
A Study of Transparent On-chip Instruction Cache
for NV Microcontrollers

Dahoo Kim, Itaru Hida, Eric S. Fukuda, Tetsuya Asai and Masato Motomura

Graduate School of Information Science and Technology
Hokkaido University

Sapporo, Hokkaido, Japan
Email: { kim@lalsie., hida@lalsie., fukuda@lalsie., asai@, motomura@ } ist.hokudai.ac.jp

Abstract—Demands for low energy microcontrollers have been
increasing in recent years. Since most microcontrollers achieve
user-programmability by integrating non-volatile (NV) memories,
such as flash memories for storing their programs, the large
power consumption required in accessing an NV memory has
become a major problem. This problem becomes even critical
when lowering the power-supply voltage of NV microcontrollers
to achieve power and energy reduction. In this paper, we try to
solve this problem by introducing an instruction cache and thus
reducing NV memory access frequency. Unlike general-purpose
microprocessors, it is important for microcontrollers used for
real time applications in embedded systems that the program
execution time can be calculated accurately prior to its execution.
Therefore, we introduce a ”transparent” instruction cache, which
does not change the existing NV microcontroller’s cycle-level
execution time, for reducing power and energy consumption,
but not for improving the processing speed. We have conducted
detailed microarchitecture design based on a major industrial
microcontroller architecture, and studied, as a preliminary eval-
uaion, hit rates of several instruction cache configurations.

Keywords–embedded system; micro-controller; instruction
cache; non-volatile; low power design.

I. INTRODUCTION
In recent years, sensor networks have been widely studied

as a fundamental technology to realize the ”Smart Society” [1].
In order to implement sensor networks in various application
fields, sensor nodes which can operate for a long time with a
small energy source are required. Therefore, it is necessary to
reduce power consumption of the microcontroller operating a
sensor node.

Meanwhile, NV microcontrollers (microcontrollers inte-
grated with non-volatile memories) are widely used due to its
convenience to develop embedded system’s software. However,
the power consumption of the non-volatile memory domi-
nates the total power consumption of the microcontroller [2].
Furthermore, it is hard to reduce the power consumption
of non-volatile memories in microcontrollers. Focusing on
this point, the purpose of our work is to reduce power and
energy consumption by introducing an instruction cache to the
microcontroller, reducing access to the non-volatile memory.

Besides, as shown in Table I, the traditional cache architec-
ture research has aimed at improving the performance of the
microprocessor by introducing the high-speed cache memory
(SRAM) between the main memory and the datapath by
reducing the memory access time [3]. On the other hand, in the
case of NV microcontroller used for real time applications in
embedded systems, it is important that the program execution

TABLE I. CONCEPT OF THIS WORK

Traditional Cache
Architecture Research This work

Datapath

Main Memory
(SRAM, DRAM)

I-Cache

(SRAM)

D-Cache

(SRAM)

Micro Processor

Datapath

IM

(NVM)

DM

(SRAM)

NV Micro Controller
for Embeded System

Datapath

IM

(NVM)

DM

(SRAM)

I-Cache

(SRAM)

High Performance
Low power & Low Energy

Transparent (i.e., doesn’t change
cycle-level timing)

time can be calculated in advance. Furthermore, the change of
execution time due to cache misses should be avoided since
such a change can cause problems to the system such as
real time applications. Thus, it is necessary to introduce an
instruction cache, which does not cause cache miss penalties,
while leaving the speed of the memory access at cache hits
unchanged.

Therefore, in this paper, we aim at lowering power and
energy consumption rather than improving the performance
by introducing a transparent instruction cache, which does not
change cycle level timing of existing NV microcontrollers.

The rest of this paper is organized as follows: Section 2
describes the features of our research. Section 3 describes the
architecture of the proposed instruction cache employed to the
NV microcontroller. Section 4 discusses preliminary evaluation
of the proposed instruction cache. Section 5 summarizes future
works.

II. FEATURES OF OUR RESEARCH
The Features of our Research are as follows:
1. Examination of instruction cache suitable for micro-

controller deployments - As described in Section 1, in the
case of a microcontroller, it is important to prolong the battery
run time than to reduce the processing time. For this reason,
the instruction cache that we propose in this paper is intended
to reduce the power consumption rather than to improve the
processing speed.

2. Evaluation based on a realistic microcontroller archi-
tecture - We evaluated the power and energy consumption of
our system built on a base microcontroller, Renesas Electronics
Corporation’s 78K0R. Since not all of 78K0R’s specifications

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

IDIF MEM

Flash

Memory

SRAM
(Data Memory)

P
C

I-
Q

u
e
u
e

D
e
c
o
d
e
r

G
e
n
e
ra

te
A

d
d
re

s
s

R
F

A
L
U

Datapath

T
a
g

I-Cache

(SRAM)

H
it

D
e
c
is

io
n

I-Cache Part

(Introducing to MicroController)

Base MicroController

Part

access
access

①②

WR

Figure 1. Concept of 1-word-per-line instruction cache architecture

are open, we implemented the base microcontroller using only
the publicly available information [5] [6] [7].

III. ARCHITECTURE
A. Base Microcontroller

Our microcontroller is based on 78K0R, which is widely
used in various industrial fields [4], whose block diagram is
shown as a part of Figure 1. 78K0R has a flash memory as
its NV instruction memory and an SRAM as its data memory
[5].

This architecture has a pipeline structure of three-stages
(IF stage, ID stage, MEM stage) [6]. In the IF stage, the
microcontroller provides an address from the program counter
(PC) to the instruction memory (flash memory) and fetches
an instruction sequence from the instruction memory. This
instruction sequence is stored in an instruction queue (I-
Queue). In the ID stage, the microcontroller decodes the
instruction that has been fetched in the IF stage and extracts
data memory’s (SRAM) and RF’s (Register File) addresses to
be accessed. In the MEM stage, the microcontroller retrieves
the data from the data memory and executes the instruction.

Also, the base microcontroller adopts the CISC architecture
[6]. The number of the instructions of the base microcontroller
is 915, and the instruction length is 1 byte to 5 bytes. Base
microcontroller has four-byte (1 word) instruction queue (I-
Queue) that contains an instruction sequence fetched from the
instruction memory. Therefore, if a valid instruction exists in
the I-Queue, there is no need to access the flash memory.

B. 1-word-per-line instruction cache
The base microcontroller fetches one word from the in-

struction sequence in the flash memory in one cycle [6]. Thus,
as the first step to introduce the instruction cache to the base
microcontroller, we designed a 1-word-per-line instruction
cache architecture, as shown in Figure 1. We assumed that
the operation timing of the instruction cache to be the same
as the timing of the base microcontroller’s access to the flash
memory: The instruction sequence is read from flash memory
in the subsequent cycle of the access to the flash memory.

Actual operation of the instruction cache is as follows:
(1) In the case of a cache miss, the microcontroller accesses
the flash memory and fetches 1 word from the instruction
sequence. (2) In the case of a cache hit, the microcontroller

CLK

PC PC1 PC2 PC3

FLASH DATA F-DATA1

Cache hit

C-DATA2

Cache

Read Enable

Flash

Read Enable

Cache

Write Enable

Cache DATA

F-DATA1 C-DATA2
Instruction

DATA

Read-Write

conf ict

MISS HIT

Flash
Read

Cache
Read

Cache
Write

To

I-Queue

Figure 2. Instruction memory access timing in the case of cache hit
immediately after cache miss

WR WR

Buffer Hit

Cache hit

or

Buffer Hit

To

I-Queue

Figure 3. Intermediate buffer insertion method for 1-word-per-line
instruction cache architecture

accesses the instruction cache (I-Cache) and fetches 1 word
from the instruction sequence in the instruction cache as well
as the flash memory. Also, in the case of a cache miss, the
instruction sequence which is read from the flash memory is
written to the instruction cache. Since the bit widths of the
instruction cache and the flash memory are the same, there is
no penalty for writing to the instruction cache.

Since the instruction cache we propose does not allow
cache miss penalty, there is a problem that a read access and a
write access to the instruction cache can occur coincidentally.
For example, as shown in Figure 2, when a cache miss
occurs at PC1, microcontroller reads the flash memory. Then,
in the next cycle, the instruction sequence is read from the
flash memory. Thus, the instruction sequence for the cache
miss (F-DATA1) must be written to the instruction cache in
this cycle (the next cycle of the cache miss). In the cycle
immediately after the cache miss, when a cache hit occurs
at PC2, an instruction is fetched from the instruction cache. In
this case, the collision of a read access and a write access to
the instruction cache occurs.

For solving this problem, we designed intermediate buffer
insertion method for the transparent instruction cache. This
is a method to delay the write access to the cache by inserting
an intermediate buffer to which the instruction sequence in the
cache miss is written between the instruction cache and the
flash memory. Figure 3 shows its architecture. In this method,
the timing of writing the instruction sequence to the instruction
cache is a cycle that does not access the instruction cache.
If a valid instruction is still in the I-Queue of the datapath
as described in the base microcontroller architecture, and if a

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

4words
Intermediate

Buffer
RD RD

RD

WR

WR

Buffer Hit

Cache Hit

or

Buffer hit

4words/line I-Cache Part

Figure 4. 4-word-per-line instruction cache architecture

cache miss occurred, the microcontroller does not have access
to the instruction cache.

Particularly, when a cache miss occurred, the instruction
sequence that has been present in the intermediate buffer is
written to the instruction cache and the instruction sequence
that has been read from the flash memory is newly written
to the intermediate buffer. Therefore, the intermediate buffer
will not overflow with the buffer with only 1 word. Also, the
intermediate buffer insertion method determines a cache hit in
the intermediate buffer, and enables the instruction sequence
to be read from the intermediate buffer.

C. 4-word-per-line I-Cache
As the second step to integrate the instruction cache to the

base microcontroller, we designed 4-word-per-line instruction
cache architecture that can take advantage of spatial locality.

The flash memory (NV memory) of the base microcon-
troller (existing NV microcontroller) reads one word from
the instruction sequence in one cycle. Therefore, in order to
implement the 4-word-per-line instruction architecture, a buffer
for storing four words is required. We have implemented 4-
word-per-line instruction cache by extending the number of
words of the intermediate buffer, as shown in Figure 4. The
instruction sequence that is read from the flash memory in one
cycle is stored in the intermediate buffer one word per cycle.
When all the four entries of the intermediate buffer are filled,
the contents are sent to the 4-word-per-line instruction cache
memory.

For example, when a miss occurs in the first cycle, the
instruction sequence that is read from the flash memory is
stored to one of the entries of the intermediate buffer by
referring to the lower 2 bits of the instruction address (held
in the PC). In the next cycle, if the flash memory is not
accessed, in other words, if there are cache hits, buffer hits
or I-Queue hits, the next instruction sequence is read from
the flash memory by incrementing the PC and is stored to the
next entry of the intermediate buffer. In this way, when four
words are collected in the intermediate buffer, four words of
the instruction sequence will be written to the instruction cache
memory.

However, when a miss occurs before collecting the four
words in the intermediate buffer, it is necessary to store the
instruction sequence that has been read from the flash memory

4words/line
I-Cache
(SRAM)

0 1 2 3

Word 0

Word 1

Word 2

Word 3

4words
Intermediate

Buffer

4words/line
Tag Memory's

Valid bit

0

Valid
Non

Valid

Figure 5. Writing operation of 4-word-per-line instruction cache

to the intermediate buffer. In this case, the existing instruction
sequences in the intermediate buffer is written to the instruction
cache, and the instruction sequence that has been read from
the flash memory on a miss is stored to the intermediate
buffer. For example, as shown in Figure 5, if a miss occurs
when only three words of instruction sequence are stored in
the intermediate buffer, the three words are written to the
instruction cache, invalidating the 0-th word. In this paper, we
extend the 4-word-per-line tag memory’s valid bits to 4 bits,
and make them indicate the valid word of each line.

However, when writing the line which has invalid words
to the instruction cache, such as the case shown in Figure 5,
it is expected that there is a case of a low hit rate, due to
the deletion of the valid word that existed in one line of the
instruction cache. We will evaluate our system in this regard.

D. Associativity
As the third step to integrate the instruction cache to base

microcontroller, we have increased the associativity to 2 and 4
from 1. It is expected that the power consumption consumed
by the control unit of the tag memory is increased because
the control unit of the tag memory becomes complicated by
increasing the associativity. Yet, there is a possibility that the
hit rate will rises. We will evaluate our system in this regard
as well. Also, we adopt a pseudo least recently used (LRU)
replacement algorithm.

IV. PRELIMINARY EVALUATION
As the first step to evaluate the effect of proposed in-

struction cache on reducing power and energy consumption,
we evaluated a hit rate on a few benchmark programs. It is
expected that the effect increases with an increase in hit rate
because of decreased access to a flash memory. Benchmark
programs and each program’s size are shown in Table II.

First, the hit rates of 1-word-per-line instruction cache for
each benchmark programs are shown in Figure 6. Because the
program sizes are small, they, from bubble sort program to
factorial program, showed high hit rates for every cache size.

TABLE II. BENCHMARK PROGRAM AND PROGRAM’S SIZE

Evaluation program size[Byte]
bubble sort 614

Celsius to Fahrenheit 585
Checksum 535

Copy verify 602
Factorial 606

EEMBC Coremark 11701

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

h
it

 r
at

e
[%

]

Cache Size [Byte]

Bubble sort
Celcius to Fahrenheit

Checksum
Copy verify

Factorial
EEMBC Coremark

Figure 6. Cache hit rate by cache size for each programs (1-word-per-line)

Hereafter, we will evaluate more detailed power consumption
using EEMBC Coremark program.

In EEMBC Coremark program, the hit rate of each cache
size is shown in Figure 7. With a large sized instruction
cache (1 Kbytes or more), 1-word-per-line instruction cache
has higher hit rate than 4-word-per-line instruction cache. This
is because there is also a case that a valid data which was
in the instruction cache in 4-word-per-line instruction cache
has been discarded as described in 4-word-per-line instruction
cache architecture. In the case of instruction cache of less than
1 Kbytes, 4-word-per-line instruction cache has a higher hit
rate. This is because 4 word-per-line instruction cache can take
advantage of spatial locality, even if the valid data has been
discarded. Also, if the associativity is high, hit rate was high
in both methods. Especially, when the cache size was small,
its effect became significant.

Based on the above results, we will evaluate a more detailed
power and energy consumption.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed the transparent instruction cache

architecture for reducing power and energy consumption of
a practical NV microcontroller architecture. Unlike traditional
cache architecture researches, we intended to reduce power and
energy consumption rather than to improve processing speed.
This is because, in the case of NV microcontroller used for
real time application in embedded systems, it is important to
prolong the battery run time and not to change the existing
NV microcontroller’s cycle-level execution time.

Our future work is to evaluate the effect of proposed
instruction cache architecture by estimating more detailed
power and energy consumption of this architecture. In order to
estimate a more detailed power and energy consumption, we
will develop an RTL description of the base microcontroller,
and will integrate the proposed instruction cache architecture to
the RTL description. We can generate back-annotated netlists
after logic synthesis and placement/routing, then, using which
power and energy reduction of the proposed architectures can
be evaluated fairly accurately.

REFERENCES
[1] V. C. Gungor, Bin Lu, and G. P. Hancke, ”Opportunities and Challenges

of Wireless Sensor Networks in Smart Grid”, Industrial Electronics,

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

h
it

 r
at

e
[%

]

Cache Size [Byte]

4Words/Line Cache 1-way
4Words/Line Cache 2-way
4Words/Line Cache 4-way
1Word/Line Cache 1-way
1Word/Line Cache 2-way
1Word/Line Cache 4-way

Figure 7. Cache hit rate by cache size (Evaluation program : EEMBC
Coremark)

IEEE Transactions on, pp. 3557-3564 , October, 2010.
[2] H. G. Lee, and N. Chang, ”Energy-aware memory allocation in heteroge-

neous non-volatile memory systems”, in Proc. of the 2003 international
symposium on Low power electronics and design, pp. 420-423 , August,
2003.

[3] J. R. Goodman, ”Using cache memory to reduce processor-memory
traffic”, in Proc. of the 10th annual international symposium on
Computer architecture, pp. 124-131 , June, 1983.

[4] K. Oba, K. Kawai, R. Matsushita, K. Ishihara, and K. Eto, ”Development
of 16-bit All Flash Microcomputers“78K0R/Kx3-L”Featuring Ultralow
Power Consumption”, Nec Technical Journal, 4(1), 35: , March, 2009.

[5] Renesas Electronics Corporation, ”Renesas Demonstration Kit for
RL78G14 User’s Manual”, http://documentation.renesas.com/doc/
products/tools/r20ut2534eu0200 yrdkrl78g14 um.pdf , October, 2013.

[6] Renesas Electronics Corporation, ”RL78 Family User’s Manual: Soft-
ware”, http://documentation.renesas.com/doc/products/mpumcu/doc/
rl78/r01us0015ej0210 rl78.pdf, January, 2014.

[7] Renesas Electronics Corporation, ”78K0R/Hx3 User’s Manual: Hard-
ware”, http://documentation.renesas.com/doc/products/mpumcu/doc/
78k/r01uh0260jj0300 78k0rhx3.pdf, September, 2013.

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-379-7

CENICS 2014 : The Seventh International Conference on Advances in Circuits, Electronics and Micro-electronics

