporating
specific requirements of new tenants in a flexible manner.

Keywords: Service-Oriented Architecture; Architectural
Patterns; Multi-Tenant Application; Adaptation of Software.

I. INTRODUCTION
Service-oriented architectures [1] are nowadays used as a

way to encapsulate and to integrate databases and applica-
tions being part of an enterprise’s software landscape in
terms of semantically enriched and re-usable business ser-
vices. These business services can be orchestrated to more
meaningful workflows that serve as executable software parts
of business processes. On top of that, a user interface layer
enables the involvement of human stakeholders during the
execution of a workflow, for instance, to request initial or
intermediate user inputs, as well as to represent final outputs.

The success of a service-oriented application depends on
a number of factors. One important factor is the accurate
modeling of the workflows including the regular flow of the
activities and the potential alternate control flows. Another
factor is the accurate design of the business services. These
factors become even more relevant in application scenarios,
in which different independent organizational units, hereafter
called tenants (e.g., other organizations, subsidiaries of a
company, faculties of a university), intend to share the same
service-oriented application. The result is a multi-tenant
application [2], in which different tenants access the same
instance of an application’s service stack concurrently. This
concept is the foundation for latest software consumption
models like software as a service (SaaS) [3] leading to high
cost-effectiveness for each tenant. However, tenants often
require control flows different to standardized, already de-

ployed workflows in order to respect individual require-
ments. Providing a new workflow model for each tenant
would be straightforward, but it breaks the idea of multi-
tenancy. In addition, tenants often demand for alternate func-
tionality to already deployed business services or even re-
quire completely new services that need to be flexibly de-
ployed. The common approach of extending the original
interfaces for each new tenant coming into play results in
expanded interfaces and the risk of violating existing de-
pendencies to other tenants.

Although a number of architectural approaches for ser-
vice-oriented architectures are available [1] [4], none of
these offer sufficient support for adapting both workflows
and business services according to the needs of a multi-
tenant application. Existing patterns and methods [5] [6] for
adaptable service-oriented architectures are applicable to
single-tenant applications, but are less appropriate to support
the adaptation and management of multi-tenant applications.

This paper features the SOAdapt framework serving as a
guideline for constructing a multi-layered service-oriented
architecture that defines the structural decomposition of
multi-tenant applications. With respect to this framework,
the resulting software architecture offers a layered applica-
tion stack, which is shared by multiple tenants at the same
time. On the business process layer, the framework features a
minimal set of basic workflow patterns that is suitable to
model the various requirements of the tenants’ workflows.
On a business service layer, three types of business services
can be deployed: shared business services suitable to all
tenants, business services with dedicated tenant-specific
service extensions, as well as fully self-contained services.
Service extensions add both additional interfaces and internal
behavior to the original service component that have not
been anticipated and integrated in its original design. The
framework contains further architectural elements, such as a
business rule engine and a tenant context data registry that
completes the architecture. Important architectural design
decisions, such as a workflow instance model are made.
Furthermore, recommendations for the implementation of the
architecture are provided based on modern technologies.

This paper is structured as follows: Section 2 summarizes
the related work. Section 3 describes the structure and the
principles of the SOAdapt framework. Section 4 describes
the prototype of the framework and outlines pieces of future
work. Section 5 concludes this paper.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

II. RELATED WORK
The often cited SPOSAD architecture style by Koziolek

[7] provides an abstract perspective on existing multi-tenant
applications, such as Force.com, merely discussing the de-
sign decisions, as well as the architectural trade-offs related
to this style. The resulting multi-tier architectural style is
similar to our framework. It features a context-data manager
that is responsible for adapting the application logic for ten-
ant-specific business logic and computations. Unlike in the
SOAdapt framework, no further details are provided how the
context-data for a specific tenant is organized and in what
way the business logic can actually be adapted for a given
tenant. A clear distinction between business service and
workflow is not handled in the SPOSAD architectural style.

The work by Mietzner et al. [8] provides fundamental re-
search on instance management for multi-tenancy and de-
scribes a set of so-called service tenancy patterns. The pat-
tern catalogue features basic architectural elements, such as
the invocation of a service or a process under tenant context.
The tenant context is actually a piece of context-data provid-
ed by a runtime environment that describes the current tenant
accessing the application. Tenant-specific customizations of
business processes, however, result in the deployment of a
new workflow model. Dedicated workflow patterns are not
outlined. A similar approach for identifying the current ten-
ant (“tenant context object”) can be found in [9]. The
SOAdapt framework adopts this concept for identifying a
tenant and explains precisely, where it should be used.

Further studies on multi-tenant Web applications are pre-
sented by Jansen et al. [10] and Bien and Thu [9]. Both pa-
pers rely on the MVC architectural pattern for describing the
global structure of a multi-tenant application. Further fine-
grade models (e.g., class models) can be found. Although
service-oriented applications are typically Web-based, these
studies can hardly by mapped to the demands of a multi-
layered architecture. A workflow perspective is ignored in
both studies.

Kabbelijk [11] discusses the adoption of various combi-
nations of multi tenancy patterns to a multi-layered architec-
ture. These patterns are based on the number of instances
e.g., of an application server or of a database necessary to
serve the tenants. Owing to the rather technical perspective
of the architecture, a business-driven workflow layer is omit-
ted. So, no dedicated workflow patterns can be found in his
work. However, our workflow instance model can be com-
pared with his work and further properties and constraints of
it might be extracted from his contribution.

A multi-tenant approach for business process execution
can be found in the article by Pathirage et al. [12]. The au-
thors describe an architecture based on Axis2 runtime envi-
ronment and the Apache ODE workflow engine. The authors
mainly discuss how the runtime environment can guarantee
isolation of the running processes. Workflow patterns are not
described in the paper either.

Fundamental methods for adaptable software architec-
tures have been elaborated by Svahnberg et al. [13]. He pro-
poses five categories of adaptation methods. Our approach
corresponds to the second category “variant component

specialization”: additional behavior is introduced in the same
component or workflow models for different tenants.

A number of academic approaches for adapting (service-
oriented architectures) can be found from the state-of-the-art
(e.g., [5] [6]). In the majority of cases, these approaches rely
on replacing entire components on-the-fly (category one
w.r.t. [13]). This approach is straightforward, but leads to
dependency issues as elaborated in the introduction section.

In our approach, a (business) rule engine is used to alter
the control flow at gateway elements with respect to the
demands of the involved tenants. Rule engines are primarily
used for evaluating complex rules that cannot be incorpo-
rated in a workflow model in a manageable way. We adopt
the idea of Doehring et al. [14] to use a rule engine also for
control flow management. Doehring’s article, however, is
not based on the multi-tenancy approach.

III. THE SOADAPT FRAMEWORK
The SOAdapt framework introduces architectural ele-

ments and decisions, as well as architectural patterns in order
to implement adaptable multi-tenant applications. An archi-
tectural overview of the framework is given in Fig. 1. The
framework is merely based on a layered architecture model.
A vertical enterprise service bus (ESB) component provides
for a loosely coupled interaction among the components of
these layers. In the following, the layers are described in
detail. Special attention is drawn to both the business process
and the business service layer as both layers consists of the
main concepts of the framework. The user interface, as well
as the application and data layer are introduced briefly. Im-
plications for an implementation of the concepts are provided
as well.

A. Business Process Layer
This layer features a workflow engine, where an executable
workflow model can be deployed. Although an object-
oriented language can implement such a workflow, we as-

Figure 1. Architecture of the SOAdapt framework

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

sume a modeling language like BPMN 2.0 [15] as the pre-
ferred way to implement such workflows. In contrast to a
business service, the functional behavior of a workflow
model is said to be more comprehensive and may integrate
user interactions through an associated portal component
(see User Interface layer in Section III C). Workflow models
are potentially stateful, that is, they can maintain a state
across many workflow steps. Next, further important archi-
tectural decisions and elements of that layer will be outlined:
the instance model, tenant context object, as well as the min-
imal set of workflow patterns.

1) Workflow Instance Model

A fundamental architectural property and design decision
to be made for a multi-tenant application is the underlying
workflow instance model. An overview is given in Fig. 2.

It is assumed that both the structure and the course of ac-

tions of a workflow are described as a template that is re-
ferred as the workflow model. This could for instance be a
graphical BPMN 2.0 model of a complaint management
process. In a multi-tenancy application, a workflow model is
said to be available for all tenants. Tenant-specific differ-
ences in the course of actions within a workflow model, such
as different control flows or additional tasks for handling a
complaint can be integrated by means of dedicated workflow
patterns (see below). Given a predefined workflow model, an
infinite number of workflow instances can be generated after
the starting events has been fulfilled (e.g., triggered by the
request of a user belonging to a tenant).

It is conceivable that in a strict multi-tenant application
varying tenants can even share a single workflow instance.
However, this approach might lead to typical technical issues
as often faced on shared resources, that is, isolation problems
of tenant-sensitive data, concurrency issues, or reduced
scalability properties. Apart of that, such a shared instance
model could hardly be appreciated from a tenant perspective.
Henceforth, a single workflow instance is assigned to exactly
one tenant. To further reduce the number of workflow in-
stances, stakeholders of the same tenant could share a ten-
ant’s workflow instance (upper half of Fig. 2) – assumed that
this accords to given tenant governance rules. For more re-

strictive scenarios, an instance could be generated for each
stakeholder belonging to a tenant (lower half of Fig. 2).

The state of a workflow instance (i.e., variables, current
execution state) can be stored temporarily in a corresponding
tenant database, thus, guaranteeing rigidity and recoverabil-
ity of the whole application. For statistical analytics, tenant
data could also be stored permanently. Again, depending on
given governance rules, tenant data could be stored in isolat-
ed databases (see Fig. 2). For less sensitive data or data that
can trustworthily be shared among tenants (e.g., postal codes
or standardized product numbers), shared databases can be
integrated (see Section III.D for further details).

A workflow engine should be able to support all possible
variations for workflow instance management. For the sake
of scalability, separate instances of a given workflow engine
could be installed on varying nodes (e.g., in a Cloud or on-
premise in a local architecture). Each workflow engine in-
stance could accommodate a dedicated workflow model or a
cluster of coherent workflow models. The provision of a new
workflow engine instance for each new workflow instance is
a theoretical model achieving maximum scalability. Howev-
er, this must be clearly contemplated from both a manage-
ment and an economic perspective.

2) The Tenant Context Object

The tenant context object is an architectural data element
representing the associated tenant of a current user accessing
the workflow instance. Likewise to other context objects
commonly found in Web frameworks (e.g., HttpSessionCon-
text in the Servlet API), this object must be implemented (or
rather: understood) as a global variable that is accessible in
all areas of the workflow instance and corresponding objects,
such as the service delegate object (see later on). The map-
ping of a user to a tenant is interpreted as a function that
uniquely maps a given user (ID) to a tenant (ID). It is as-
sumed that a user is derived by credentials that are passed in
the beginning of the workflow execution, which is then
stored e.g., in a session context object. The tenant context
object tackles various parts and actors within the architecture
as illustrated in Fig. 3:

An administrator is able to initially register a tenant in the

workflow engine. Depending on the chosen instance model,
the tenant’s data is stored within a single table or even in a

Figure. 2: Workflow instance model

Figure. 3: Structural model of the tenant context

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

separate database that guarantees isolation of the tenant’s
sensitive data. Given a unique tenant ID, the administrator is
then able to add users to a tenant. For the purpose of flexibil-
ity, it is assumed that users can be added to a tenant even at
runtime of the workflow engine. The workflow engine itself
can request a tenant ID from a user by accessing class Ten-
ant_Identification. This class will produce the tenant context
object. The current workflow instance can access and read
the attributes of that object accordingly. Attributes of the
tenant context object might be used for debugging purposes,
for identifying tenant-specific context information from the
tenant meta data registry, or for evaluating the control flow
for a tenant (see patterns below in Section III.A.3).

3) Workflow Patterns

Our workflow patterns describe solutions for recurring
situations during the design of a workflow model, where the
execution of a workflow might expose a different behavior
based on the currently given tenant. In the layered architec-
ture of Fig. 1, these situations are marked by the “tc” symbol
surrounded by a dotted rectangle. This rectangle points out
that at this stage of the workflow, the invocation of that ele-
ment is under tenant context and, thus, it might vary. The
patterns shown next provide an abstract solution and indicate
implementation details. While the depicted solutions abstract
from a concrete language, the implementation details will be
based on BPMN 2.0. The set of patterns is considered as
minimal and complete, that is, more complex and language-
specific workflow elements (e.g., compensation, exception
handling, sub processes) can be derived easily from this set.

Name of the pattern: Tenant-specific workflow invocation.

Problem: The initial enactment of a workflow might vary
based on the currently given tenant. That is, tenants might
dictate different conditions when a workflow is to be execut-
ed. Often, additional tasks are required that have not been
regarded in the standardized workflow model.
Solution: Introduce an abstract event that might be extended
by concrete events that contain concrete conditions for spe-
cific tenants (see. Fig. 4). Assume a polymorphic structure:
new concrete events might be introduced and bound to the
abstract event at runtime (late binding).
Implementation: The introduction of an event hierarchy
would result in an extension to the syntax of the BPMN 2.0
language. Consequently, a workflow engine like Activiti [16]
had to be extended as well. As a trade-off solution, different
starting events could be modeled and connected to the first
activity in a workflow. Both BPMN 2.0 and Activiti do not
support a late binding concept.

Portability: BPMN 2.0 features a bunch of different starting
and intermediate event types, often leading to complex work-
flow models. This pattern could necessarily be ported to
other events types. The usage should, however, be pondered.

Name of the pattern: Rule-based control Flow

Problem: Gateways may be used for altering the control
flow. Typically, Boolean expressions are used to express
conditions on the different branches that must be fulfilled for
an execution. In a multi-tenant application, these conditions
might differ for any of the involved tenants and, consequent-
ly, might exhibit a complex structure. The expression of
conditions is not fixed, but is often subject of change (e.g.,
rules for expressing the credit rating of a client). The adapta-
tion of conditions would result in the re-deployment of the
workflow model.
Solution: Prior to the gateway element, a rule task is placed
that uses an external rule engine to evaluate the conditions
for a given tenant (see. Fig. 5). Conditions can be expressed
by means of more descriptive models, such as decision tables
[14]. These expressions can be adapted without re-deploying
the workflow model, since both rule engine and workflow
engine are completely decoupled.
Implementation: BPMN 2.0 already features rule tasks that
can be used to evaluate rules from a rule engine. In the Ac-
tiviti engine, the business rule engine Drools Expert can be
used [16]. In order to execute the deployed rules, input vari-
able (the so-called facts) and the result variables need to be
specified in the context of this rule task. For evaluating the
rules with respect to a given tenant, the tenant context object
must be passed as a fact, too. The output variable will con-
tain a list of objects that can then be evaluated at the branch-
es of the corresponding gateway element. Depending on the
state of the output variable, the control can be altered accord-
ing to the demands of a respective tenant. The Drools plat-
form offers tools for the simple modification of the rules e.g.,
within a decision table, which could even be carried out by
business units with minor IT-background.
Portability: This concept cannot only be applied to exclu-
sive, but also to inclusive gateways, in which a subset of
modeled branches might be invoked concurrently. Although
it is assumed that tenants share branches, it is feasible to
insert branches that can exclusively be used by a dedicated
tenant. Besides, additional tenant-specific activities or sub
processes can be integrated into a standard workflow model.
Trade-Off: The more complex the rules and facts in a rule
engine become, the more performance is needed for a thor-
ough evaluation. So, the rule engine might result in a bottle-

Figure. 4: Structure of the pattern "Tenant-specific workflow invoca-

tion"

Figure. 5: Structure of pattern "Rule-based control flow"

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

neck within the whole architecture. Software architects
should think of caches to store previous results.
Name of the pattern: Tenant-specific service call

Problem: service call tasks implement the actual invocation
of business services being placed in the business service
layer. Usually, these tasks are passed input data stemming
from prior tasks (e.g., a user task requesting data from a user
through a portal) that serves as an input to the business ser-
vice. The resulting output of that service might then be fur-
ther used in subsequent tasks. Depending on the given ten-
ant, different business services or extensions (see Section
III.B) might be invoked from the business layer. Depending
on the business service’s interface, input and output data has
to be converted (e.g., XML to JSON) or enriched (e.g., add-
ing the postal code to a person’s profile). Also, the exception
handling might be different depending on the nature of the
business service (e.g., transactional vs. non-transactional
service call). These different service calls together with spe-
cific preliminary and subsequent tasks might be implemented
by using the “Rule-based control flow” pattern. However,
this would blow up the workflow model with too many tech-
nical gateway elements and different branches having no real
business added value.
Solution: The invoked service tasks delegates the actual
service invocation to a so-called service delegate object that
is responsible of processing the whole service call including
data conversion or enrichment, (remote) service invocation,
and exception handling (see. Fig. 6). The correct service
delegate object is instantiated by calling the tenant context
data registry that stores the corresponding business services
per tenant (see III.B for more details). The correct service
delegate object is identified based on the current tenant con-
text object.
Implementation: BPMN 2.0 provides service tasks as a core
element of the language. However, the language itself does
not support the concept of an internal service delegate ele-
ment. In the Activiti engine, the invocation of a service task
is handled by a service handler object, which is actually a
Java object implementing a given API. The service handler
object can access the input data by using a global context
object, the so-called DelegateExecution object [16]. Analo-
gously, output data can be conveyed back to the workflow
instance through that context object. In this service handler
object, the corresponding service delegate object can be
invoked for processing the tenant-specific service call. De-
veloper of the corresponding service handler class can fall
back on the complete Java SDK, further related APIs (e.g.,
JAX-RS for invoking REST-based services), or frameworks

(e.g., Zend for data conversion between XML and JSON).
This lightweight approach is actually an improvement com-
pared to older development models from BPEL-based en-
gines (e.g., Apache ODE), where service calls need to be
graphically bound to WSDL files of the Web Services by
some proprietary and tricky development tools.

B. Business Service Layer
This layer features business components that provide busi-
ness services to the upper layers. Business services provide a
business value and can be reused and orchestrated in differ-
ent workflow models. The corresponding interfaces of busi-
ness services are described in a language-neutral format
(WSDL or REST-based), from which client stubs can be
generated in order to access the business service. Business
components may wrap underlying applications or databases
from the data and Application layer (see III.D). Business
components can be implemented in an object-oriented lan-
guage like Java. The deployment can be done in a conven-
tional Java runtime environment (JRE) or in an application
server, such as Axis2 or Glassfish. Business components
should be stateless to ensure the scalability of the architec-
ture and the substitutability of components within this layer.
For the sake of brevity, Fig. 1 does omit execution environ-
ments on the business service layer.

Ideally, all business services can be shared among all
available tenants. However, this scenario is rather seldom,
since tenants are supposed to demand varying properties on
the business services used in their workflows models. In
order to respect different scenarios, three categories of busi-
ness services are supported: (1) shared business services, (2)
business services with service extensions, or (3) standalone
business services deployed as Microservices. This paper
mainly introduces type (2) and sketches the idea of type (3)
briefly. Both variants are introduced as architectural patterns.

Name of the pattern: Service extension

Problem: Tenants might expose varying demands on the
usage of a business service. Apparently, it seems unrealistic
to anticipate the complete externally visible behavior - i.e.,
the interface - of a business service that tenants might use in
the future. This also applies to internal implementation de-
tails within the respective business components. By doing so,

Figure. 6: Structure of pattern "Tenant-specific service call"

Figure. 7: Structure of pattern “Service extension”

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

the resulting service interface might be bloated with too
many service operations. Integrating new operations into the
interface might cause the violation of dependencies to exist-
ing components that are coupled to the original interface.
Solution: So-called service extensions can extend the inter-
face of a business component by further service operations
that are part of an extended business service. This pattern is
an adoption of the extension object pattern [17], in which
objects can act as a host for object extensions that can flexi-
bly be added and removed from that hosting object. The
structure of the service extension pattern (see Fig. 7) is a
slight modification of the original structure as it leaves out
various abstractions and concentrates on the relevant ele-
ments. An abstract business component serves as the hosting
component that provides an administrative interface for
adding and removing service extensions. Again, service
extensions implement tenant-specific behavior. For the prop-
er execution of this behavior, service extensions have access
to the internal state of a business component. Appropriate
access rights must be granted accordingly. The business
component itself inherits from the abstract business compo-
nent. Note that this pattern consciously abstracts from con-
crete implementation techniques, the inheritance relationship
just points out the different responsibilities of the involved
elements. In modern component models, such as OSGi, the
inheritance relationship might be dissolved, thus, resulting in
a business component providing both the functional interface
of the business service and the administrative interface.

The tenant meta data registry is in charge of managing
the different service extensions per involved tenant for a
dedicated business service component. Besides, further con-
text data, such as form elements (see Section III C) can be
added to a tenant. At design time, component assemblers can
use the registry for equipping a business service with select-
ed service extensions for a new tenant. During runtime, the
application server can use the registry for querying tenant-
specific service extensions. Having identified the necessary
meta data describing the service extension, concrete service
extensions for a tenant can be deployed in the business com-
ponent. For new service extensions, an upload mechanism
for both the meta data and the actual executable of that ser-
vice extension (e.g., a JAR-file) needs to be provided.

Table. I POSSIBLE QUERIES FOR CONTEXT DATA REGISTRY

The registry features a hierarchical model to represent as-

sociations among service extensions, business service com-
ponents, and tenants. Owing to the hierarchical nature of the
data model, URIs can be used for identifying the meta data.

Consequently, a REST-based interface could be used as the
fundament of the extension management service. Table No.
1 shows some example queries that could be applied.

Name of pattern: Business service as Microservice
Problem: Tenants might insist of having self-contained busi-
ness services that come with their own database and domain
model, which conforms to a shared nothing solution. Isola-
tion of data and services is an absolute must criterion.
Solution: Tenants are invited to deploy self-contained busi-
ness services by means of Microservices [18] into the archi-
tecture. Microservices are closed units of deployment with
no or a minimal set of dependencies to other services and
infrastructure components (e.g., server, databases). Typical-
ly, a Microservice has its own domain model, a so-called
bounded context. A Microservice contains its own internal
application server, such as Glassfish. The deployment can be
done in lean execution environments, such as Docker or in
cloud-based environments, such as Spring Cloud. The usage
of systems like Spring Clouds promotes the scalability of the
business service layer and, thus, the entire multi-tenant ap-
plication. More details on both the theory and implementa-
tion of Microservices can be obtained from [18].

C. User Interface Layer
This layer consists of user interface (UI) components for

involving stakeholders within a workflow execution. In prac-
tice, a portal may take over this part allowing the provision
of customizable forms. A single form consists of a coherent
set of user interface elements, such as buttons or text fields,
accomplishing a stakeholder to process data associated with
a user task. This data can act as the initial input in the begin-
ning or as an intermediate input during a workflow execu-
tion. At the end of the workflow execution, final output data
can be displayed. The form rendering heavily depends on the
tenant’s usability requirements. So, the rendering process
and the data exchange between the portal and the workflow
engine must occur under tenant context. The specific form
elements (e.g., HTML, CSS fragments) should be stored in
the tenant context data registry. The portal accesses this
registry upon the rendering process for a specific user.

D. Application and Data Layer
This layer consists of existing legacy applications and da-

tabases. Databases could be based on data models, such as
the relational model or variants (e.g., object-relational). A
database can be shared among the tenants. For respecting
tenant-specific data, tables for each single tenants or schema
extensions to common tables can be inserted. The definition
of shared data models for multi-tenant applications is not
part of this framework. Different approaches how to organize
such data models can be found for instance in [2] or [7].

IV. PROTOTYPE, FUTURE WORK
A first prototype of the SOAdapt framework has been

implemented on top of the Activiti workflow engine [16].
Version 6 of Activiti integrates the proposed workflow in-
stance model (see Section III.A.1) and the tenant context
object (see Section III.A.2), which was contributed to the

Explanation URI (& HTTP method)
Returns all registered tenants (IDs) of a
business component with the id compID

GET
/comp/[compID]/tenants

Returns all registered service extensions
(IDs) of a business component with the ID
compID that are associated with a
tenant(ID)

GET
/comp/[compID]/tenants/
[tenantID]/ext/

Registers a new tenant with ID tenantID
to the business component with ID
compID.

POST /comp/[compID]
/tenant/ [tenantID]

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

project in the context of a joint master thesis project [19].
The workflow instance model follows the approach of hav-
ing one instance of a workflow engine that accommodates all
generated workflow instances. Each tenant has a separate
database, thus, guaranteeing isolation of data.

From the workflow patterns (Section III.A.3), pattern
“Rule-based control flow” has been implemented based on
Drools expert and on top of the workflow engine Doxis4
BPM [20]. An evaluation in conjunction with the German
IT-company SER GmbH – the vendor of Doxis4 BPM -
confirmed the flexibility of the approach for having flexible
control flows. However, the company criticized the complex
user interface of Drools for editing business rule and the
overall complexity of the rules themselves. Therefore, future
work was recommended for improving the definition of
rules. First tests revealed no critical performance issues. An
in-depth performance analysis e.g., with stress tests has not
been carried out so far, but is considered as future work.

A prototype for the service extension pattern is consid-
ered as future work. An ongoing project examines the appro-
priateness of the server Axis2 for implementing service ex-
tensions. The tenant context data registry has been imple-
mented as a first prototype based on the Jersey framework.

V. CONCLUSION
This paper has introduced the framework SOAdapt that

can be used for the development of adaptable multi-tenant
applications that are based on a multi-layered service-
oriented architecture. The framework proposes a set of archi-
tectural patterns that allow the adaptation of a multi-tenant
application in order to respect varying requirements of the
involved tenants. SOAdapt also introduces architectural
elements for setting up and running a multi-tenant applica-
tion in a scalable way. First prototypes have been developed.

REFERENCES
[1] M. Stal, "Using architectural patterns and blueprints for

service-oriented architecture", IEEE Software, vol. 23,
no. 2, pp. 54-61, 2006.

[2] F. Chong and G. Carraro, "Architecture Strategies for
Catching the Long Tail", Available:
http://msdn.microsoft.com/en-us/library/aa479069.aspx.
April 2006. [retrieved: Jan., 2017]

[3] M. Turner and D. Budgen, "Turning Software into a
service", IEEE Computer, vol. 36, no. 10, pp. 38-45,
2003.

[4] T. Erl, "Service-Oriented Architecture: Concepts,
Technology, and Design", Prentice Hall, 2005.

[5] R. Mirandola, P. Potena, E. Riccobene, and P.
Scandurra, "A Framework for Adapting Service-
Oriented Applications based on Functional / Extra-
functional Requirements Tradeoffs", 6th International
Conference on Software Engineering Advances,
Barcelona, Spain, pp. 146-151, 2011.

[6] H. Gomaa, K. Hashimoto, M. Kim, and e. al.,
"Software Adaptation Patterns for Service-Oriented

Architectures", 25th Symposium On Applied
Computing, Sierre, pp. 462-469, March 2010.

[7] H. Koziolek, "The SPOSAD Architectural Style for
Multi-tenant Software Applications", 9th Working
IEEE Conference on Software Architecture, Boulder,
USA, pp. 320-327, 2011.

[8] Mietzner R., Unger T., R. Titze, and F. Leymann,
"Combining Different Multi-Tenancy Patterns in
Service-Oriented Applications", IEEE EDOC
Conference, pp. 108-117, 2009.

[9] N. H. Bien and T. D. Thu, "Multi-tenant web
application framework architecture pattern", 2nd
National Foundation for Science and Technology
Development Conference on Information and Computer
Science, Vietnam, pp. 40-48, 2015.

[10] S. Jansen, G. Houben, and S. Brinkkemper,
"Customization Realization in Multi-Tenant Web
Applications: Case Studies from the Library Sector",
10th International Conference on Web Engineering,
Vienna, pp. 445-459, 2010.

[11] J. Kabbedijk and S. Jansen, "Multi-tenant Architecture
Comparison ", 8th European Conference in Software
Architecture, Vienna, pp. 202-209, 2014.

[12] M. Pathirage, S. Perera, I. Kumara, and S.
Weerawarana, "A scalable Multi-tenant Architecture
for Business Process Executions", IEEE International
Conference on Web Services, pp. 21-41, 2011.

[13] M. Svahnberg, J. Grup, and J. Bosch, "A taxonomy of
variability realization techniques", Software Practice
and Experience, vol. 35, no. 8, pp. 705-754, 2005.

[14] M. Döhring, B. Zimmermann, and E. Godehardt,
"Extended Workflow Flexibility using Rule-Based
Adaptation Patterns with Eventing Semantics.",
Informatik 2010: Service Science - Neue Perspektiven
für die Informatik, Leipzig2010.

[15] OMG, "BPMN 2.0 Specification", Available:
http://www.omg.org/spec/BPMN/2.0/. 2011. [retrieved:
Jan., 2017]

[16] T. Rademakers, "Activiti in Action - Executable
business processes in BPMN 2.0", Manning Pub., 2012.

[17] E. Gamma, "The extension objects pattern", Pattern
Languages of Programs (Plop) Conference - Writers
Workshop, Illinois, USA1996.

[18] E. Wolff, "Microservices: Flexible Software
Architectures", CreateSpace Publishing, 2016.

[19] J. Barrez, " Multi-Tenancy with separate database
schemas in Activiti", Available:
http://www.jorambarrez.be/blog/2015/10/06/multi-
tenancy-separate-database-schemas-in-activiti/. 2015.
[retrieved: Jan., 2017]

[20] SER, "Business process management with Doxis4",
Available: http://www.ser-solutions.com/products-
solutions/business-processes.html. 2016. [retrieved:
Jan., 2017]

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-536-4

BUSTECH 2017 : The Seventh International Conference on Business Intelligence and Technology

