
PROFRAME: A Prototyping Framework for Mobile Enterprise Applications

Matthias Jurisch, Bodo Igler, Stephan Böhm

Faculty of Design – Computer Science – Media
RheinMain University of Applied Sciences

Wiesbaden, Germany
Email: {matthias.jurisch,bodo.igler,stephan.boehm}@hs-rm.de

Abstract—The rise of mobile device dissemination over the last
few years and their short product life cycles require developers
of enterprise applications to adapt to this situation. While the
development of consumer apps is supported by many tools
and processes, these can not be easily adapted to enterprise
needs. Therefore, new process models for Mobile Enterprise
Application development are required. In this paper, we present
an approach based on Software Product Lines and Design Science
Research that gathers information in the form of patterns from
existing projects to ease the development of new applications.
This information contains data from a user, organizational and
technical perspective. The approach is currently a work in
progress but will be further developed in the future.

Keywords–Mobile Enterprise Applications; Design Science Re-
search; Software Product Lines; User-centered Design; Prototyp-
ing; Pattern Inventories.

I. INTRODUCTION
Over the last few years, a rise in the dissemination of

mobile devices could be observed. The development of ap-
plications for these devices is characterized by short prod-
uct life cycles and high expectations regarding the usability
of applications. On the other hand, development culture in
large enterprises is often founded on precise specification
and heavy-weight processes. Large enterprises usually have
several requirements concerning compliance, security, linking
to legacy back-end-applications and adherence to corporate
design guidelines whereas in the mobile consumer market,
these problems are not necessarily considered. In the mobile
consumer market, new processes and concepts have been
developed, which do not suit the needs for user-centric ap-
plication development in large enterprises. Therefore, tools
and approaches for Mobile Enterprise Application (MEA)
development are required.

In this paper, we present a Prototyping Framework for
Mobile Enterprise Applications (PROFRAME) containing a
tool and process model using a prototyping approach that suits
mobile enterprise applications. This process uses structured
and formal modeling of application artifacts to support pro-
totyping and takes organizational aspects of software projects
into account. The process itself is based on the established
methodology design science research.

The paper is organized as follows: Scientific work related
to our project is presented in Section II. Our approach is
described in Section III. Preliminary results are presented in
Section IV. A conclusion and outlook are given in Section V.

II. RELATED WORK
According to [1] and [2], many enterprises still lack ex-

perience concerning the development of MEAs. While there

are no established process models for MEA development,
first research approaches for process models can be found
in related literature. Dugerdil [3] presents an approach for
transforming enterprise applications to mobile applications. An
instrumentation framework that tries to ease the maintenance
of MEAs is proposed in [4]. The management perspective
of this problem is also represented in literature. Badami [5]
examines this aspect from an organizational viewpoint and
proposed the concentration of MEA development into ”Mobile
Centers of Excellence” that concentrate the competences of
mobile experts inside enterprises.

The previously mentioned processes can be supported by
tools. Existing prototyping tools (Kony, Verivo, Akula, SAP
Mobile Platform) allow rapid prototyping. These tools can not
always be used in MEA-contexts, since they are focused on
predefined use cases or the integration of existing enterprise
products.

No processes or tools that specifically support the devel-
opment of MEAs can be found in literature or in practice.
Therefore, new approaches are required that take the charac-
teristics of MEAs into account. Central questions that need
to be answered are how the approach can take the specifics
of MEAs into account and how the approach can decrease
the time and effort for development. These questions could
be answered through reuse of artifacts from existing MEA
projects. Frameworks or approaches focusing on the inventory
and reuse of technical components, user interface patterns or
organizational aspects can not be found in literature or practice.
Especially organizational aspects are not represented in mainly
software-focused work.

III. APPROACH
Our hypothesis is that in a pool of MEA projects, there

are some artifacts or patterns from different domains (organi-
zational, technical and UI design aspects) that can be reused
in future projects. The idea of our approach is to analyze
existing completed MEA-projects and extract these patterns
and artifacts from them. Patterns are stored in a knowledge
base that allows efficient searching and semantic modeling.
This knowledge base can then be used for new MEA-projects
that can reuse components of earlier MEAs.

The knowledge base will contain knowledge from (at least)
three perspectives. These perspectives are a user-centric view
on the application including its UI design, technical aspects
concerning the platform and structure of the application and an
organizational viewpoint on the project. This can be used to aid
the reuse of artifacts from other projects. Reusing components
from earlier work efficiently can help concentrating on aspects
like user-centricity and reduce resources required to carry out

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-502-9

CENTRIC 2016 : The Ninth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

the project. This would make it easier for MEA-development
to catch up with consumer app development.

To efficiently execute this process, a tool is required. The
tool will enable the creation of new patterns, entering existing
projects including the usage of patterns into the knowledge
base and creating new projects, as well as a UI prototype from
a wireframe-like UI editor. The information for new projects
can then be used to find relevant existing projects including
information about potential reusable artifacts and knowledge
from existing projects. An example for the UI for entering
information regarding new patterns is shown in Fig. 1. For
each pattern, a name and a description (1), specific properties
(2) and an image for graphical representation (3) can be added.
If the pattern is a UI pattern (4), the image can be used inside
the tool’s UI editor during the creation of a new project.

Figure 1. Prototype for Tool UI

Our approach combines aspects from the fields of software
engineering, semantic technologies, IT-management and User-
Centered Design. We divided the problem into four sub-
problems, where we apply knowledge from these fields. The
subproblems are:

1) identification of reusable software components in
existing software,

2) adequate description, filing and semantic linking of
information regarding these software components,

3) representing non-technical aspects in the knowledge
base,

4) development of a tool that aides the application of
the process with a high usability and

5) a process for a continuous construction of a suitable
inventory.

To identify reusable components in software systems (prob-
lem 1), a detailed analysis of the software features and arti-
facts is required. Similar problems are addressed by Software
Product Lines, which are discussed in Section III-A. Existing
collections of reusable components exist as collections of
User Interface Design Patterns, which is described in Section
III-B. Creating an adequate modeling framework (problems
2,3 and 4) requires modern approaches from Model driven
Software Development (Section III-C). To support interlinking
of information from several domains and inference of new
knowledge, Semantic Technologies (Section III-D) can provide
useful technical concepts. For the development process (prob-
lem 5), domain feedback and inclusion of existing knowledge
is important. These aspects are addressed in the area of Design
Science Research, which is described in Section III-E.

A. Software Product Lines
Software Product Lines (SPL) [6] is an approach from the

field of software engineering. Its main target is to ease the
production of software variants while systematically reusing
software components. The foundation for SPL is a catalog of
artifacts. In production, these artifacts can be combined and
adapted to produce new software variants.

SPL can contribute greatly to our approach. Product-feature
trees that contain the features of a software product line, can
be reused to describe features of MEAs in the knowledge base
in our problem context. But SPL cannot be directly applied
to our problem setting. SPL typically starts from scratch to
develop a software product line, while our approach extracts
patterns and artifacts from existing MEAs. Also, switching to a
full-fledged SPL-approach would require a great deal of time
and high effort, which is problematic for enterprises in the
MEA-field given the dynamic market. Aspects that could be
reused from SPL are Product-feature trees as well as reusable
software components.

B. User Interface Design Pattern Libraries
Usage of patterns is state of the art in software engineering,

especially for technical aspects of software design (e.g. [7]).
Nowadays, patterns are used in all areas of software engineer-
ing. For our problem domain, user interface design pattern
libraries [8] can provide an important contribution.

Besides pattern libraries for conventional desktop software,
there are also pattern libraries for mobile applications (e.g. [9]).
To use these concepts in the field of MEAs, they need to be
transferred to the enterprise context. Relating these patterns
to other system artifacts is important for the application of
these concepts, too. Then, these patterns can be reused for
prototyping, which could include the usage of technical system
artifacts.

C. Model Driven Software Development
In Software Engineering, models are used for specification,

analysis and design of systems. The models usually contain
information about the structure or behavior of the described
system and provide some kind of meaning (semantic) for this
information. Model Driven Software Development (MDSD)
deals with the automated generation of software components
from these models [10]. This can help integrate domain experts
into the development process who are not experienced with
software development. The generated components can then be
integrated into manually created software.

In the context of our problem domain, adequate models for
describing system artifacts and software components including
their dependencies and organizational aspects of the corre-
sponding software projects are of importance. Whether existing
modeling languages can be used to fulfill these requirements
or a new language needs to be designed has to be examined.

D. Semantic Technologies
For the modeling, semantic modeling technologies based

on ontologies can be used. Ontologies are defined as an
”explicit specification of a conceptualization” [11]. Ontologies
provide a mechanism to represent concepts and the relations
between them. The semantics of the representation allow the
inference of new knowledge from the ontology. Tim Berners-
Lee and others proposed the semantic web, a technical ap-
proach to applying ontology-based technologies to the web

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-502-9

CENTRIC 2016 : The Ninth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

[12]. The semantic web is especially useful for interlinking
information from different domains.

An excerpt from an example ontology is shown in Fig. 2.
The excerpt shows a hierarchy of concepts. The concept ’App
Component’ is a sub-concept of owl:Thing, which rep-
resents all concepts. ’App Component’ itself has several
sub-concepts. In addition to the simple taxonomic structure
shown in the example, ontologies support the definition of
relations between instances of concepts and restrictions to
these relations.

Figure 2. Example Ontology

In our approach, semantic web technologies will be used
to provide a knowledge base that contains project informa-
tion from completed MEA projects. The natural support for
interlinking data from different domains will be useful when
integrating the data from a user centric view, a technical artifact
standpoint and an organizational perspective. These schemes
can then be connected via so-called mapping ontologies.
The separate development of ontologies for different domains
might help bootstrapping the approach.

E. Design Science Research
Design Science Research (DSR) was proposed by Hevner

et. al. [13]. It unites concepts from behavioral and design
science in a cyclic model. The objective of this process is
to improve the application domain by creating new artifacts
(products and processes). The starting point of the process
originates from requirements that stem from the application
domain. Every artifact created in the process is validated
against these requirements in the relevance cycle. Field tests
are used to confirm that a created artifact meets the domain
requirements. The artifacts are created in the design cycle,
which also evaluates the artifacts based on the requirements.
This cycle is the core of the process. The rigor cycle provides
access to and updates a knowledge base that is used in the
design cycle.

The DSR-model can be applied in two ways: The process
model and other artifacts can be seen as artifacts of the DSR-
process. Hence, DSR can be seen as the process model for our
future research. The other perception would include the DSR-
process into the created process model, where MEA-artifacts
are seen as artifacts in the sense of DSR. The knowledge base
can be structured as an ontology and the knowledge base used
in the rigor cycle.

IV. PRELIMINARY RESULTS
Preliminary results for the usage of the tool and its integra-

tion into the app development process and the tools architecture
were found. The concept for usage is described in Section IV-A
and the tool’s architecture is presented in Section IV-B.

A. Tool Usage Concept
There are two different modes when using the tool. The

first mode is entering existing, finished projects into the tool’s
knowledge base. In this mode, the user can enter several
details regarding the project. These details are separated into
three views: the user-centric view of the application, including
requirements and UI design, the technical viewpoint and an
organizational perspective on the project.

The UI perspective contains details regarding the flow of
screens and is represented in a wireframe-like editor. The user
can annotate theses screens with patterns (see Fig. 1) to add
more details to the knowledge base. The technical perspective
can be used to specify, among others, a development platform,
a deployment platform, used services and related artifacts. The
IT-management perspective can be used to enter information
regarding the organizational aspects of the project like the
process model used, costs, development time and other or-
ganizational aspects. The information can be entered through
form-based editors using attribute-value pairs.

Figure 3. Screen Prototype for similarity View

The second mode allows the user to create a new project.
The user can fill out the information that is known about the
project with the same forms that are used to enter existing
projects. The user can then open a similarity view that shows
similarity scores for existing projects. A prototype for that view
is depicted in Fig. 3. The user can see different similarity
scores for the different perspectives as well as contact persons
for different aspects of the project. In the bottom of the view
is a table that contains reusable artifacts that can be filtered by
categories. Moreover, the user can generate a prototype from
the wireframe-like UI editor, which is not shown in this paper.

B. Tool Architecture
The tool’s architecture is depicted in Fig. 4 as a Fun-

damental Modeling Concepts diagram. The two modes of
operation presented in Section IV-A are both executed by the
PROFRAME User. The Project Participant uses an ontology
editor to edit the structure of the knowledge base and adds
the initial project data concerning the technical, business- and
user-related aspects. The ontologies are connected through a
mapping ontology that relates the concepts from the different
ontologies to each other, using the natural interlinking support
of ontologies. Ontologies can also ease the variability of the
knowledge base. From the ontology, an MDSD-Framework can
generate the PROFRAME Project Tool, which can then be used
by the PROFRAME User.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-502-9

CENTRIC 2016 : The Ninth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Figure 4. Tool Architecture

The PROFRAME User can enter the project data for
a new project into the PROFRAME Project tool, which is
also represented as the content of the ontology. The user
enters data regarding desired process model, platform, etc. A
wireframe that uses existing patterns can also be used as input.
From the wireframe, the tool can generate a prototype that
can be used to demonstrate the capabilities of the planned
application to customers. To further plan the project, the
user can use the screen shown in Fig. 3, which can be
used to, e.g., find contact persons with relevant information
and potential reusable artifacts. The PROFRAME project tool
is also responsible for computing the similarities between
planned and existing projects to be shown in a similarity view
reusing approaches from the field of recommendation systems
for software engineering. An implementation could use case
based reasoning, where the similarities between cases can be
computed using word similarity in the descriptions of the
projects, similar to the work presented in [14]. Using structural
similarity measures could also be of use. Another promising
strategy for finding similar projects is the use of rule-based
recommender systems [15], that explicitly state the relation
between properties of the projects.

V. CONCLUSION AND OUTLOOK
In this paper, we have presented an approach to tackle the

difficulties of mobile enterprise application development. Our
approach combines methods from the domains of software
product lines, user interface design pattern libraries, model
driven software development, semantic technologies and de-
sign science research to improve the development process. The
approach has the advantages that it allows early prototyping
and high reuse of existing artifacts. Therefore, it can lead
to reduced costs for MEA projects. But most importantly,
the approach organizes the knowledge from different MEA
projects. The approach could prevent the loss of knowledge,
when employees leave the company or are transfered to
other positions. This could also reduce costs for companies
employing this approach. Also, the approach could ease com-
munication between teams inside the company.

In the future, we plan to implement our approach with
an industry partner that uses mobile centers of excellence
to evaluate and improve it. User motivation including the
perceived usefulness and ease of use of the approach will
be central to the evaluation. The outcome of the process will
be a pattern inventory, a modeling language, a prototyping
tool and a cost-benefit analysis of the overall approach. Also,
our approach can lead to new scientific results on how to
represent data regarding software development projects that
take a technical, business-related and user-centric perspective
into account. A process based on design science research for
MEAs could be another interesting outcome. Another research
question is whether the prototyping aspect of the process can
improve the user-centricity of the resulting MEAs which will
also be evaluated in the future.

REFERENCES
[1] A. Giessmann, K. Stanoevska-Slabeva, and B. de Visser, “Mobile

enterprise applications–current state and future directions,” in System
Science (HICSS), 2012 45th Hawaii International Conference on, Jan
2012, pp. 1363–1372, Jan 2012.

[2] Gartner, “Gartner says demand for enterprise mobile apps
will outstrip available development capacity five to one,”
https://www.gartner.com/newsroom/id/3076817, website [retrieved:
June, 2016], 2015.

[3] P. Dugerdil, “Architecting mobile enterprise app: A modeling approach
to adapt enterprise applications to the mobile,” in Proceedings of
the 2013 ACM Workshop on Mobile Development Lifecycle, ser.
MobileDeLi ’13. New York, NY, USA: ACM, 2013, pp. 9–14, 2013.

[4] M. Pistoia and O. Tripp, “Integrating security, analytics and application
management into the mobile development lifecycle,” in Proceedings of
the 2Nd International Workshop on Mobile Development Lifecycle, ser.
MobileDeLi ’14. New York, NY, USA: ACM, 2014, pp. 17–18, 2014.

[5] S. A. Badami and J. Sathyan, “micE Model for Defining Enterprise Mo-
bile Strategy,” Int. J. on Recent Trends in Engineering and Technology,,
vol. 10, no. 1, p. 9, Jan 2014.

[6] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

[8] M. Welie, G. C. Veer, and A. Eliëns, Tools for Working with Guidelines:
Annual Meeting of the Special Interest Group. London: Springer
London, 2001, ch. Patterns as Tools for User Interface Design, pp.
313–324, 2001.

[9] “Mobile patterns,” http://www.mobile-patterns.com/, website [retrieved:
June, 2016], 2016.

[10] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

[11] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5-6, pp.
907–928, Dec. 1995.

[12] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, May 2001.

[13] A. R. Hevner, “A three cycle view of design science research,” Scan-
dinavian Journal of Information Systems, pp. 87–92, 2007.

[14] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. Ferreira, and
C. Bento, “Selection and Reuse of Software Design Patterns Using CBR
and WordNet,” SEKE’03, 2003.

[15] F. Palma, H. Farzin, Y. G. Guéhéneuc, and N. Moha, “Recommendation
system for design patterns in software development: An DPR overview,”
RSSE 2012, pp. 1–5, 2012.

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-502-9

CENTRIC 2016 : The Ninth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

