
CodeDroid: A Framework to Develop Context-Aware Applications

Lillian B. R. de Oliveira Antonio A. F. Loureiro
Department of Computer Science

Federal University of Minas Gerais
31270-010 Belo Horizonte, MG, Brazil

{lillys,loureiro}@dcc.ufmg.br

Abstract—Context-aware computing enables the develop-
ment of systems that adapt themselves to the context of the
user, device and surrounding environment. To represent the
context information associated with the application, this work
proposes the use of a profile. This paper also proposes the
CodeDroid framework, based on the Android platform, to
help a designer in the development of context-aware mobile
applications for different domains. This strategy showed to
provide greater modularity and reuse of components. The
CodeDroid framework also brings together the most generic
services used to collect context, as discussed in the development
of Places2Go, a tourism application.

Keywords-context-aware computing; interface; mobile appli-
cation;

I. INTRODUCTION

The use of mobile devices is a common aspect of our lives.
These devices have more features, more processing power
and communication capacity. With the increased use of
mobile devices new computing platforms were designed for
that environment. Among them we can mention the Android
platform that deservers special attention since is becoming
the dominant operating system in mobile devices. Due to the
success of these platforms, there is an increase in the design
of context-aware applications that make use of existing infor-
mation collected from sensing devices and other user-related
information. To facilitate the development of applications
and achieve greater productivity, it is recommended to use
frameworks or other similar computational tools that help
designers to optimize their work. For example, a single
application for a mobile computing environment may have
to consider dozens of portable devices with different charac-
teristics and it can be customized to meet the requirements
of different users.

Another incentive for the development of mobile applica-
tions is related to the financial aspect. Developers can sell
their own applications to users around the world through
virtual markets available, for example, by manufacturers.
This scenario shows how important the agility of developing
mobile applications is, especially, in a competitive market
such as mobile computing.

Context-aware computing allows the development of sys-
tems that adapt to the context. The context may include
information from the user, device and environment. Context-
aware applications rely on context to provide services to

users, however, not all context information is relevant to the
application. In this work, we employ the concept of profile
to centralize information about relevant user profile data, as
described in the next section.

Currently, the development of applications for the Android
platform is not a simple task. The developer must understand
the architecture, the execution flow of applications and
characteristics of the platform components. For example, the
code of an application on Android can be developed into a
single component opposing the practice of internal cohesion
and low coupling. To facilitate the use of the profile and
organizing the architecture of context-aware applications we
propose the CodeDroid framework that allows the develop-
ment of context-aware mobile applications for the Android
platform.

In the literature, there are some proposals for framework
for context-aware applications developed on the Android
platform [2], [3]. But they do not use the concept of
centralized profile as information on the context. Other
proposals do not address sensing services implementations
used by the generic context-aware applications.

This work aims to use the concept of profile in the
design of context-aware applications. We have developed the
CodeDroid framework and applied it to design an application
called Places2Go for a tourism case study. The application
was evaluated using real and emulated environments with
good results demonstrating the feasibility of the proposed
strategy.

This work is organized as follows. Section II discusses
the concept of profile used in this work. Section III gives
a brief overview of the Android platform, which was used
to develop our proposed solution. Section IV presents the
CodeDroid framework that was designed to help designers
in the development of context-aware mobile applications
for the Android platform. Section V evaluates the proposed
framework in both real and simulated environments. Finally,
Section VI presents our conclusion and future work.

II. PROFILE

Dey et al. [1] define context as “any information that
can be used to characterize the situation of entities (i.e.,
a person, place or object) that are considered relevant to
the interaction between a user and an application, including

72

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

user and the application. Context is typically the location,
identity and status of people, groups and computational and
physical objects”. To aggregate the information relevant to
context, applications can use a concept called profile in this
work.

Definition (Profile) Entity responsible for representing the
context information of a user, device and environment that
is relevant to the interaction with the application.

The profile is very important for context-aware applica-
tions because it helps to decide the flow of the application
execution. The application starts interacting with the profile,
so the the user and sensing services do not need to be fre-
quently involved in these interactions. The profile centralizes
for information and acts as interface between application and
other services.

The contents of the profile can be modified at any time and
this information is fundamental to offer for more adequate
services to users. Such changes can be observed in situations
where the actual user moves from one location to another
one or when other users and/or resources move into and/or
outside the application area of interest. The dynamics of the
profile makes its use more complex, however, its constant
update allows to better meet the goals of both user and
application.

The profile structure is the way used to express the context
information and allow its exchange. In the current scenario,
each application uses a particular way of structuring and
modeling context, which can be completely different from
another application, even if they belong to the same domain.
In this way, it becomes very complicated to exchange
information among those applications. Thus, it is important
to standardize the context representation to make easy the
communication between user and application and among
applications.

The structures to represent a profile can be divided into
the following categories: model marking scheme, model of
key-value pairs, object-oriented model, logic-based model
and ontology. This work uses the model marking scheme
that allows to represent information in a robust way, without
demanding too much processing to treat the information.
Another advantage is that the profile defined in this way
allows to reuse it in different domains, what does not happen
if we use ontologies, for example.

In the literature, there are several ways to represent
context such as XML (Extensible Markup Language), RDF
(Resource Description Framework), RDF-Schema and OWL
(Web Ontology Language). Due to the choice of the markup
model as a way of structuring the profile, we chose XML,
which is widely used for information exchange, especially in
web services. XML also works as the basis for other forms
of representation mentioned above. Therefore, the designer
can still use other representation forms provided they are
described in XML.

The profile contents incorporates information about the
user’s context, device and environment. The user information
may describe personal characteristics (e.g., name, age, sex
and education) and interests. The device context includes
the device specification (e.g., model, processor, display size,
networking capabilities and existing sensors) and conditions
(e.g., battery level, available memory and connected net-
work). Some of the environment characteristics that may be
present in the profile are weather conditions, noise levels
and traffic conditions.

This paper addresses the design of an entity called “pro-
file” with some predefined attributes. Since the framework
goal is to support different domains, we chose the more
generic attributes that can be used in various context-aware
applications. These attributes were chosen based on the
evaluation of various context-aware applications in different
scenarios. The attributes considered to be the most generic
to comprise the profile are: identifier, name, email address,
location and battery level. However, the designer can also
define additional attributes for the profile. This situation
only occurs when the application needs to define more
context data beyond those already listed in the profile of
the framework. In this case, the designer is responsible for
defining the attribute and collecting context data to assign
to the attribute information.

To build the profile we have to collect data about the
context. The data collection can happen in different ways:
interactively, import from an existing data source or service
sensing. The interactive form depends on the user who
must provide the necessary data directly. In this case, the
application may stay in an idle state waiting for a user
response, hindering its operation. The form of collecting by
importing data implies that the profile represents data from a
file to be imported by the application. This import does not
guarantee that the data is updated and requires a standard
format for the context representation file.

Data collection through sensing services is highly recom-
mended. It allows to obtain real and updated data. Another
feature is that most of the devices already have the necessary
sensors to provide services to access the hardware. We
evaluated context-aware applications in different scenarios
and identified the need to use the following basic services:
– Location Service: obtains the user’s location. The resulting
information is expressed as coordinates (latitude and longi-
tude) or a full address.
– Weather service: Provides weather information about a
given location.
– Energy management service: checks the availability of the
battery energy.

These services can work independently from other ser-
vices. However, some of them depend on other services.
For example, the weather service depends on the information
provided by the location service. The framework addresses
this issue by allowing a dependency hierarchy defined by

73

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

the designer.
Another important aspect is the frequency and service

execution time. It is possible to configure each service to
perform in a given period of time, saving device’s resources.
It is the developer’s responsibility to check the need to use
a service and the consumption of battery.

III. ANDROID PLATFORM

We used the Android platform1 to implement the Code-
Droid framework. Among the advantages of this platform
we highlight the portability, because it uses its own virtual
machine (Dalvik). It is based on open code, which allows
greater flexibility in the application development. It also
has a robust development environment with tools for code
debugging and performance evaluation. It also provides
facilities to access device features (e.g., GPS, camera, bat-
tery, network, among others). To build applications for the
Android platform, we use the following components:

Activity: most activities interact with the user. Therefore,
the activity is responsible for creating the window in which
the graphical user interface will be built. An activity may
be presented as a floating window or embedded in another
activity.

Service: recommended for functionalities that need to run
indefinitely in the background. It has no visual interface.

Broadcast receivers: receives and responds to notifications
sent to the system.

Content providers: component responsible for storing and
retrieving data and making them accessible to all applica-
tions.

In the Android architecture there is no structure and
organization that determines the communication pattern be-
tween components. All component types can instantiate
components of the same type or not. For example, an activity
can communicate with a service, a broadcast receiver or a
content provider. It is possible to create Android applications
using only one activity that connects to pre-existing services
in the platform. In this case all code may belong to just one
class, making it less cohesive, high coupling, less readable
and more complex to maintain. Making an analogy between
the Android architecture and the MVC architecture model,
we can say that Activity performs the role of the vision
and control layer. The ContentProvider would be the model
layer.

IV. CODEDROID FRAMEWORK

The goal of the CodeDroid framework is to assist the
development of mobile context-aware applications for the
Android platform. In addition to the contributions of a
framework (extensibility, control inversion, modularity and
reuse), CodeDroid allows a user to add other features
through the standardization of the application structure:

1http://www.android.com/

better organization of the application code; adaptation of
the MVC pattern to develop Android applications, greater
modularity; definition of an access point to the sensing
services based on the Facade standard; implementation of
notifications as a result of context changes based on the
Observer design pattern; definition of the “entity” for repre-
senting context; profile abstraction allowing its management
in a transparent manner; and providing services for the
collection of context sensing.

A. Framework Architecture

The framework architecture is depicted in Figure 1. The
classes of the CodeDroid framework are detailed below.

Figure 1. Class diagram of the application Places2Go and its relationship
with the classes of CodeDroid framework.

ActivityBase: extends the class Activity already defined
in Android. The goal is to relate all the basic settings of
an Activity in a single class, which depends on the class
ProfileControllerBase to use the other framework services.
The application developer must define a main Activity for
the application that extends the ActivityBase class. Thus, the
developer can use the profile management service without
knowing its configuration and take advantage of the frame-
work.

ProfileControllerBase: aims to bring together all profile
management services. It acts as the application control
that receives the instructions of the ActivityBase class, and
manages which operations will be performed. This class is
also connected to the layer model that represents the profile.

The class ProfileControlerBase is the extension of Service
component defined by Android. As the features already
listed about this component, the class ProfileControlerBase
can run even in the background. This class already imple-
ments the most used services in context-aware applications.
The available services in the framework are: location service
(locationservices), battery management service (BatterySer-
vice) and weather service (WeatherService).

When using the framework, the developer must create
a subclass of ProfileControllerBase, which represents the

74

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

application control layer. It is important to notice that,
besides the services available at the CodeDroid framework,
the developer can add other services. The developer should
preferably define each service in a class, ensuring a greater
cohesion and a lower coupling. Additional services should
be connected to the subclass of ProfileControllerBase, fol-
lowing the logic of the other services. This shows the
flexibility and extensibility of the framework.

ProfileBase: default class that represents the entity profile.
This class lists the essential attributes of the profile, i.e.,
those that are commonly used in context-aware applications
in different scenarios. The class has the attributes: identifier,
name, email address, location, and battery level.

ProfileListener: class that aims to manage the change no-
tifications of the profile. The class ActivityBase implements
this interface. Therefore, the main Activity of the application,
which extends the class ActivityBase, must implement the
methods defined in the interface. These methods will be
responsible for processing events generated when the profile
is modified.

For each event that occurs in pre-service implemented by
the framework, the method onProfileChanged of the class
ProfileListener is invoked. The developer should handle
the events in the implementation of the method onPro-
fileChanged of the main Activity application. Without this
class, the developer would have to implement the listeners
of all services needed by the application.

BatteryService: manages the battery level of the user’s
device. It captures the real information directly from the
user’s device. This is a subclass of the Service class available
at Android, which runs in background. The class ProfileCon-
trollerBase manages this service and other sensing services
as well.

LocationService: service responsible for obtaining loca-
tion information from the user’s GPS device. It is a subclass
of the Service class.

WeatherService: returns the weather conditions of a
particular region. This region may be the user’s current
location, obtained from the location service, or any other
location such as the latitude and longitude coordinators or
address. It is a subclass of Service.

WSUtils: class responsible for mediating the interaction
between the CodeDroid framework and Web services, i.e.,
this class helps to integrate queries to Web services.

XMLUtils: class responsible for performing the process-
ing of XML data. It interprets data in XML format that
comes from the Web services and translates it to a format
understood by the CodeDroid framework.

JSONUtils: class responsible for processing data in JSON
format (JavaScript Object Notation). It interprets data in
JSON format that comes from the Web services and trans-
lates it to a format understood by the CodeDroid framework.

B. Design Patterns

The framework CodeDroid has been developed based on
design patterns. The standards used in architectural modeling
of Android were MVC (Model-View-Controller), Facade,
Singleton and Observer. The MVC architectural pattern was
the starting point in the design of the CodeDroid framework.
However, we found that the Android platform presents
some shortcomings to use this model. The purpose of the
CodeDroid framework is to organize the architecture of
Android applications to follow the MVC model. The class
ActivityBase, its subclasses and other activities represent the
view layer. Another important component that is included
in the view layer is the layout — XML files built from
predefined tags that represent the visual components of
the Android platform. The offered service by the class
ProfileControllerBase together with their subclasses is the
application control layer. The model layer is represented by
the entity profile.

The class ProfileControllerBase was defined based on the
standard Facade. It is responsible for intermediating the
communication between clients and other services. That is,
this class receives commands from an Activity and triggers
the actions to the corresponding service.

The service ProfileControllerBase was also built based
on the standard Singleton. We identified the need to define
a unique service to perform profile management. The appli-
cations call this service whenever they need context infor-
mation. All context-aware applications developed with the
CodeDroid framework access the same service ProfileCon-
trollerBase. A single service ensures a better performance
because it would be very difficult if, for each execution,
the application would create different new services. Another
advantage is that applications can take advantage of context
information collected by other applications, reducing its run-
ning time and energy consumption, memory and processing.

V. FRAMEWORK EVALUATION

To evaluate the CodeDroid framework we developed a
context aware mobile application for a tourist scenario. In
tourist cities that attract many visitors, it is very common
to find a tour guide. The role of the guide is to help people
to know the city, drive and visite the main sightseeing,
recommend interesting places and local restaurants based
on the profile, help visitors locate themselves in the city,
among other functions.

The application Places2Go, a context-aware tour guide,
was developed using the CodeDroid framework. The purpose
of the application is to list points of interest located near
the user. This application requires context information about
the environment that is not provided by the CodeDroid
framework. For getting information about locations in a
given region, we used the Web service “Search Venues”

75

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

by foursquare APIv22. The class diagram of the application
Places2Go is depicted in Figure 1. The application classes
are described below.

Place: entity responsible for storing information about
places near the user. This entity has the attributes name,
address, city, telephone number, category, distance, latitude
and longitude.

Profile: represents the user’s application profile. It is a
subclass of the ProfileBase class of the CodeDroid frame-
work. As expected, this subclass inherits all the attributes
already defined for that profile and adds the attribute Places,
a list of objects that represents the user’s proximity locations.

ProfileController: acts as the control application and
sends the commands to the responsible services. It is a sub-
class of ProfileControllerBase of the CodeDroid framework,
inheriting the provided services already defined.

Places2Go: main application class that represents the ini-
tial screen. It is a subclass of AcitivityBase of the CodeDroid
framework responsible for initializing the necessary services
for the application in addition to those already started by the
framework. It displays the current user’s location and sets
two buttons. The first one is the “Update location” to update
the location information and the second one is “Places”,
which looks for a list of places near the user.

PlacesService: search service that looks for interest places
in the region where the user is located. This service connects
the Web service of the API foursquare and obtains the data
related to the local region. It is a subclass of the Android’s
Service class.

ListPlaces: class responsible for displaying the list of
places near the user. Each location is represented as a list
item. For each one of them there is an associated icon with
a visual representation of the place’s category. Since this is
a screen, it is a subclass of the Android’s Activity class.

PlaceDetails: class that displays the details of a site. The
fields are name, address, city, telephone number, category
and distance. The latitude and longitude were omitted be-
cause they are not of interest to the user. Since this is a
screen, it is a subclass of the Android’s Activity class.

The location service is activated and deactivated through
the ProfileController class, subclass of ProfileController-
Base. It was not necessary to define a new location service
because the methods to access the service available at
the framework CodeDroid were inherited from the Profile-
ControllerBase class. The application was implemented in
such a way that whenever there is a change to the user’s
location to a distance greater than one kilometer, the location
information is updated automatically.

The application displays the user’s current location, and in
case it is outdated, the user can select the “Update location”.
Upon detecting the location change, the application starts
representing the new user’s address. Then the user can

2http://developer.foursquare.com/

select “Places” to know about suggestions for places nearby
and, thus, the application returns the results for the query.
Due to performance reasons, the user receives at most 50
suggestions. For each result, it is returned the name of
the place, the distance between the user’s location and the
place, and an icon that represents the type of place. In
some situations, the site was not properly categorized, so
icons can be inconsistent, i.e., the application cannot take
the responsibility for this kind of problem. On the screens
of our example, illustrated in Figure 2, the user is located
at Tiradentes Plaza in Ouro Preto3, Minas Gerais. This is
a landmark of the historic city. Around it, we have the
most visited tourist sites. The application Places2Go returns
important sites such as the Museum of Inconfidência, the
Church of Nossa Senhora do Carmo, House of Tales, among
others.

The application was successfully evaluated in two en-
vironments: the emulator using the Android platform and
using the smartphone Samsung Galaxy S that runs Android
version 2.1. The Android platform provides tools for evalu-
ating the application. Among them, we use the feature that
records the CPU usage. Figure 3 shows the CPU state in
four moments that occurred during the application execution.
The share of the application is identified by the name of
the application package “br.ufmg.dcc.mestrado”. We noticed
that the CPU consumption in the worst case was equal to
11.12%. The CPU consumption was relatively low, showing
that the application developed by the CodeDroid framework
is a viable solution to be used on mobile devices.

VI. CONCLUSION AND FUTURE WORK

This paper presented the concept of a profile as an entity
to represent context, adding the most relevant information
for decision-making applications. To demonstrate the use of
the profile and help the development of context-aware mo-
bile applications, we developed the CodeDroid framework.
The application Places2Go, developed by the framework,
has the capability of being extensible, modular and allows
the reuse of components. The tool eases the development
of applications, reducing the need for coding the generic
functionalities provided by the CodeDroid framework. The
application was evaluated in both emulated and real environ-
ments, with good performance results. As future work, we
can mention the extension of the CodeDroid framework to
support new features (e.g., sensing devives), the evaluation
of the framework in different scenarios and its portability to
other mobile platforms.

REFERENCES

[1] Anind K. Dey, Gregory D. Abowd, Peter J. Brown, Nigel
Davies, Mark Smith, and Pete Steggles. Towards a Better
Understanding of Context and Context-Awareness. In HUC

3Ouro Preto is a world heritage city in Brazil. For further information
please refer to http://whc.unesco.org/en/list/124.

76

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

Figure 2. On the left, the application screen after clicking on Places (middle). On the right, the screen listing the places resulting from the action.

Figure 3. CPU usage of the smartphone running the application Places2Go.

’99: Proc. of the 1st Int’l Symp. on Handheld and Ubiquitous
Computing, pages 304–307, 1999.

[2] Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kiel-
mann, and Henri Bal. ContextDroid: An Expression-Based
Context Framework for Android. In PhoneSense, Zurich,
Switzerland, 2010.

[3] Alf Inge Wang and Qadeer Khan Ahmad. CAMF – Context-
Aware Machine Learning Framework for Android. In IASTED
International Conf. on Software Engineering and Applications
– SEA, Marina Del Rey, CA, USA, 2010.

77

CENTRIC 2011 : The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-167-0

