
A Look at Cloud Architecture Interoperability
through Standards

Claus Pahl, Li Zhang and Frank Fowley
School of Computing, Dublin City University, Dublin, Ireland

Email: [cpahl|lzhang|ffowley]@computing.dcu.ie

Abstract—Enabling cloud infrastructures to evolve into a
transparent platform while preserving integrity raises interop-
erability issues. How components are connected needs to be
addressed. Interoperability requires standard data models and
communication encoding technologies compatible with the exist-
ing Internet infrastructure. To reduce vendor lock-in situations,
cloud computing must implement universal strategies regarding
standards, interoperability and portability. Open standards are of
critical importance and need to be embedded into interoperability
solutions. Interoperability is determined at the data level as
well as the service level. Corresponding modelling standards and
integration solutions shall be analysed.

Keywords - Cloud Architecture; Interoperability; Standards.

I. INTRODUCTION

Enabling cloud infrastructures to evolve into a transparent
platform while preserving integrity raises interoperability is-
sues [2], [5]. Interoperability requires standard data models
and communication encoding technologies compatible with
the existing Internet infrastructure. The need to scale and
provide cost-effective time-to-market. Public cloud services are
available to the public and owned by an organisation selling
cloud services, e.g. Microsoft or Amazon are major providers.
Hybrid clouds are an integrated cloud services arrangement
that includes provision of compute resources from more than
one source (e.g. either private or public). Hybrid architectural
models may be vertically partitioned (e.g. data stored privately)
or horizontally partitioned (e.g. using public cloud to prototype
a new device view of a service in parallel with an existing
implementation). These architectural scenarios define the need
for interoperability solutions if flexible composition, migration
and portability are sought [1], [3].

To reduce vendor lock-in situations, cloud computing must
implement universal strategies regarding standards, interoper-
ability and portability. Open standards are of critical impor-
tance and need to be embedded into interoperability solutions
[9], [10]. Standardisation efforts linked with intelligent pro-
cessing techniques shall be given particular attention. Interop-
erability is determined at the data level as well as the service
level [11], [4], [13]. Corresponding modelling standards and
integration solutions shall be analysed.

The objectives of this investigation include the review of
relevant standards for cloud architecture interoperability (look-
ing at their background, usage and analysing their importance
for this context) and analysing the overall maturity of the
technology and determining current trends and shortfalls.

We start with an architectural scenario, the definition of
stakeholders and interoperability concerns in Section 2. In

PaaS Interface

IaaS Interface NaaS Interface DaaS Interface

Resource Manager

M
an
ag
am

en
t&

 M
on

ito
rin

g

M
ar
ke
tp
la
ceLifecycleManager

Fig. 1. Layered Architecture for Cloud-based Software Components.

Section 3, we categorise existing standards and review a
selection, before ending with some discussions.

II. CLOUD ARCHITECTURE AND INTEROPERABILITY

A. Cloud Architecture

A cloud architectural framework consists of the classical
three cloud layers infrastructure (IaaS), platform (PaaS and
software (SaaS) as service-oriented offerings [2], [5], [6]. In
addition, we can differentiate between (hardware or software)
resources provided in a traditional way, and the . . . as a Service
version of them, which considers virtualization, multi-tenancy
and elasticity as the concerns [3]. A platform product can
be deployed over IaaS (or a network provided as a service
NaaS) or over real hardware infrastructure. A platform product
can be offered as a Service (PaaS) for the application layer.
The application software can be deployed either on top of
a platform product (cloud-less), or making use of platform
services (PaaS). Finally, an application product can be offered
as a Service (SaaS) for external customers.

Different usage models can be derived from the combina-
tions of the layers. We take into account that some software (or
hardware) is provides as a service, other components are di-
rectly interfaced: application over a platform, SaaS over a plat-
form, or pure platform over IaaS. These different usage models
rely on interoperability solutions. Some are service-based
abstractions (APIs) that need, consequently, to be aligned with
common (Internet/Web-based) service description, modelling
and composition standards. However, also more technology
(or layer) specific standards are also important.

A stakeholder can play more than one role within the plat-
form scenario according to the usage. For instance, a Software
Provider in the Application Software layer can be at the same
time a PaaS or Platform Software customer. Service providers

7Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



and users rely more on service-related standards, whereas non-
service interfaces for software providers and developers might
be more layer-specific.

B. Stakeholder Roles

Different stakeholders can be associated with the architec-
tural scenarios. These can be categorised into roles that reflect
their activities and needs. These roles are based on suggestions
from the EU FP7 Projects SLA@SOI (for general roles in the
services context) and 4CaaSt (for cloud-specific roles).

A Service Provider (or application provider) supplies ser-
vices to one or more internal or external customers. A Software
Manager defines software-based services, takes care of their
management (business focus) and administration (technical
focus) A Service Aggregator is a reseller that contracts and
aggregates services or applications by third parties in order to
create a new ones A Service Maintainer maintains a service
after it has been deployed A Context Provider provides context
information about the underlying infrastructure components
(e.g. telecoms or sensor network) A Data Provider owns,
manages and provides data to a service

A Cloud Provider is a resource provider that provides an
integrated platform or infrastructure services based on possibly
heterogeneous cloud offerings. A Platform Provider offers a
technical platform to Service Provider to host their software
services. A Platform Manager manages a platform from a
business perspective. An Infrastructure Provider is a cloud IaaS
provider. An Infrastructure Manager measures and controls
infrastructure properties.

A Software Provider produces software which might be
used by a Service Provider to assemble services. In this
context, a Software Designer designs/develops the architecture
and components of a specific SLA-based application.

A Service Customer orders services and defines and agrees
service-level targets (SLA). A Service Consumer is the person
who actually consume/use the provided services.

C. Interoperability Concerns

Interoperability concerns arise in different situations. In-
teroperability between cloud layers needs standardised APIs
to allow higher cloud layers to link to a range of services
provided at the lower layers, e.g. platform implementations
to uniformly link to IaaS offerings. Roles of importance are
service provider and service user. Interoperability within layers
needs suitable standards to allow components in a layer to
interact and be exchangeable. Non-service interactions need
to be supported, e.g. where, as explained in the third scenario
above, a Software Developer combines different platforms in
the development of a new system. Figure 1 indicates some of
these components and their connectivity for the infrastructure
and platform concerns. The architecture in Figure 1 should
only be indicative of these concerns, but captures some agreed
components in this context.

III. INTEROPERABILITY-RELATED STANDARDS

Standards are necessary to consolidate efforts in a technol-
ogy domain and to enable interoperability. An overview and

a categorisation of standards relevant to interoperability in the
cloud computing context that we cover here is:

• Web services: WSDL (description), SOAP (protocol),
WS-BPEL (composition), UDDI (repository)

• Service modelling: Open-SCA (service composition
and interaction), USDL/SoaML/CloudML (multi-view
services), EMML (mashups)

• Service interfaces: OCCI (infrastructure management),
CIMI (infrastructure management), EC2 (de-facto
standard), TOSCA (portability), CDMI (data)

• Infrastructure: OVF (virtual machines); specific con-
cerns: memcached (data caching), VEPA (network)

• Security: OAuth, SCAP

For each standard, we provide background about origins,
support and purpose, the intended usage, and an analysis of
the relevance for interoperability considerations. Providing a
comprehensive overview of all standards is not the objective.
We have singled out those that represent specific aspects well.

A. Core Web Services Standards

Service-based provision needs Web services alignment.
Thus, relevant standards are SOAP, WSDL, WS-BPEL and
UDDI (not discussed due to space considerations). As all cloud
layers (infrastructure, platform, software, processes) can be
provided in an . . .-as-a-service form, these classical services
standards form the foundation of cloud interoperability. Al-
though not standardised as such (and thus not covered here),
RESTful services have become a similar, more lightweight
major architectural style for services.

B. Service Modelling and Interface Standards

We separate more advanced modelling and interface de-
scription standards from the core Web services standards in
this context, i.e. WSDL and WS-BPEL, as the ones covered
here have not gained as much recognition.

Open Composite Services Architecture (Open-CSA)
The OASIS Open Composite Services Architecture (CSA)
specifications provide standards to simplify SOA application
development [21]. OASIS brought together vendors and users
from to collaborate on the development and adoption of the
Service Component Architecture (SCA) and Service Data Ob-
jects (SDO) families of specifications. Usage: As an example,
the SCA Assembly Model is a framework to describe service
coordination and interaction that ties in service composition
with common software architecture concerns. Analysis and
Recommendation: The CSA standards can be utilised as is or
can serve as input for any composition and assembly language
for interoperability concerns. It can serve a guide for the
specification of services and cloud configurations. It can also
facilitate the development of visual tools for assembling of
components and service references during application design.

The specifications on the SCA Assembly Model are very
relevant for interoperability. Application development using
SCA should result in the following advantages. It promotes
decoupling of application business logic from the details of
the invoked services. Target services in a range of languages

8Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



(like C++, Java, and PHP) are supported. Different commu-
nications constructs including One-Way, Asynchronous, Call-
Return, and Notification are considered. Legacy components
or services, accessed as Web Services, EJB, JMS, JCA, RMI,
or CORBA can be included. Quality of Service requirements
are considered, such as security, transactions and the use of
reliable messaging

Data interoperability is an equally important concern in
Open-CSA. Data could be represented in Service Data Objects.

The value proposition of SCA is, therefore, the flexibility
for composite applications to incorporate reusable components
in an SOA programming style. The overhead of business
logic concerns regarding platforms, infrastructure, plumbing,
policies and protocols are removed.

Enterprise Mashup Markup Language (EMML) En-
terprise Mashups combine and remix data from databases,
spreadsheets, websites, Web Services, RSS/Atom feeds, and
unstructured sources that deliver actionable information. The
Open Mashup Alliance (OMA) is in charge of the Enterprise
Mashup Markup Language (EMML) [20]. It can support enter-
prise mashup implementations, improve mashup portability of
mashup designs, and increase the interoperability of mashup
solutions. OMA provides an EMML schema and a reference
runtime environment as the technology framework. Usage:
EMML is a Domain Specific Language (DSL) designed to
address the creation and reuse of mashups. EMML is, how-
ever, not a general-purpose language - EMML was designed
to be complimentary to and integrated with languages like
JavaScript, Java, Groovy, and Ruby via scripting. EMML is a
declarative XML-based language and, as such, leverages and
complements existing XML capabilities inherent in XQuery,
XPath, and XSLT. EMML is an open language specification.
This free-to-use language (and technologies that embed or use
it) have a much better chance of meeting the needs of en-
terprise developers than a proprietary language. Analysis and
Recommendation: It is particularly suited for interoperability
issues related to mashup creation. It is supportive of a strong
trend towards lightweight and integrative content and service
assembly and is therefore representative of a specific modelling
and integration concern.

Unified Service Description Language (USDL) The aim
of the Unified Service Description Language (USDL) team, an
W3C Incubator Group, is to define a language for describing
general, generic parts of technical and business services to
allow services to become tradable and consumable [19].

• Technical services are considered software services
based on WSDL, REST or other specifications.

• Business services are defined as business activities
that are provided by a service provider to a service
consumer to create value for the consumer.

The business services are more general and comprise man-
ual and technical services. The USDL definition aims at
complementing the technical language stack by adding re-
quired business and operational information. The targeted
cloud stakeholders for USDL are service providers, infras-
tructure providers, service assemblers and service consumers.
Industry-specific and general-purpose attributes of a service
are derived based on use cases, taking into account the target

groups. The USDL group aims to derive best practices and
learning from testing cycles that can then be deployed in
a number of use cases. These use cases serve as refer-
ences and proof-of-concept of USDL. Usage: The language
is usable for any purpose and implementation scenario of
business services on a general level. However, it is also
extendable for industry-specific aspects. USDL defines an
interoperability-centric language that enables its users to model
arbitrary services and to integrate with existing standards.
Analysis and Recommendation: Particularly the aim to
address service modelling and support this with mappings
to different standards makes this a worthwhile framework
for interoperable cloud service modelling. This enables new
business models in the field of service brokerage because
services can automatically be offered, delivered, executed, and
composed from services of different providers. Business-IT
alignment is an ongoing concern. Another development to
be considered in this context includes SoaML (standardised
by OMG, see http://www.omg.org/spec/SoaML/), which falls
into the same category as USDL in our categorisation as
a service description and modelling language. While still
under development (and thus far from being standardised),
CloudML (http://www.cloudml.org/) is a language more spe-
cific to clouds, developed by the same group as SoaML.

Open Cloud Computing Interface (OCCI)

OCCI (infrastructure lifecycle management) is now the first
of four cloud-specific standards, also including CIMI (like
OCCI on infrastructure management), TOSCA (portability and
cloud-bursting), and CDMI (data management).

Cloud computing currently is organised into three models
or layers offering Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS), which
all involve the on-demand delivery of computing resources.
Providers offer IaaS solutions to enhance elastic capacity,
where server instances are executed in their proprietary in-
frastructure and billed on a utility computing basis. For the
infrastructure layer this means that typically virtual machines
on a per-instance per-hour basis are the units. For the software
(SaaS) layer, software application instances are the correspond-
ing units, managed and billed with similar mechanisms. There
are also both commercial and open source products that repli-
cate this functionality in an in-house setting, but also exposing
compatible interfaces as a hybrid cloud environments can be
realised. The OGF OCCI working group provides an API spec-
ification for the management of cloud computing infrastructure
[18]. Usage: The scope is a comprehensive range of high-level
functionality for life-cycle management of virtual machines
(or workloads) running on virtualization technologies (such as
containers). OCCI provides an API for interfacing IaaS cloud
computing facilities, which is sufficiently complete to facilitate
the implementation of interoperable implementations:

• Consumers to interact with cloud computing infras-
tructure (e.g. deploy, start, stop, restart)

• Integrators to offer advanced management services

• Aggregators to offer a single common interface to
multiple providers

• Providers to offer a standard interface that is compat-
ible with available tools

9Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



• Vendors to offer standard interfaces for dynamically
scalable service delivery in their products.

Analysis and Recommendation: OCCI is a step towards
matching cloud-specific interoperability needs through stan-
dards. While targeting IaaS concerns, it can foster interoper-
ability endeavours at higher levels. The scope of OCCI is high-
level functionality for lifecycle management. This is in part
realised through coverage of existing proprietary APIs. Storage
details beyond creation and mapping of mount points is specif-
ically excluded. Networking details are similarly excluded
beyond creation and mapping of interfaces, assignment of these
to public or private networks and assignment of dynamic or
static IPs. While the focus is on the upper cloud stack layers
for the section presented in Figure 1, it is nonetheless a suitable
framework for interoperability at the interface of infrastructure
services. OCCI allows, as an additional interoperability con-
cern, the development of interoperable tools for common tasks
including deployment, autonomic scaling and monitoring.

Cloud Infrastructure Management Interface (CIMI)
Similar to OCCI, the CIMI - Cloud Infrastructure Management
Interface from DMTF addresses infrastructure management.
CIMI which addresses the runtime maintenance and provision-
ing of cloud services. The scope of the CIMI standard covers
core IaaS functionality, addressing deploying and managing
virtual machines and other artifacts such as volumes, networks,
or monitoring. Once interfaced to the IaaS provider, the infor-
mation that needs to be processed to manage a cloud service
can be discovered iteratively, including the metadata describing
capabilities and resource constraints. Usage: The model behind
CIMI describes resources (systems or collections of resources
managed as a whole, e.g. as an OVF file - which is covered
below): machines (resource with CPU and memory), volumes
(storage), and networks (representing layer 2 broadcasts). It
also describes meters, which are metrics for some property, and
event logs. Most developers use with the CIMI REST/HTTP-
based protocol, the current interface binding to the model
(others are expected later). This delivers standard HTTP status
codes and supports JSON and XML serialization formats.
Analysis and Recommendation: CIMI, if widely used, would
allow organisations to design cloud-based business solutions
being assured that management (and governance) processes
will not be compromised if the business solution is moved to
another (standards-based) IaaS provider.

Amazon Elastic Compute Cloud (EC2) While OCCI and
CIMI are similar standards, in a wider context, Amazon EC2
as a proprietary solution and OpenStack as an open-source
solution need to be considered in this context as well. Amazon
Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizeable computing capacity servers in Amazon’s
data centers. These can be used use to build and host software
systems. EC2 follows a pay-as-you-go for the capacity that
is needed. Usage: They allow access to components and
features using a web-based GUI, command line tools, and
APIs . At the core is an Amazon Machine Image (AMI),
which is a template that contains a software configuration
(operating system, application server, and applications). An
AMI is used to instantiate (create) a virtual machine; it is
an AMI is a filesystem image which includes an operating
system (e.g., Linux, UNIX, or Windows) and any additional
software required to deliver a service. From an AMI, instances

are launched, which are running copies of the AMI. You
can launch multiple instances of an AMI. Instances run until
you stop or terminate them, or until they fail. Analysis and
Recommendation: EC2 is a de-facto standard and comes
with a rich ecosystem, including for instance monitoring tools
such as CloudWatch or libraries for a range of programming
languages. Some open-source standards are pushed by Amazon
AWS competitors to regain market shares.

Topology and Orchestration Specification for Cloud
Applications (TOSCA) Supported by OASIS, the TOSCA
framework aims to enhance the portability of cloud applica-
tions and services. TOSCA enables interoperable description of
application and infrastructure cloud services, the relationships
between parts of the service, and the operational behaviour of
these services (such as deploy, patch, shutdown) independent
of the supplier creating the service, and any particular cloud
provider or hosting technology. TOSCA also aims to support
higher-level operational behaviour to be associated with cloud
infrastructure management. Usage: Through service and ap-
plication portability in vendor-neutral settings, it enables:

• Portable deployment to any compliant cloud

• migration of existing applications to the cloud

thus adding to consumer choice and dynamic, multi-cloud
provider applications. Analysis and Recommendation: The
core concept behind TOSCA is cloud bursting, which is the
ability to move workloads between public and private cloud
infrastructures in a transparent way. There seems to be some
discussion, with large IaaS providers not having joined the
consortium yet. The core to the solution would be a hypervisor-
agnostic portability mechanism, which requires IaaS compli-
ance. TOSCA also needs to be observed as a vendor initiative
in the context of open-source activities like OpenStack gaining
momentum.

Cloud Data Management Interface (CDMI) The
CDMI, the Cloud Data Management Interface by SNAI (see
http://www.snia.org/cdmi), targets cloud storage. The Cloud
Data Management Interface is a standard for self-provisioning,
administering and accessing cloud storage. CDMI defines
RESTful HTTP operations for accessing the capabilities of the
Cloud storage system, including allocating and accessing con-
tainers and objects, managing users and groups, implementing
access control, attaching metadata, making arbitrary queries,
using persistent queues, specifying retention intervals and
holds for compliance purposes, logging, billing, moving data
between Cloud systems, and exporting data via other protocols.
Transport security is via SSL/TLS. Usage: CDMI defines the
functional interface that applications use to create, retrieve,
update and delete data elements from the cloud. As part of
this interface, a client can discover the capabilities of the cloud
storage offering and use this interface to manage containers
and the data that is placed in them. In addition, metadata can
be set on containers and their contained data elements through
this interface. Analysis and Recommendation: Compared to
OCCI and OVF, CDMI specifically targets data moving and
format immigration. Although CDMI can also be used for
task management, this would need more extensive rules to be
defined.

10Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



C. Infrastructure Standards

The OCCI is cloud-specific and addresses interoperability
and interface concerns for the infrastructure level. We include
here three further cloud standards that are specific to the
cloud infrastructure level, of which OVF is the most critical
and successful so far. This reflects the current activity and
maturity in this context. Again, these are representative of
a number of concerns and this selection is not meant to be
exhaustive. Memcached and VEPA are representative of other
concerns, but for instance as far as protocols are concerns,
AMQP (Advanced Message Queuing Protocol) or STOMP
(Simple (or Streaming) Text Orientated Messaging Protocol)
could have been included.

Open Virtualization Format (OVF) The Open Virtual-
ization Format (OVF), submitted to DMTF as a standard,
describes an open, secure, portable, efficient, and flexible
format for the packaging and distribution of one or more virtual
machines [14], [16]. OVF features include:

• It enables optimized distribution and portability of
virtual appliances.

• It aims to support robust installation. Compatibility
with the local virtual hardware ia also verified.

• It supports both single and multi-virtual machine
configurations. With OVF, Software Developers can
configure complex multi-tiered services consisting of
multiple interdependent virtual appliances.

• It enables portable VM packaging. OVF is virtualiza-
tion platform independent.

• It supports a wide range of virtual hard disk formats
used for virtual machines today, and is extensible to
deal with future formats that are developed.

It supports vendor and platform independence as it does not
rely on the use of a specific host platform, virtualization
platform, or host/guest operating system. It is also designed
to be extended as the industry moves forward with virtual
appliance technology. Usage: VMDK is a popular file format
that encodes a single virtual disk from a virtual machine.
However, a VMDK does not contain information about the
virtual hardware of a machine, like CPU, memory, disk,
and network information, making manual configuration costly.
OVF provides a complete specification of a virtual machine.
This includes the full list of required virtual disks plus the
required virtual hardware configuration, including CPU, mem-
ory, networking, and storage. An administrator can quickly
provision a virtual machine into virtual infrastructures with
little or no manual intervention. Analysis and Recommenda-
tion: OVF is a portable format that allows users to deploy
virtual machines in any hypervisor that supports OVF. As
such, it sits at the core of resource management in the infras-
tructure provisioning layer, overcoming previous deficiencies
in standardised solutions such as VMDK. Despite, supporting
interoperability as a standard for this specific technical context,
other features of OVF are important for cloud architecture.
For instance, the localisation support is important for cloud
services to be offered across different locales. If these locales
can be defined and adapated supported by standards, a hurdle
for exploitation is overcome.

D. Security Concerns

Authentication and identity management is a primary con-
cerns for controlling access to cloud resources. Thus, OAuth
shall be covered in a brief overview of security concerns.
SCAP is a protocol to deal with downloading security content.
OAuth as an identity management and SCAP as a security
content related standard are covered in the security context.

OAuth is an open standard for authorization. It allows users
to share resources across sites. (e.g. photos, videos, contact
lists) stored on one site with another site without having to
hand out their credentials, typically supplying username and
password tokens instead. OAuth uses username and password
tokens. A token grants access to a specific site for specific
resources and for a specified duration. OAuth runs on top of
HTTP or HTTPS. The OAuth mechanism allows users to grant
a third party access to their resources (information) stored with
another service provider (which could be a cloud provider), but
without sharing access permissions. Twitter is one of the users
of OAuth, as is Facebook. OAuth is a service complementary
to other identity management mechanisms such as OpenID.

SCAP is the Security Content Automation Protocol. It
is a protocol to enable automated vulnerability management,
measurement, and policy compliance evaluation. It actually
combines a number of open standards that deal with software
flaws and configuration issues related to security. NIST is
in charge of SCAP. SCAP validation focuses on evaluating
versions of vendor products, based on the platforms they sup-
port. Validation certificates will be awarded on a platform-by-
platform basis for the version of the product that was validated.
As it attempts to standardize the automation of the linkage
between computer security configurations, it is interesting from
a cloud interoperability perspective. Trustworthy cloud systems
is the aim within which SCAP can be applied. SCAP provides
tools that can, e.g., help determine compliance of security
requirements implemented in Cloud provider OS images.

IV. DISCUSSION AND CONCLUSIONS

Interoperability between clouds, cloud services and compo-
nents is vital for the further development of the cloud ecosys-
tem and market. While standards for the Web Services context
are abundant, more specific standards for the cloud computing
domain reflect the current maturity. Firstly, a number of
standards for the lower infrastructure layers apply to respective
cloud computing technologies. They address interoperability
solutions for specific aspects like virtual machine management
or data management. It reflects initiatives for interoperability
for large offerings provided by multinational organisations.
Secondly, for platforms and services, the respective (Web)
service standards are still of relevance. Standards exist, be-
yond the core Web services platform, that can further the
development of platform and software services from existing
offers. Generic service solution can provide a starting point
where cloud-specific standards are lacking. This indicates
more development in the second category. In addition, it is
worth looking at a number of different concerns that help
us to judge the state of standardisation and it’s impact on
interoperability: (i) organisations behind standards and their
domain, (ii) stakeholders involved through standards and (iii)
standards and open-source/proprietary solutions.

11Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



Firstly, by looking at the organisations behind the stan-
dards, we can also observe that while the Web services domain
is primarily dominated by W3C and OASIS in terms of stan-
dardisation, the situation in cloud computing is more diverse.
Some of the organisations active include DMTF (management
of distributed IT systems), the OGF (grid computing), the
OMG (middleware), SNIA (storage), OASIS (services), OCC
(cloud), as well as national (e.g. NIST) and sector-specific (e.g.
ETSI - telecoms) organisations. Currently, there is a dominance
of infrastructure and lower-level management, i.e. enabling
concerns for cloud computing, reflecting predictions made in
reports such as the EU report on cloud computing and its
development time lines [3].

Secondly, stakeholders are yet another perspective that we
can look at. We have referred to stakeholders in the review
and discussion of standards where relevant to differentiate
the different interoperability needs of stakeholders in clouds
as multi-organisational, multi-role environments. While the
infrastructure standards target clearly software developers,
the more generic service-oriented standards are more at the
interface (as-a-service) level, targeting service providers and
consumers. Particularly combined roles, such as prosumers
or aggregators that are providers and consumers by combing
and brokering between more basic offerings and somehow
extended or advanced needs of end-users, benefit from the
recent service description and modelling standards.

Thirdly, while standards can achieve interoperability, often
de-facto standards emerge from open-source or proprietary
solutions. We dicussed OCCI and CIMI as standards in a
context where OpenStack is a strong open-source framework,
all competing with Amazon EC2 as the dominant solution.

Our observations do not reflect to a full extent concerns
raised by actual and potential cloud users, such as security,
privacy and trust [1], but rather indicate more technology
concerns in relation to development and deployment activities.
By looking at the standards we reviewed here for indications of
future standardisation needs, emerging from the categorisation
of standards are the following observations:

• Modelling under incorporation of a variety of stan-
dards can support migration and, consequently, the
uptake of cloud computing solutions.

• Composition, e.g. mashups, is becoming of impor-
tance to provide a market for basic and composite
offering where providers and aggregators compete.

• Quality of Service and Service Level Agreement stan-
dardisations beyond security concerns in the cloud are
actually largely lacking.

Open-SCA and other standards in this context are examples of
the emergence of programming and interoperation models for
services, which will be instrumental for the composition and
customisation of cloud services. Adding more semantics to ser-
vice descriptions is a direction that can further the composition
and brokerage in cloud architectures. Interoperability is, once
platform stability has been reached, of increasing concern.
Migration and interoperability for service offerings are con-
sidered for instance in modelling frameworks such as USDL.
The need to support composition, brokerage and mediation is
also reflected by EMML, which addresses mashups.

ACKNOWLEDGMENT

A number of research project, particularly the EU FP7
projects SLA@SOA, 4CaaSt and Remics, provided invaluable
input for this investigation.

REFERENCES

[1] 451 Group. Report on Cloud Computing ’As-a-service’ market sizing -
Report II. 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin and I. Stoica. A view of cloud computing.
Communications of the ACM, 53(4):50–58. 2010.

[3] EU Commission. Report on The Future of Cloud Computing - Opportu-
nities for European Cloud Computing Beyond 2010. EU. 2010.

[4] K. Boukadi, C. Ghedira, S. Chaari, L. Vincent and E. Bataineh. How
to employ context, web service, and community in enterprise collabo-
ration. Proceedings of the 8th Intl Conference on New Technologies in
Distributed Systems. ACM, 1-12. 2009.

[5] R. Buyya, J. Broberg, and A. Goscinski. Cloud Computing - Principles
and Paradigms. Wiley. 2011.

[6] P. Fingar. Cloud computing and the promise of on-demand business
innovation. Intelligent enterprise. 2009.

[7] C. Pahl, S. Giesecke and W. Hasselbring. An Ontology-based Approach
for Modelling Architectural Styles. European Conference on Software
Architecture ECSA 2007. Springer. 2007.

[8] M.X. Wang, K.Y. Bandara and C. Pahl. Integrated constraint violation
handling for dynamic service composition. IEEE Intl Conf on Services
Computing. pp. 168-175. 2009.

[9] DMTF Distributed Management Task Force: Interoperable Clouds.
http://www.dmtf.org/sites/default/files/ standards/documents/DSP-
IS0101 1.0.0.pdf. Accessed April 2013.

[10] GICTF Global Inter-Cloud Technology Forum: Use cases
and functional requirements for inter-cloud computing.
http://www.gictf.jp/doc/GICTF Whitepaper 20100809.pdf. Accessed
April 2013.

[11] OMG Object Management Group: Cloud Interoperability
Roadmaps Session. http://www.omg.org/news/meetings/tc/ca/special-
events/Cloud Interop Roadmaps.htm. Accessed April 2013.

[12] CloudCom 2011 Workshop: Market Implementation of Cloud
Interoperability and Portability Research in IaaS and PaaS.
http://www.cloud4soa.eu/workshop2011. Accessed April 2013.

[13] Cloud Standards Overview. http://cloud-
standards.org/wiki/index.php?title=Main Page. Accessed April 2013.

[14] DMTF istributed Management Task Force. Open
Virtualization Format Specification Version 1.0.0.
http://www.dmtf.org/standards/published documents/
DSP0243 1.0.0.pdf. Accessed April 2013.

[15] Memcached Project web site. http://memcached.org/. Accessed April
2013.

[16] OVF Open Virtualization Format. http://www.dmtf.org/sites/default/files/
standards/documents/DSP0243 1.1.0.pdf. Accessed April 2013.

[17] VEPA Virtual Ethernet Port Aggregator.
http://www.ieee802.org/1/files/public/docs2008/new-congdon-vepa-
1108-v01.pdf. Accessed April 2013.

[18] OCCI Open Cloud Computing Interface. http://occi-wg.org/. Accessed
April 2013.

[19] USDL Unified Service Description Language.
http://www.w3.org/2005/Incubator/usdl/. Accessed April 2013.

[20] EMML Enterprise Mashup Markup Language.
http://www.openmashup.org/omadocs/v1.0/index.html. Accessed April
2013.

[21] Open CSA - Open Composite Services Architecture. http://www.oasis-
opencsa.org/. Accessed April 2013.

12Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization


