
Cloud Credential Vault

Huan Liu
Accenture Technology Labs

50 W. San Fernando St., Suite 1200
San Jose, California, USA
huan.liu@accenture.com

Abstract—While cloud computing presents strong value
propositions, it also presents significant headaches to enterprise
IT departments, including incompatible billing and purchasing
process, no policy enforcement and control, and difficult data
sharing across users. We describe Cloud Credential Vault – a
central repository of cloud access credentials, which is designed
to solve these problems facing enterprise IT departments. We
describe the Cloud Credential Vault’s architecture, design, and
how it solves each of the described problems. We also describe
its current implementation, where we have already integrated
with Accenture’s billing system. Our early experience withthe
Cloud Credential Vault indicats that it can meet the challenges
facing the enterprise IT department when managing access to
cloud resources.

Keywords-Cloud management, Credential Vault

I. I NTRODUCTION

Cloud computing is already widely used at small and
medium businesses. Even large enterprise customers are
increasingly evaluating and piloting cloud usage. There
are several features of cloud that make it attractive to IT
consumers. First, it is on-demand. A user requests a virtual
server and the server would be available in a few short
minutes. Second, it is pay-per-use. A user no longer needs
to buy capital equipment upfront. Third, it is programmable.
When an application needs additional capacity, it is a simple
API call away. There is no longer the need to over-provision
just in case it is needed.

Cloud computing may include many different types of
cloud services. One sample service is Infrastructure as a Ser-
vice (IaaS), such as Amazon EC2, where a user can request
Virtual Machines (VM). Other services may include key-
value storage services, such as Amazon S3, semi-structured
storage services, such as Amazon SimpleDB, or messaging
services, such as Amazon SQS.

Although the value propositions of cloud computing is
strong, it brings significant disruptions to the current enter-
prise IT landscape for several reasons. First, its purchasing
model does not conform to the standard enterprise purchas-
ing order process. A user can simply pull out a credit card
and sign up for cloud services without any IT approval. The
charges do not appear in the IT budgeting process until at
the end of the month during reimbursement when it is too
late. An IT manager has no visibility into the current charges
and the spend trend.

Second, an IT department has no control over cloud
resources usage and cannot enforce corporate policy. Since
a cloud account is under a user’s total control, the user could
easily abuse the system. For example, a policy may mandate
that all data stored in a cloud should be encrypted, but a user
can easily ignore the policy, knowing that the IT department
has no ability to audit.

Third, a cloud makes it difficult to manage credentials
securely. Many cloud services are invoked through a web
services API. A user must present valid credentials in order
to successfully invoke these APIs. Although this is no
different than web services in Service Oriented Architecture
(SOA), a cloud makes it more difficult. In a cloud environ-
ment, a cloud VM image could be easier shared between
users. If the VM needs to access other cloud services (e.g.,
SQS, SimpleDB, S3), the VM may have to embed the cloud
credential. Unfortunately, when the VM image is shared with
other users, the credential is inadvertently shared as well.
Even if the VM image is never shared, since the image is
stored in the cloud, there is the danger that a hacker may
hack the image file to obtain the credential. In addition, when
the credential is changed (rotating credential regularly is one
of the best cloud practices), the VM image must be changed,
which is a significant hassle.

Fourth, data sharing in a cloud environment is difficult.
When a user needs to share data (either cloud data or VM
image) with other users, she must obtain the other users’
cloud account ID and then share the data with the ID.
Since the mapping from a user to her cloud account ID is
maintained manually, it is cumbersome and time consuming
to manage data sharing.

In this paper, we describe Cloud Credential Vault (CCV
or Vault), which hosts all cloud credentials centrally. By
centrally hosting credentials, we enable an IT department to
automatically monitor cloud usages and enforce corporate
policy. Although CCV is designed to support multiple cloud
vendors, our first release currently only supports Amazon
services. To be concrete, in the following, we use Amazon
services to describe the architecture, design and implemen-
tation as needed.

In Section II, we first describe CCV’s architecture. Then,
we get into more details of CCV’s capabilities in Section III.
We cover related work in Section IV, and conclude in

150

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Cloud portal

Cloud access point

1. sign up or sign in

2. request API credential

3. access cloud API

Figure 1. Cloud access model.

Section V.

II. VAULT ARCHITECTURE

In this section, we describe CCV’s architecture.

A. Cloud access model

CCV exploits a unique feature of the cloud access model.
Since it underpins CCV’s design, we first describe the cloud
access model, which is shown in Figure 1.

To access cloud resources, a user must first sign up for
an account at the cloud vendor’s portal page [1]. As part of
signing up, the user establishes a username and password
pair, which is used to login to the cloud portal. We refer to
the username/password pair as themaster credential, since
knowing this pair would allow a person a complete control
over the cloud account.

Using the master credential, a user can login to the cloud
portal to obtain anAPI Credential – a credential needed to
make programmatic API calls to access cloud resources. In
Amazon, the API credential consists of an access key and a
secret key. In GoGrid, it consists of an API key and a shared
secret. In Rackspace, the API credential is an authorization
token. Although the authorization token is not obtainable
directly from the cloud portal, a user must first login to
obtain a username and an API access key, then use them to
further obtain the authorization token through an API.

Knowing the API credential is not enough to completely
control the cloud account. For example, it is not possible
to edit profiles and view/change the billing credit card.
However, knowing the API credential is enough to access
cloud resources. Although the cloud portal (only accessible
through the master credential) typically consists of a GUI
dashboard for accessing cloud resources, this functionality
can be easily replicated by using the cloud APIs, which only
requires the API credential. There are already a large number
of third-party GUI console tools available which makes
accessing cloud resources easier. For example, ElasticFox
[2] is a popular dashboard for Amazon EC2, and S3Fox [3]
is a popular dashboard for Amazon S3, both only need the
API credential (access and secret key) to function properly.

Many cloud vendors, especially those with programmable
APIs, follow this access model: a master credential is used

Cloud portal

Cloud access point

Sign in with Enterprise ID

LDAP directory

Consult for verification
Proxy portal

access

Only grant API credential

Access with API

credential

Vault

Figure 2. CCV architecture.

to control the overall account and an API credential is used
to access cloud resources. We exploit this separation of
credentials in our CCV design.

B. CCV architecture

The basic idea behind CCV is that we split the master
credential and the API credential. CCV, which is under the
direct control of IT, holds the master credential so that IT
can maintain a complete control of the cloud account. When
a user is approved to have access to cloud resources, she is
handed a unique cloud account which is not shared with
others. A user is only given the API credential so that she
can access cloud resources, but she is never given the master
credential which would have given her total control over the
account.

Figure 2 shows CCV’s architecture. CCV is a web appli-
cation, for which users can access directly from their web
browser. It integrates with an enterprise’s LDAP directory,
so that it allows single sign on. Although it currently only
works with one administrative domain, we plan to support
some form of federated identity, such as that described in [4].
With federation, a CCV can support multiple organizations,
making it possible to offer credential management as a
service.

CCV interacts with the cloud portal directly. Since a user
no longer has access to the master credential, she no longer
can perform some functions that she is able to do through
the cloud portal. Besides not being able to download the
API credential, a user may not be able to perform other
functions, e.g., downloading billing statements in the case
of Amazon. CCV replicates those functions so that the user
still have access to the same information. For Amazon, we
screen-scrap the portal page in order to download all billing
statements. From the cloud portal, a user could also perform
functions that change account settings, such as changing the
billing credit card number. Since we do not want the users
to view or make those changes, we do not replicate those
functions in CCV.

151

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Tomcat

Servlet

Backend

process

MySQL database

Browser

Figure 3. CCV implementation architecture.

Even though not shown, CCV is designed to support
multiple cloud providers. In the back end, CCV not only
holds the credentials for multiple cloud providers, but it also
interacts with each of the cloud portals. For users, CCV
can supply cloud accounts from multiple cloud vendors,
depending on what a user requests.

A user of CCV can login to CCV to perform functions that
she normally would use the cloud portal to perform, such as
downloading the API credential, or viewing her cloud usage.
Once the user has the API credential, she can access cloud
resources directly through the cloud access point using third-
party tools. Since only the infrequent action (e.g., viewing
statement once a month), but not the more frequent action
of accessing cloud resources, goes through CCV, CCV is
unlikely to be a performance bottleneck.

Figure 3 shows the current implementation architecture.
We use Google Web Toolkit (GWT) to develop the front end
browser UI. The backend is implemented as Java Servlet
running in a Tomcat container. The backend servlet is
responsible for communicating with the frontend through
a RPC mechanism. When the frontend invokes RPC calls to
retrieve information, the servlet checks (and authenticate if
necessary) the user’s identity, and then returns the appropri-
ate information authorized for the user.

There is a separate backend process running on the same
server. It performs bulk actions that are not part of the
web UI’s request/response exchange. For example, once
a month, the backend process logs into the cloud portal,
screen-scraps and downloads the billing statement for each
account. In our current implementation, downloading the
complete billing statement at Amazon for one account takes
roughly 30 seconds, thus it is not suitable to download on-
demand when a user requests it. When a user requests for
a billing statement that has not been downloaded yet, the
servlet passes a request to the backend process, and it then
returns immediately. The user is notified that the statement
is being updated and that she should wait for a short while
before viewing it again.

Screen-scraping simulates a user accessing for informa-
tion, and a program automatically parses the output for
needed information [5]. There are various ways to screen-

scrap. For example, we could use the accessibility layer of
an operating system to access UI components[6]. However,
since all cloud vendors provide a web portal, we choose to
use HtmlUnit[7] to parse the returned web page for relevant
information.

Besides downloading billing statements, the backend pro-
cess also performs auditing and policy enforcement. For
example, if a policy states that no cloud data should be un-
encrypted, the backend process periodically takes a sample,
and checks if any file conforms to the corporate policy. Since
CCV not only has the master credential, but also the API
credential, it can easily invoke cloud API to perform the
auditing. Section III-B describes the kind of policies that
we currently support.

Information downloaded from the cloud portal, such as the
billing statement and the credentials, are stored in a MySQL
database. For security purpose, all credentials are encrypted
before stored in the database. The servlet does not keep any
billing or credential data in memory. It always queries the
database for the latest information. Thus, the database is our
central state storage, which simplifies the synchronization
between the servlet and the backend process.

III. SOLUTION DETAILS

This section describes the CCV solution in details. In
particular, we describe how we address each of the problems
described in Section I.

A. Billing integration

One of the goals of CCV is to integrate with an enter-
prise’s internal billing process. CCV accomplishes this goal
by acting as a broker between the internal billing system
and the cloud.

In the cloud portal, CCV configures each cloud account
to use a corporate credit card, which is charged each month
by the cloud vendor and then paid directly by the IT
department. In Amazon, we enableconsolidated billing for
all cloud accounts under CCV’s management. This allows
us to benefit from volume discount.

When a user signs up for a cloud account in CCV, she
must configures a charge code associated with the cloud
account. The charge code is charged each month for the
actual cloud usage. In Accenture, the charge code is referred
to as the WBS element. Although each company has a
different internal billing mechanism, we have designed CCV
to be flexible enough that it can easily integrate with a
different mechanism.

When a charge code owner logs into CCV, she can see all
cloud accounts that are charging to her charge code. She can
view billing statements for all those cloud accounts. Since
CCV can download partial billing statement when a user or
the charge code owner requests, even if it is not the end of
the month yet, the charge code owner can view up-to-date
spends.

152

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

B. Control and policy enforcement

The charge code owner has a full control over the cloud
account. She can optionally disable an account (e.g., if the
user abuses the account or if the user has left the company),
in which case, the API credential is changed so that the user
can no longer use it. In addition, the charge code owner can
optionally stop all cloud resources usage (stop all servers
and/or remove all storage) to stop incurring further charges.

We also plan to support a flexible set of policies that
a charge code owner can specify and enforce. However,
initially we only support two sample policies.

The first policy states that “no more thanx servers are
running each day at timey”. Both x (a number) andy (a
time) are specified by the charge code owner. This policy
is designed to catch run-away instances – instances that the
user forgot to turn off, which happens frequently in the cloud
environment. When enforcing this policy, we start a cron job
at the specified timey and use the API credential to query
how many EC2 servers are running at the time. If it is more
thanx, we send an email alert to the charge code owner.

The second policy states that “all cloud data should be
encrypted”. When this policy is enabled, CCV periodically
samples a few files stored in the cloud, and checks whether
they are encrypted. For demonstration purpose, we currently
only check whether the file is a plain text file. However,
in the future, we intend to employ more sophisticated
algorithms to detect whether a file is encrypted.

While these two policies are designed to demonstrate the
capabilities of CCV, we intend to support a wider range
of flexible policies. We are in the process of gathering
requirements to understand which set of policies are the most
useful.

C. Credential on demand

When a VM needs to access other cloud resources, such
as S3, SQS and SimpleDB, a common practice today is to
embed the needed API credential inside the VM image. The
reason is because it is cumbersome to copy over the API
credential every time the VM starts. However, this practice
is not secure, for two reasons.

First, the server image could be shared with other cloud
users. When other cloud users launch the same image, they
would have access to the image owner’s API credential.

Second, changing API credential frequently is a cloud
best practice, since it minimizes the damage of losing an
API credential. Unfortunately, when the API credential is
changed, the credential embedded in the VM images remains
the same, requiring the image to be recreated again.

Instead of embedding theimage creator’s API credential,
we believe a VM should be entitled to theimage user’s API
credential. CCV provides such a facility to VMs to query the
API credential used to launch the VMs in the first place. The
VM can request this by querying a URL at the IP address

of CCV, but with URI of “/apicredential”, e.g., a VM can
query https://ccv.com/apicredential.

When a VM queries this API, CCV first has to find the
API credential used to launch the VM. We currently iterate
over each stored API credential and query Amazon API in
sequence to see which API credential the VM was launched
under. Although this is inefficient, we have not run into
performance problems yet during our pilot trial. We are
actively looking into alternative approach to determine the
launching credential,

When the launching API credential is found, CCV passes
back the API credential to the VM, so that is can start access-
ing other cloud services such as S3, SimpleDB, and SQS. By
providing this mechanism of API credential on demand, we
prevent any need to hard-code credential information inside
a VM image, thus greatly enhance cloud security.

D. Data sharing

Sharing data across cloud account is cumbersome. A user
has to find out about other users’ cloud account ID (a 12
digits number in Amazon) and enables sharing with the ID
instead of a user name.

In CCV, a user can share cloud data and server images
with a user name or a group alias. The group aliases are from
the LDAP directory. When a user chooses to share with a
group (e.g., HR.global group), CCV looks up in the LDAP
directory to expand the group into a list of user names. From
the list of user names, CCV then expands it into a list of
cloud account IDs by checking the cloud account IDs that
belong to each user. It then shares the data or image with the
list of account IDs. Even though CCV still uses the cloud’s
native capability to share data with an account ID, the user
operates at a much higher abstraction layer, sharing with a
user or a group of users.

The group membership in LDAP directory may change
over time, e.g., new members joining HR.global or existing
members leaving HR.global. CCV periodically checks the
group membership and adjusts the permission as needed.

IV. RELATED WORK

RightScale[8] and EnStratus[8] all address the same man-
agement challenge facing enterprises trying to adopt cloud
computing. However, both of them take a different approach
than ours. They use one cloud account to support a whole
enterprise, and build an interface on top to multiplex multiple
cloud users through the same cloud account. Although it has
the ability to limit a user to a subset of cloud functionalities,
it has two disadvantages. First, their interfaces have to
be very scalable since all cloud access go through those
interfaces. Second, they cannot perform accurate accounting
between different projects. For example, a VM could con-
sume significant bandwidth charges, but since its bandwidth
usage does not go through the management interfaces, it is

153

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

not possible for those interfaces to meter and bill projects
for those bandwidth charges.

MyProxy[9][10] is a repository of X.509 proxy
certificates[11]. CredEx [12] extends MyProxy to further
support heterogeneous authentication methods. These repos-
itories all treat the credentials as opaque, whereas we take
advantages of the API credentials to enable control and
auditing.

Amazon cloud manages SSH public key in a similar
mechanism as we used for passing the API credential to an
image. The SSH public key is available at a fixed IP address
(169.254.169.254) and a fixed URI (/latest/meta-data/public-
keys). To pass the API credential, we also use a fixed IP
address (CCV’s IP address) and a fixed URI (/apicredential).

V. CONCLUSION AND FUTURE WORK

We have presented the architecture, design and implemen-
tation of the Cloud Credential Vault – a central repository
of cloud credentials. By centralizing the credentials and by
separating the master credential from the API credential,
CCV solves many management problems facing enterprises
that are adopting cloud computing.

We have only completed a prototype implementation sup-
porting only one cloud vendor (Amazon). Beyond supporting
more cloud vendors, there are also several open questions
that we need to address to make CCV more efficient. First,
we need a more efficient mechanism to look up the API
credential used to launch a particular VM. Second, we
need to define a more comprehensive set of policies to
support. Third, we are also looking at more efficient ways
to monitor group membership changes so that we can adjust
data sharing permission as needed.

REFERENCES

[1] Amazon Web Services, “Amazon Web Services Portal,”
http://aws.amazon.com, 08.23.2010.

[2] Elasticfox, http://sourceforge.net/projects/elasticfox,
08.23.2010.

[3] Suchi Software, “S3fox,” http://www.s3fox.net/, 08.23.2010.

[4] E. R. Mello, M. S. Wangham, J. Silva Fraga, E. T. Camargo,
and D. Silva Böger, “A model for authentication credentials
translation in service oriented architecture,” pp. 68–86,2009.

[5] B. Myers, “User interface software technology,”ACM Com-
put. Surv., vol. 28, no. 1, pp. 189–191, 1996.

[6] M. Grechanik, K. Conroy, and K. S. Swaminathan, “Creating
web services from gui-based applications,” inProc. SOCA,
2007.

[7] Htmlunit, http://htmlunit.sourceforge.net, 08.23.2010.

[8] Rightscale, http://www.rightscale.com, 08.23.2010.

[9] J. Novotny, “An online credential repository for the grid:
Myproxy,” in Proceedings of the Tenth International Sympo-
sium on High Performance Distributed Computing (HPDC-
10), IEEE. Press, 2001, pp. 104–111.

[10] J. Basney, M. Humphrey, and V. Welch, “The myproxy online
credential repository,”Software: Practice and Experience,
vol. 35, pp. 801–816, 2005.

[11] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson, “Internet X.509 public key infrastructure
(PKI) proxy certificate profile.” RFC 3820 (Informational),
2004. [Online]. Available: http://www.ietf.org/rfc/rfc3820.txt

[12] D. D. Vecchio, M. Humphrey, J. Basney, and N. Nagaratnam,
“Credex: User-centric credential management for grid and
web services,”Web Services, IEEE International Conference
on, vol. 0, pp. 149–156, 2005.

154

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

